AESEnginepublic class AESEngine extends Object implements org.bouncycastle.crypto.BlockCipheran implementation of the AES (Rijndael), from FIPS-197.
For further details see: http://csrc.nist.gov/encryption/aes/.
This implementation is based on optimizations from Dr. Brian Gladman's paper and C code at
http://fp.gladman.plus.com/cryptography_technology/rijndael/
There are three levels of tradeoff of speed vs memory
Because java has no preprocessor, they are written as three separate classes from which to choose
The fastest uses 8Kbytes of static tables to precompute round calculations, 4 256 word tables for encryption
and 4 for decryption.
The middle performance version uses only one 256 word table for each, for a total of 2Kbytes,
adding 12 rotate operations per round to compute the values contained in the other tables from
the contents of the first.
The slowest version uses no static tables at all and computes the values in each round.
This file contains the middle performance version with 2Kbytes of static tables for round precomputation. |
Fields Summary |
---|
private static final byte[] | S | private static final byte[] | Si | private static final int[] | rcon | private static final int[] | T0 | private static final int[] | Tinv0 | private static final int | m1 | private static final int | m2 | private static final int | m3 | private int | ROUNDS | private int[] | WorkingKey | private int | C0 | private int | C1 | private int | C2 | private int | C3 | private boolean | forEncryption | private static final int | BLOCK_SIZE |
Constructors Summary |
---|
public AESEngine()default constructor - 128 bit block size.
|
Methods Summary |
---|
private int | FFmulX(int x)
return (((x & m2) << 1) ^ (((x & m1) >>> 7) * m3));
| private final void | decryptBlock(int[][] KW)
int r, r0, r1, r2, r3;
C0 ^= KW[ROUNDS][0];
C1 ^= KW[ROUNDS][1];
C2 ^= KW[ROUNDS][2];
C3 ^= KW[ROUNDS][3];
r = ROUNDS-1;
while (r>1)
{
r0 = Tinv0[C0&255] ^ shift(Tinv0[(C3>>8)&255], 24) ^ shift(Tinv0[(C2>>16)&255], 16) ^ shift(Tinv0[(C1>>24)&255], 8) ^ KW[r][0];
r1 = Tinv0[C1&255] ^ shift(Tinv0[(C0>>8)&255], 24) ^ shift(Tinv0[(C3>>16)&255], 16) ^ shift(Tinv0[(C2>>24)&255], 8) ^ KW[r][1];
r2 = Tinv0[C2&255] ^ shift(Tinv0[(C1>>8)&255], 24) ^ shift(Tinv0[(C0>>16)&255], 16) ^ shift(Tinv0[(C3>>24)&255], 8) ^ KW[r][2];
r3 = Tinv0[C3&255] ^ shift(Tinv0[(C2>>8)&255], 24) ^ shift(Tinv0[(C1>>16)&255], 16) ^ shift(Tinv0[(C0>>24)&255], 8) ^ KW[r--][3];
C0 = Tinv0[r0&255] ^ shift(Tinv0[(r3>>8)&255], 24) ^ shift(Tinv0[(r2>>16)&255], 16) ^ shift(Tinv0[(r1>>24)&255], 8) ^ KW[r][0];
C1 = Tinv0[r1&255] ^ shift(Tinv0[(r0>>8)&255], 24) ^ shift(Tinv0[(r3>>16)&255], 16) ^ shift(Tinv0[(r2>>24)&255], 8) ^ KW[r][1];
C2 = Tinv0[r2&255] ^ shift(Tinv0[(r1>>8)&255], 24) ^ shift(Tinv0[(r0>>16)&255], 16) ^ shift(Tinv0[(r3>>24)&255], 8) ^ KW[r][2];
C3 = Tinv0[r3&255] ^ shift(Tinv0[(r2>>8)&255], 24) ^ shift(Tinv0[(r1>>16)&255], 16) ^ shift(Tinv0[(r0>>24)&255], 8) ^ KW[r--][3];
}
r0 = Tinv0[C0&255] ^ shift(Tinv0[(C3>>8)&255], 24) ^ shift(Tinv0[(C2>>16)&255], 16) ^ shift(Tinv0[(C1>>24)&255], 8) ^ KW[r][0];
r1 = Tinv0[C1&255] ^ shift(Tinv0[(C0>>8)&255], 24) ^ shift(Tinv0[(C3>>16)&255], 16) ^ shift(Tinv0[(C2>>24)&255], 8) ^ KW[r][1];
r2 = Tinv0[C2&255] ^ shift(Tinv0[(C1>>8)&255], 24) ^ shift(Tinv0[(C0>>16)&255], 16) ^ shift(Tinv0[(C3>>24)&255], 8) ^ KW[r][2];
r3 = Tinv0[C3&255] ^ shift(Tinv0[(C2>>8)&255], 24) ^ shift(Tinv0[(C1>>16)&255], 16) ^ shift(Tinv0[(C0>>24)&255], 8) ^ KW[r--][3];
// the final round's table is a simple function of Si so we don't use a whole other four tables for it
C0 = (Si[r0&255]&255) ^ ((Si[(r3>>8)&255]&255)<<8) ^ ((Si[(r2>>16)&255]&255)<<16) ^ (Si[(r1>>24)&255]<<24) ^ KW[0][0];
C1 = (Si[r1&255]&255) ^ ((Si[(r0>>8)&255]&255)<<8) ^ ((Si[(r3>>16)&255]&255)<<16) ^ (Si[(r2>>24)&255]<<24) ^ KW[0][1];
C2 = (Si[r2&255]&255) ^ ((Si[(r1>>8)&255]&255)<<8) ^ ((Si[(r0>>16)&255]&255)<<16) ^ (Si[(r3>>24)&255]<<24) ^ KW[0][2];
C3 = (Si[r3&255]&255) ^ ((Si[(r2>>8)&255]&255)<<8) ^ ((Si[(r1>>16)&255]&255)<<16) ^ (Si[(r0>>24)&255]<<24) ^ KW[0][3];
| private final void | encryptBlock(int[][] KW)
int r, r0, r1, r2, r3;
C0 ^= KW[0][0];
C1 ^= KW[0][1];
C2 ^= KW[0][2];
C3 ^= KW[0][3];
r = 1;
while (r < ROUNDS - 1)
{
r0 = T0[C0&255] ^ shift(T0[(C1>>8)&255], 24) ^ shift(T0[(C2>>16)&255],16) ^ shift(T0[(C3>>24)&255],8) ^ KW[r][0];
r1 = T0[C1&255] ^ shift(T0[(C2>>8)&255], 24) ^ shift(T0[(C3>>16)&255], 16) ^ shift(T0[(C0>>24)&255], 8) ^ KW[r][1];
r2 = T0[C2&255] ^ shift(T0[(C3>>8)&255], 24) ^ shift(T0[(C0>>16)&255], 16) ^ shift(T0[(C1>>24)&255], 8) ^ KW[r][2];
r3 = T0[C3&255] ^ shift(T0[(C0>>8)&255], 24) ^ shift(T0[(C1>>16)&255], 16) ^ shift(T0[(C2>>24)&255], 8) ^ KW[r++][3];
C0 = T0[r0&255] ^ shift(T0[(r1>>8)&255], 24) ^ shift(T0[(r2>>16)&255], 16) ^ shift(T0[(r3>>24)&255], 8) ^ KW[r][0];
C1 = T0[r1&255] ^ shift(T0[(r2>>8)&255], 24) ^ shift(T0[(r3>>16)&255], 16) ^ shift(T0[(r0>>24)&255], 8) ^ KW[r][1];
C2 = T0[r2&255] ^ shift(T0[(r3>>8)&255], 24) ^ shift(T0[(r0>>16)&255], 16) ^ shift(T0[(r1>>24)&255], 8) ^ KW[r][2];
C3 = T0[r3&255] ^ shift(T0[(r0>>8)&255], 24) ^ shift(T0[(r1>>16)&255], 16) ^ shift(T0[(r2>>24)&255], 8) ^ KW[r++][3];
}
r0 = T0[C0&255] ^ shift(T0[(C1>>8)&255], 24) ^ shift(T0[(C2>>16)&255], 16) ^ shift(T0[(C3>>24)&255], 8) ^ KW[r][0];
r1 = T0[C1&255] ^ shift(T0[(C2>>8)&255], 24) ^ shift(T0[(C3>>16)&255], 16) ^ shift(T0[(C0>>24)&255], 8) ^ KW[r][1];
r2 = T0[C2&255] ^ shift(T0[(C3>>8)&255], 24) ^ shift(T0[(C0>>16)&255], 16) ^ shift(T0[(C1>>24)&255], 8) ^ KW[r][2];
r3 = T0[C3&255] ^ shift(T0[(C0>>8)&255], 24) ^ shift(T0[(C1>>16)&255], 16) ^ shift(T0[(C2>>24)&255], 8) ^ KW[r++][3];
// the final round's table is a simple function of S so we don't use a whole other four tables for it
C0 = (S[r0&255]&255) ^ ((S[(r1>>8)&255]&255)<<8) ^ ((S[(r2>>16)&255]&255)<<16) ^ (S[(r3>>24)&255]<<24) ^ KW[r][0];
C1 = (S[r1&255]&255) ^ ((S[(r2>>8)&255]&255)<<8) ^ ((S[(r3>>16)&255]&255)<<16) ^ (S[(r0>>24)&255]<<24) ^ KW[r][1];
C2 = (S[r2&255]&255) ^ ((S[(r3>>8)&255]&255)<<8) ^ ((S[(r0>>16)&255]&255)<<16) ^ (S[(r1>>24)&255]<<24) ^ KW[r][2];
C3 = (S[r3&255]&255) ^ ((S[(r0>>8)&255]&255)<<8) ^ ((S[(r1>>16)&255]&255)<<16) ^ (S[(r2>>24)&255]<<24) ^ KW[r][3];
| private int[][] | generateWorkingKey(byte[] key, boolean forEncryption)Calculate the necessary round keys
The number of calculations depends on key size and block size
AES specified a fixed block size of 128 bits and key sizes 128/192/256 bits
This code is written assuming those are the only possible values
int KC = key.length / 4; // key length in words
int t;
if (((KC != 4) && (KC != 6) && (KC != 8)) || ((KC * 4) != key.length))
{
throw new IllegalArgumentException("Key length not 128/192/256 bits.");
}
ROUNDS = KC + 6; // This is not always true for the generalized Rijndael that allows larger block sizes
int[][] W = new int[ROUNDS+1][4]; // 4 words in a block
//
// copy the key into the round key array
//
t = 0;
int i = 0;
while (i < key.length)
{
W[t >> 2][t & 3] = (key[i]&0xff) | ((key[i+1]&0xff) << 8) | ((key[i+2]&0xff) << 16) | (key[i+3] << 24);
i+=4;
t++;
}
//
// while not enough round key material calculated
// calculate new values
//
int k = (ROUNDS + 1) << 2;
for (i = KC; (i < k); i++)
{
int temp = W[(i-1)>>2][(i-1)&3];
if ((i % KC) == 0)
{
temp = subWord(shift(temp, 8)) ^ rcon[(i / KC)-1];
}
else if ((KC > 6) && ((i % KC) == 4))
{
temp = subWord(temp);
}
W[i>>2][i&3] = W[(i - KC)>>2][(i-KC)&3] ^ temp;
}
if (!forEncryption)
{
for (int j = 1; j < ROUNDS; j++)
{
for (i = 0; i < 4; i++)
{
W[j][i] = inv_mcol(W[j][i]);
}
}
}
return W;
| public java.lang.String | getAlgorithmName()
return "AES";
| public int | getBlockSize()
return BLOCK_SIZE;
| public void | init(boolean forEncryption, org.bouncycastle.crypto.CipherParameters params)initialise an AES cipher.
if (params instanceof KeyParameter)
{
WorkingKey = generateWorkingKey(((KeyParameter)params).getKey(), forEncryption);
this.forEncryption = forEncryption;
return;
}
throw new IllegalArgumentException("invalid parameter passed to AES init - " + params.getClass().getName());
| private int | inv_mcol(int x)
int f2 = FFmulX(x);
int f4 = FFmulX(f2);
int f8 = FFmulX(f4);
int f9 = x ^ f8;
return f2 ^ f4 ^ f8 ^ shift(f2 ^ f9, 8) ^ shift(f4 ^ f9, 16) ^ shift(f9, 24);
| private final void | packBlock(byte[] bytes, int off)
int index = off;
bytes[index++] = (byte)C0;
bytes[index++] = (byte)(C0 >> 8);
bytes[index++] = (byte)(C0 >> 16);
bytes[index++] = (byte)(C0 >> 24);
bytes[index++] = (byte)C1;
bytes[index++] = (byte)(C1 >> 8);
bytes[index++] = (byte)(C1 >> 16);
bytes[index++] = (byte)(C1 >> 24);
bytes[index++] = (byte)C2;
bytes[index++] = (byte)(C2 >> 8);
bytes[index++] = (byte)(C2 >> 16);
bytes[index++] = (byte)(C2 >> 24);
bytes[index++] = (byte)C3;
bytes[index++] = (byte)(C3 >> 8);
bytes[index++] = (byte)(C3 >> 16);
bytes[index++] = (byte)(C3 >> 24);
| public int | processBlock(byte[] in, int inOff, byte[] out, int outOff)
if (WorkingKey == null)
{
throw new IllegalStateException("AES engine not initialised");
}
if ((inOff + (32 / 2)) > in.length)
{
throw new DataLengthException("input buffer too short");
}
if ((outOff + (32 / 2)) > out.length)
{
throw new DataLengthException("output buffer too short");
}
if (forEncryption)
{
unpackBlock(in, inOff);
encryptBlock(WorkingKey);
packBlock(out, outOff);
}
else
{
unpackBlock(in, inOff);
decryptBlock(WorkingKey);
packBlock(out, outOff);
}
return BLOCK_SIZE;
| public void | reset()
| private int | shift(int r, int shift)
return (r >>> shift) | (r << -shift);
| private int | subWord(int x)
return (S[x&255]&255 | ((S[(x>>8)&255]&255)<<8) | ((S[(x>>16)&255]&255)<<16) | S[(x>>24)&255]<<24);
| private final void | unpackBlock(byte[] bytes, int off)
int index = off;
C0 = (bytes[index++] & 0xff);
C0 |= (bytes[index++] & 0xff) << 8;
C0 |= (bytes[index++] & 0xff) << 16;
C0 |= bytes[index++] << 24;
C1 = (bytes[index++] & 0xff);
C1 |= (bytes[index++] & 0xff) << 8;
C1 |= (bytes[index++] & 0xff) << 16;
C1 |= bytes[index++] << 24;
C2 = (bytes[index++] & 0xff);
C2 |= (bytes[index++] & 0xff) << 8;
C2 |= (bytes[index++] & 0xff) << 16;
C2 |= bytes[index++] << 24;
C3 = (bytes[index++] & 0xff);
C3 |= (bytes[index++] & 0xff) << 8;
C3 |= (bytes[index++] & 0xff) << 16;
C3 |= bytes[index++] << 24;
|
|