GregorianCalendarpublic class GregorianCalendar extends Calendar GregorianCalendar is a concrete subclass of
Calendar and provides the standard calendar system
used by most of the world.
GregorianCalendar is a hybrid calendar that
supports both the Julian and Gregorian calendar systems with the
support of a single discontinuity, which corresponds by default to
the Gregorian date when the Gregorian calendar was instituted
(October 15, 1582 in some countries, later in others). The cutover
date may be changed by the caller by calling {@link
#setGregorianChange(Date) setGregorianChange()}.
Historically, in those countries which adopted the Gregorian calendar first,
October 4, 1582 (Julian) was thus followed by October 15, 1582 (Gregorian). This calendar models
this correctly. Before the Gregorian cutover, GregorianCalendar
implements the Julian calendar. The only difference between the Gregorian
and the Julian calendar is the leap year rule. The Julian calendar specifies
leap years every four years, whereas the Gregorian calendar omits century
years which are not divisible by 400.
GregorianCalendar implements proleptic Gregorian and
Julian calendars. That is, dates are computed by extrapolating the current
rules indefinitely far backward and forward in time. As a result,
GregorianCalendar may be used for all years to generate
meaningful and consistent results. However, dates obtained using
GregorianCalendar are historically accurate only from March 1, 4
AD onward, when modern Julian calendar rules were adopted. Before this date,
leap year rules were applied irregularly, and before 45 BC the Julian
calendar did not even exist.
Prior to the institution of the Gregorian calendar, New Year's Day was
March 25. To avoid confusion, this calendar always uses January 1. A manual
adjustment may be made if desired for dates that are prior to the Gregorian
changeover and which fall between January 1 and March 24.
Values calculated for the WEEK_OF_YEAR field range from 1 to
53. Week 1 for a year is the earliest seven day period starting on
getFirstDayOfWeek() that contains at least
getMinimalDaysInFirstWeek() days from that year. It thus
depends on the values of getMinimalDaysInFirstWeek() ,
getFirstDayOfWeek() , and the day of the week of January 1.
Weeks between week 1 of one year and week 1 of the following year are
numbered sequentially from 2 to 52 or 53 (as needed).
For example, January 1, 1998 was a Thursday. If
getFirstDayOfWeek() is MONDAY and
getMinimalDaysInFirstWeek() is 4 (these are the values
reflecting ISO 8601 and many national standards), then week 1 of 1998 starts
on December 29, 1997, and ends on January 4, 1998. If, however,
getFirstDayOfWeek() is SUNDAY , then week 1 of 1998
starts on January 4, 1998, and ends on January 10, 1998; the first three days
of 1998 then are part of week 53 of 1997.
Values calculated for the WEEK_OF_MONTH field range from 0
to 6. Week 1 of a month (the days with WEEK_OF_MONTH =
1 ) is the earliest set of at least
getMinimalDaysInFirstWeek() contiguous days in that month,
ending on the day before getFirstDayOfWeek() . Unlike
week 1 of a year, week 1 of a month may be shorter than 7 days, need
not start on getFirstDayOfWeek() , and will not include days of
the previous month. Days of a month before week 1 have a
WEEK_OF_MONTH of 0.
For example, if getFirstDayOfWeek() is SUNDAY
and getMinimalDaysInFirstWeek() is 4, then the first week of
January 1998 is Sunday, January 4 through Saturday, January 10. These days
have a WEEK_OF_MONTH of 1. Thursday, January 1 through
Saturday, January 3 have a WEEK_OF_MONTH of 0. If
getMinimalDaysInFirstWeek() is changed to 3, then January 1
through January 3 have a WEEK_OF_MONTH of 1.
The clear methods set calendar field(s)
undefined. GregorianCalendar uses the following
default value for each calendar field if its value is undefined.
Field
|
Default Value
|
ERA
|
AD
|
YEAR
|
1970
|
MONTH
|
JANUARY
|
DAY_OF_MONTH
|
1
|
DAY_OF_WEEK
|
the first day of week
|
WEEK_OF_MONTH
|
0
|
DAY_OF_WEEK_IN_MONTH
|
1
|
AM_PM
|
AM
|
HOUR, HOUR_OF_DAY, MINUTE, SECOND, MILLISECOND
|
0
|
Default values are not applicable for the fields not listed above.
Example:
// get the supported ids for GMT-08:00 (Pacific Standard Time)
String[] ids = TimeZone.getAvailableIDs(-8 * 60 * 60 * 1000);
// if no ids were returned, something is wrong. get out.
if (ids.length == 0)
System.exit(0);
// begin output
System.out.println("Current Time");
// create a Pacific Standard Time time zone
SimpleTimeZone pdt = new SimpleTimeZone(-8 * 60 * 60 * 1000, ids[0]);
// set up rules for daylight savings time
pdt.setStartRule(Calendar.APRIL, 1, Calendar.SUNDAY, 2 * 60 * 60 * 1000);
pdt.setEndRule(Calendar.OCTOBER, -1, Calendar.SUNDAY, 2 * 60 * 60 * 1000);
// create a GregorianCalendar with the Pacific Daylight time zone
// and the current date and time
Calendar calendar = new GregorianCalendar(pdt);
Date trialTime = new Date();
calendar.setTime(trialTime);
// print out a bunch of interesting things
System.out.println("ERA: " + calendar.get(Calendar.ERA));
System.out.println("YEAR: " + calendar.get(Calendar.YEAR));
System.out.println("MONTH: " + calendar.get(Calendar.MONTH));
System.out.println("WEEK_OF_YEAR: " + calendar.get(Calendar.WEEK_OF_YEAR));
System.out.println("WEEK_OF_MONTH: " + calendar.get(Calendar.WEEK_OF_MONTH));
System.out.println("DATE: " + calendar.get(Calendar.DATE));
System.out.println("DAY_OF_MONTH: " + calendar.get(Calendar.DAY_OF_MONTH));
System.out.println("DAY_OF_YEAR: " + calendar.get(Calendar.DAY_OF_YEAR));
System.out.println("DAY_OF_WEEK: " + calendar.get(Calendar.DAY_OF_WEEK));
System.out.println("DAY_OF_WEEK_IN_MONTH: "
+ calendar.get(Calendar.DAY_OF_WEEK_IN_MONTH));
System.out.println("AM_PM: " + calendar.get(Calendar.AM_PM));
System.out.println("HOUR: " + calendar.get(Calendar.HOUR));
System.out.println("HOUR_OF_DAY: " + calendar.get(Calendar.HOUR_OF_DAY));
System.out.println("MINUTE: " + calendar.get(Calendar.MINUTE));
System.out.println("SECOND: " + calendar.get(Calendar.SECOND));
System.out.println("MILLISECOND: " + calendar.get(Calendar.MILLISECOND));
System.out.println("ZONE_OFFSET: "
+ (calendar.get(Calendar.ZONE_OFFSET)/(60*60*1000)));
System.out.println("DST_OFFSET: "
+ (calendar.get(Calendar.DST_OFFSET)/(60*60*1000)));
System.out.println("Current Time, with hour reset to 3");
calendar.clear(Calendar.HOUR_OF_DAY); // so doesn't override
calendar.set(Calendar.HOUR, 3);
System.out.println("ERA: " + calendar.get(Calendar.ERA));
System.out.println("YEAR: " + calendar.get(Calendar.YEAR));
System.out.println("MONTH: " + calendar.get(Calendar.MONTH));
System.out.println("WEEK_OF_YEAR: " + calendar.get(Calendar.WEEK_OF_YEAR));
System.out.println("WEEK_OF_MONTH: " + calendar.get(Calendar.WEEK_OF_MONTH));
System.out.println("DATE: " + calendar.get(Calendar.DATE));
System.out.println("DAY_OF_MONTH: " + calendar.get(Calendar.DAY_OF_MONTH));
System.out.println("DAY_OF_YEAR: " + calendar.get(Calendar.DAY_OF_YEAR));
System.out.println("DAY_OF_WEEK: " + calendar.get(Calendar.DAY_OF_WEEK));
System.out.println("DAY_OF_WEEK_IN_MONTH: "
+ calendar.get(Calendar.DAY_OF_WEEK_IN_MONTH));
System.out.println("AM_PM: " + calendar.get(Calendar.AM_PM));
System.out.println("HOUR: " + calendar.get(Calendar.HOUR));
System.out.println("HOUR_OF_DAY: " + calendar.get(Calendar.HOUR_OF_DAY));
System.out.println("MINUTE: " + calendar.get(Calendar.MINUTE));
System.out.println("SECOND: " + calendar.get(Calendar.SECOND));
System.out.println("MILLISECOND: " + calendar.get(Calendar.MILLISECOND));
System.out.println("ZONE_OFFSET: "
+ (calendar.get(Calendar.ZONE_OFFSET)/(60*60*1000))); // in hours
System.out.println("DST_OFFSET: "
+ (calendar.get(Calendar.DST_OFFSET)/(60*60*1000))); // in hours
|
Fields Summary |
---|
public static final int | BCValue of the ERA field indicating
the period before the common era (before Christ), also known as BCE.
The sequence of years at the transition from BC to AD is
..., 2 BC, 1 BC, 1 AD, 2 AD,... | static final int | BCEValue of the {@link #ERA} field indicating
the period before the common era, the same value as {@link #BC}. | public static final int | ADValue of the ERA field indicating
the common era (Anno Domini), also known as CE.
The sequence of years at the transition from BC to AD is
..., 2 BC, 1 BC, 1 AD, 2 AD,... | static final int | CEValue of the {@link #ERA} field indicating
the common era, the same value as {@link #AD}. | private static final int | EPOCH_OFFSET | private static final int | EPOCH_YEAR | static final int[] | MONTH_LENGTH | static final int[] | LEAP_MONTH_LENGTH | private static final int | ONE_SECOND | private static final int | ONE_MINUTE | private static final int | ONE_HOUR | private static final long | ONE_DAY | private static final long | ONE_WEEK | static final int[] | MIN_VALUES | static final int[] | LEAST_MAX_VALUES | static final int[] | MAX_VALUES | static final long | serialVersionUID | private static final Gregorian | gcal | private static JulianCalendar | jcal | private static Era[] | jeras | static final long | DEFAULT_GREGORIAN_CUTOVER | private long | gregorianCutoverThe point at which the Gregorian calendar rules are used, measured in
milliseconds from the standard epoch. Default is October 15, 1582
(Gregorian) 00:00:00 UTC or -12219292800000L. For this value, October 4,
1582 (Julian) is followed by October 15, 1582 (Gregorian). This
corresponds to Julian day number 2299161. | private transient long | gregorianCutoverDateThe fixed date of the gregorianCutover. | private transient int | gregorianCutoverYearThe normalized year of the gregorianCutover in Gregorian, with
0 representing 1 BCE, -1 representing 2 BCE, etc. | private transient int | gregorianCutoverYearJulianThe normalized year of the gregorianCutover in Julian, with 0
representing 1 BCE, -1 representing 2 BCE, etc. | private transient BaseCalendar$Date | gdategdate always has a sun.util.calendar.Gregorian.Date instance to
avoid overhead of creating it. The assumption is that most
applications will need only Gregorian calendar calculations. | private transient BaseCalendar$Date | cdateReference to either gdate or a JulianCalendar.Date
instance. After calling complete(), this value is guaranteed to
be set. | private transient BaseCalendar | calsysThe CalendarSystem used to calculate the date in cdate. After
calling complete(), this value is guaranteed to be set and
consistent with the cdate value. | private transient int[] | zoneOffsetsTemporary int[2] to get time zone offsets. zoneOffsets[0] gets
the GMT offset value and zoneOffsets[1] gets the DST saving
value. | private transient int[] | originalFieldsTemporary storage for saving original fields[] values in
non-lenient mode. | private transient long | cachedFixedDateThe fixed date corresponding to gdate. If the value is
Long.MIN_VALUE, the fixed date value is unknown. Currently,
Julian calendar dates are not cached. |
Constructors Summary |
---|
public GregorianCalendar()Constructs a default GregorianCalendar using the current time
in the default time zone with the default locale.
///////////////
// Constructors
///////////////
this(TimeZone.getDefaultRef(), Locale.getDefault());
setZoneShared(true);
| public GregorianCalendar(TimeZone zone)Constructs a GregorianCalendar based on the current time
in the given time zone with the default locale.
this(zone, Locale.getDefault());
| public GregorianCalendar(Locale aLocale)Constructs a GregorianCalendar based on the current time
in the default time zone with the given locale.
this(TimeZone.getDefaultRef(), aLocale);
setZoneShared(true);
| public GregorianCalendar(TimeZone zone, Locale aLocale)Constructs a GregorianCalendar based on the current time
in the given time zone with the given locale.
super(zone, aLocale);
gdate = (BaseCalendar.Date) gcal.newCalendarDate(zone);
setTimeInMillis(System.currentTimeMillis());
| public GregorianCalendar(int year, int month, int dayOfMonth)Constructs a GregorianCalendar with the given date set
in the default time zone with the default locale.
this(year, month, dayOfMonth, 0, 0, 0, 0);
| public GregorianCalendar(int year, int month, int dayOfMonth, int hourOfDay, int minute)Constructs a GregorianCalendar with the given date
and time set for the default time zone with the default locale.
this(year, month, dayOfMonth, hourOfDay, minute, 0, 0);
| public GregorianCalendar(int year, int month, int dayOfMonth, int hourOfDay, int minute, int second)Constructs a GregorianCalendar with the given date
and time set for the default time zone with the default locale.
this(year, month, dayOfMonth, hourOfDay, minute, second, 0);
| GregorianCalendar(int year, int month, int dayOfMonth, int hourOfDay, int minute, int second, int millis)Constructs a GregorianCalendar with the given date
and time set for the default time zone with the default locale.
super();
gdate = (BaseCalendar.Date) gcal.newCalendarDate(getZone());
this.set(YEAR, year);
this.set(MONTH, month);
this.set(DAY_OF_MONTH, dayOfMonth);
this.set(HOUR_OF_DAY, hourOfDay);
this.set(MINUTE, minute);
this.set(SECOND, second);
// should be changed to set() when this constructor is made
// public.
this.internalSet(MILLISECOND, millis);
|
Methods Summary |
---|
private final int | actualMonthLength()
int year = cdate.getNormalizedYear();
if (year != gregorianCutoverYear && year != gregorianCutoverYearJulian) {
return calsys.getMonthLength(cdate);
}
BaseCalendar.Date date = (BaseCalendar.Date) cdate.clone();
long fd = calsys.getFixedDate(date);
long month1 = getFixedDateMonth1(date, fd);
long next1 = month1 + calsys.getMonthLength(date);
if (next1 < gregorianCutoverDate) {
return (int)(next1 - month1);
}
if (cdate != gdate) {
date = (BaseCalendar.Date) gcal.newCalendarDate(TimeZone.NO_TIMEZONE);
}
gcal.getCalendarDateFromFixedDate(date, next1);
next1 = getFixedDateMonth1(date, next1);
return (int)(next1 - month1);
| public void | add(int field, int amount)Adds the specified (signed) amount of time to the given calendar field,
based on the calendar's rules.
Add rule 1. The value of field
after the call minus the value of field before the
call is amount , modulo any overflow that has occurred in
field . Overflow occurs when a field value exceeds its
range and, as a result, the next larger field is incremented or
decremented and the field value is adjusted back into its range.
Add rule 2. If a smaller field is expected to be
invariant, but it is impossible for it to be equal to its
prior value because of changes in its minimum or maximum after
field is changed, then its value is adjusted to be as close
as possible to its expected value. A smaller field represents a
smaller unit of time. HOUR is a smaller field than
DAY_OF_MONTH . No adjustment is made to smaller fields
that are not expected to be invariant. The calendar system
determines what fields are expected to be invariant.
// If amount == 0, do nothing even the given field is out of
// range. This is tested by JCK.
if (amount == 0) {
return; // Do nothing!
}
if (field < 0 || field >= ZONE_OFFSET) {
throw new IllegalArgumentException();
}
// Sync the time and calendar fields.
complete();
if (field == YEAR) {
int year = internalGet(YEAR);
if (internalGetEra() == CE) {
year += amount;
if (year > 0) {
set(YEAR, year);
} else { // year <= 0
set(YEAR, 1 - year);
// if year == 0, you get 1 BCE.
set(ERA, BCE);
}
}
else { // era == BCE
year -= amount;
if (year > 0) {
set(YEAR, year);
} else { // year <= 0
set(YEAR, 1 - year);
// if year == 0, you get 1 CE
set(ERA, CE);
}
}
pinDayOfMonth();
} else if (field == MONTH) {
int month = internalGet(MONTH) + amount;
int year = internalGet(YEAR);
int y_amount;
if (month >= 0) {
y_amount = month/12;
} else {
y_amount = (month+1)/12 - 1;
}
if (y_amount != 0) {
if (internalGetEra() == CE) {
year += y_amount;
if (year > 0) {
set(YEAR, year);
} else { // year <= 0
set(YEAR, 1 - year);
// if year == 0, you get 1 BCE
set(ERA, BCE);
}
}
else { // era == BCE
year -= y_amount;
if (year > 0) {
set(YEAR, year);
} else { // year <= 0
set(YEAR, 1 - year);
// if year == 0, you get 1 CE
set(ERA, CE);
}
}
}
if (month >= 0) {
set(MONTH, (int) (month % 12));
} else {
// month < 0
month %= 12;
if (month < 0) {
month += 12;
}
set(MONTH, JANUARY + month);
}
pinDayOfMonth();
} else if (field == ERA) {
int era = internalGet(ERA) + amount;
if (era < 0) {
era = 0;
}
if (era > 1) {
era = 1;
}
set(ERA, era);
} else {
long delta = amount;
long timeOfDay = 0;
switch (field) {
// Handle the time fields here. Convert the given
// amount to milliseconds and call setTimeInMillis.
case HOUR:
case HOUR_OF_DAY:
delta *= 60 * 60 * 1000; // hours to minutes
break;
case MINUTE:
delta *= 60 * 1000; // minutes to seconds
break;
case SECOND:
delta *= 1000; // seconds to milliseconds
break;
case MILLISECOND:
break;
// Handle week, day and AM_PM fields which involves
// time zone offset change adjustment. Convert the
// given amount to the number of days.
case WEEK_OF_YEAR:
case WEEK_OF_MONTH:
case DAY_OF_WEEK_IN_MONTH:
delta *= 7;
break;
case DAY_OF_MONTH: // synonym of DATE
case DAY_OF_YEAR:
case DAY_OF_WEEK:
break;
case AM_PM:
// Convert the amount to the number of days (delta)
// and +12 or -12 hours (timeOfDay).
delta = amount / 2;
timeOfDay = 12 * (amount % 2);
break;
}
// The time fields don't require time zone offset change
// adjustment.
if (field >= HOUR) {
setTimeInMillis(time + delta);
return;
}
// The rest of the fields (week, day or AM_PM fields)
// require time zone offset (both GMT and DST) change
// adjustment.
// Translate the current time to the fixed date and time
// of the day.
long fd = getCurrentFixedDate();
timeOfDay += internalGet(HOUR_OF_DAY);
timeOfDay *= 60;
timeOfDay += internalGet(MINUTE);
timeOfDay *= 60;
timeOfDay += internalGet(SECOND);
timeOfDay *= 1000;
timeOfDay += internalGet(MILLISECOND);
if (timeOfDay >= ONE_DAY) {
fd++;
timeOfDay -= ONE_DAY;
} else if (timeOfDay < 0) {
fd--;
timeOfDay += ONE_DAY;
}
fd += delta; // fd is the expected fixed date after the calculation
int zoneOffset = internalGet(ZONE_OFFSET) + internalGet(DST_OFFSET);
setTimeInMillis((fd - EPOCH_OFFSET) * ONE_DAY + timeOfDay - zoneOffset);
zoneOffset -= internalGet(ZONE_OFFSET) + internalGet(DST_OFFSET);
// If the time zone offset has changed, then adjust the difference.
if (zoneOffset != 0) {
setTimeInMillis(time + zoneOffset);
long fd2 = getCurrentFixedDate();
// If the adjustment has changed the date, then take
// the previous one.
if (fd2 != fd) {
setTimeInMillis(time - zoneOffset);
}
}
}
| public java.lang.Object | clone()
GregorianCalendar other = (GregorianCalendar) super.clone();
other.gdate = (BaseCalendar.Date) gdate.clone();
if (cdate != null) {
if (cdate != gdate) {
other.cdate = (BaseCalendar.Date) cdate.clone();
} else {
other.cdate = other.gdate;
}
}
other.originalFields = null;
other.zoneOffsets = null;
return other;
| protected void | computeFields()Converts the time value (millisecond offset from the Epoch) to calendar field values.
The time is not
recomputed first; to recompute the time, then the fields, call the
complete method.
int mask = 0;
if (isPartiallyNormalized()) {
// Determine which calendar fields need to be computed.
mask = getSetStateFields();
int fieldMask = ~mask & ALL_FIELDS;
mask |= computeFields(fieldMask,
(mask & (ZONE_OFFSET_MASK|DST_OFFSET_MASK))
== (ZONE_OFFSET_MASK|DST_OFFSET_MASK) ? fields : null,
ZONE_OFFSET);
assert mask == ALL_FIELDS;
} else {
// Specify all fields
mask = ALL_FIELDS;
computeFields(mask, null, 0);
}
// After computing all the fields, set the field state to `COMPUTED'.
setFieldsComputed(mask);
| private int | computeFields(int fieldMask, int[] offsets, int index)This computeFields implements the conversion from UTC
(millisecond offset from the Epoch) to calendar
field values. fieldMask specifies which fields to change the
setting state to COMPUTED, although all fields are set to
the correct values. This is required to fix 4685354.
int zoneOffset;
if (offsets != null) {
zoneOffset = offsets[index] + offsets[index + 1];
} else {
TimeZone tz = getZone();
if (zoneOffsets == null) {
zoneOffsets = new int[2];
}
if (tz instanceof ZoneInfo) {
zoneOffset = ((ZoneInfo)tz).getOffsets(time, zoneOffsets);
} else {
zoneOffset = tz.getOffset(time);
zoneOffsets[0] = tz.getRawOffset();
zoneOffsets[1] = zoneOffset - zoneOffsets[0];
}
}
// By computing time and zoneOffset separately, we can take
// the wider range of time+zoneOffset than the previous
// implementation.
long fixedDate = zoneOffset / ONE_DAY;
int timeOfDay = zoneOffset % (int)ONE_DAY;
fixedDate += time / ONE_DAY;
timeOfDay += (int) (time % ONE_DAY);
if (timeOfDay >= ONE_DAY) {
timeOfDay -= ONE_DAY;
++fixedDate;
} else {
while (timeOfDay < 0) {
timeOfDay += ONE_DAY;
--fixedDate;
}
}
fixedDate += EPOCH_OFFSET;
int era = CE;
int year;
if (fixedDate >= gregorianCutoverDate) {
// Handle Gregorian dates.
assert cachedFixedDate == Long.MIN_VALUE || gdate.isNormalized()
: "cache control: not normalized";
assert cachedFixedDate == Long.MIN_VALUE ||
gcal.getFixedDate(gdate.getNormalizedYear(),
gdate.getMonth(),
gdate.getDayOfMonth(), gdate)
== cachedFixedDate
: "cache control: inconsictency" +
", cachedFixedDate=" + cachedFixedDate +
", computed=" +
gcal.getFixedDate(gdate.getNormalizedYear(),
gdate.getMonth(),
gdate.getDayOfMonth(),
gdate) +
", date=" + gdate;
// See if we can use gdate to avoid date calculation.
if (fixedDate != cachedFixedDate) {
gcal.getCalendarDateFromFixedDate(gdate, fixedDate);
cachedFixedDate = fixedDate;
}
year = gdate.getYear();
if (year <= 0) {
year = 1 - year;
era = BCE;
}
calsys = gcal;
cdate = gdate;
assert cdate.getDayOfWeek() > 0 : "dow="+cdate.getDayOfWeek()+", date="+cdate;
} else {
// Handle Julian calendar dates.
calsys = getJulianCalendarSystem();
cdate = (BaseCalendar.Date) jcal.newCalendarDate(getZone());
jcal.getCalendarDateFromFixedDate(cdate, fixedDate);
Era e = cdate.getEra();
if (e == jeras[0]) {
era = BCE;
}
year = cdate.getYear();
}
// Always set the ERA and YEAR values.
internalSet(ERA, era);
internalSet(YEAR, year);
int mask = fieldMask | (ERA_MASK|YEAR_MASK);
int month = cdate.getMonth() - 1; // 0-based
int dayOfMonth = cdate.getDayOfMonth();
// Set the basic date fields.
if ((fieldMask & (MONTH_MASK|DAY_OF_MONTH_MASK|DAY_OF_WEEK_MASK))
!= 0) {
internalSet(MONTH, month);
internalSet(DAY_OF_MONTH, dayOfMonth);
internalSet(DAY_OF_WEEK, cdate.getDayOfWeek());
mask |= MONTH_MASK|DAY_OF_MONTH_MASK|DAY_OF_WEEK_MASK;
}
if ((fieldMask & (HOUR_OF_DAY_MASK|AM_PM_MASK|HOUR_MASK
|MINUTE_MASK|SECOND_MASK|MILLISECOND_MASK)) != 0) {
if (timeOfDay != 0) {
int hours = timeOfDay / ONE_HOUR;
internalSet(HOUR_OF_DAY, hours);
internalSet(AM_PM, hours / 12); // Assume AM == 0
internalSet(HOUR, hours % 12);
int r = timeOfDay % ONE_HOUR;
internalSet(MINUTE, r / ONE_MINUTE);
r %= ONE_MINUTE;
internalSet(SECOND, r / ONE_SECOND);
internalSet(MILLISECOND, r % ONE_SECOND);
} else {
internalSet(HOUR_OF_DAY, 0);
internalSet(AM_PM, AM);
internalSet(HOUR, 0);
internalSet(MINUTE, 0);
internalSet(SECOND, 0);
internalSet(MILLISECOND, 0);
}
mask |= (HOUR_OF_DAY_MASK|AM_PM_MASK|HOUR_MASK
|MINUTE_MASK|SECOND_MASK|MILLISECOND_MASK);
}
if ((fieldMask & (ZONE_OFFSET_MASK|DST_OFFSET_MASK)) != 0) {
// Avoid setting fields[] to fields[]
if (offsets != fields) {
internalSet(ZONE_OFFSET, zoneOffsets[0]);
internalSet(DST_OFFSET, zoneOffsets[1]);
}
mask |= (ZONE_OFFSET_MASK|DST_OFFSET_MASK);
}
if ((fieldMask & (DAY_OF_YEAR_MASK|WEEK_OF_YEAR_MASK|WEEK_OF_MONTH_MASK|DAY_OF_WEEK_IN_MONTH_MASK)) != 0) {
int normalizedYear = cdate.getNormalizedYear();
long fixedDateJan1 = calsys.getFixedDate(normalizedYear, 1, 1, cdate);
int dayOfYear = (int)(fixedDate - fixedDateJan1) + 1;
long fixedDateMonth1 = fixedDate - dayOfMonth + 1;
int cutoverGap = 0;
int cutoverYear = (calsys == gcal) ? gregorianCutoverYear : gregorianCutoverYearJulian;
int relativeDayOfMonth = dayOfMonth - 1;
// If we are in the cutover year, we need some special handling.
if (normalizedYear == cutoverYear) {
// Need to take care of the "missing" days.
if (getCutoverCalendarSystem() == jcal) {
// We need to find out where we are. The cutover
// gap could even be more than one year. (One
// year difference in ~48667 years.)
fixedDateJan1 = getFixedDateJan1(cdate, fixedDate);
if (fixedDate >= gregorianCutoverDate) {
fixedDateMonth1 = getFixedDateMonth1(cdate, fixedDate);
}
}
int realDayOfYear = (int)(fixedDate - fixedDateJan1) + 1;
cutoverGap = dayOfYear - realDayOfYear;
dayOfYear = realDayOfYear;
relativeDayOfMonth = (int)(fixedDate - fixedDateMonth1);
}
internalSet(DAY_OF_YEAR, dayOfYear);
internalSet(DAY_OF_WEEK_IN_MONTH, relativeDayOfMonth / 7 + 1);
int weekOfYear = getWeekNumber(fixedDateJan1, fixedDate);
// The spec is to calculate WEEK_OF_YEAR in the
// ISO8601-style. This creates problems, though.
if (weekOfYear == 0) {
// If the date belongs to the last week of the
// previous year, use the week number of "12/31" of
// the "previous" year. Again, if the previous year is
// the Gregorian cutover year, we need to take care of
// it. Usually the previous day of January 1 is
// December 31, which is not always true in
// GregorianCalendar.
long fixedDec31 = fixedDateJan1 - 1;
long prevJan1;
if (normalizedYear > (cutoverYear + 1)) {
prevJan1 = fixedDateJan1 - 365;
if (CalendarUtils.isGregorianLeapYear(normalizedYear - 1)) {
--prevJan1;
}
} else {
BaseCalendar calForJan1 = calsys;
int prevYear = normalizedYear - 1;
if (prevYear == cutoverYear) {
calForJan1 = getCutoverCalendarSystem();
}
prevJan1 = calForJan1.getFixedDate(prevYear,
BaseCalendar.JANUARY,
1,
null);
while (prevJan1 > fixedDec31) {
prevJan1 = getJulianCalendarSystem().getFixedDate(--prevYear,
BaseCalendar.JANUARY,
1,
null);
}
}
weekOfYear = getWeekNumber(prevJan1, fixedDec31);
} else {
if (normalizedYear > gregorianCutoverYear ||
normalizedYear < (gregorianCutoverYearJulian - 1)) {
// Regular years
if (weekOfYear >= 52) {
long nextJan1 = fixedDateJan1 + 365;
if (cdate.isLeapYear()) {
nextJan1++;
}
long nextJan1st = calsys.getDayOfWeekDateOnOrBefore(nextJan1 + 6,
getFirstDayOfWeek());
int ndays = (int)(nextJan1st - nextJan1);
if (ndays >= getMinimalDaysInFirstWeek() && fixedDate >= (nextJan1st - 7)) {
// The first days forms a week in which the date is included.
weekOfYear = 1;
}
}
} else {
BaseCalendar calForJan1 = calsys;
int nextYear = normalizedYear + 1;
if (nextYear == (gregorianCutoverYearJulian + 1) &&
nextYear < gregorianCutoverYear) {
// In case the gap is more than one year.
nextYear = gregorianCutoverYear;
}
if (nextYear == gregorianCutoverYear) {
calForJan1 = getCutoverCalendarSystem();
}
long nextJan1 = calForJan1.getFixedDate(nextYear,
BaseCalendar.JANUARY,
1,
null);
if (nextJan1 < fixedDate) {
nextJan1 = gregorianCutoverDate;
calForJan1 = gcal;
}
long nextJan1st = calForJan1.getDayOfWeekDateOnOrBefore(nextJan1 + 6,
getFirstDayOfWeek());
int ndays = (int)(nextJan1st - nextJan1);
if (ndays >= getMinimalDaysInFirstWeek() && fixedDate >= (nextJan1st - 7)) {
// The first days forms a week in which the date is included.
weekOfYear = 1;
}
}
}
internalSet(WEEK_OF_YEAR, weekOfYear);
internalSet(WEEK_OF_MONTH, getWeekNumber(fixedDateMonth1, fixedDate));
mask |= (DAY_OF_YEAR_MASK|WEEK_OF_YEAR_MASK|WEEK_OF_MONTH_MASK|DAY_OF_WEEK_IN_MONTH_MASK);
}
return mask;
| protected void | computeTime()Converts calendar field values to the time value (millisecond
offset from the Epoch).
// In non-lenient mode, perform brief checking of calendar
// fields which have been set externally. Through this
// checking, the field values are stored in originalFields[]
// to see if any of them are normalized later.
if (!isLenient()) {
if (originalFields == null) {
originalFields = new int[FIELD_COUNT];
}
for (int field = 0; field < FIELD_COUNT; field++) {
int value = internalGet(field);
if (isExternallySet(field)) {
// Quick validation for any out of range values
if (value < getMinimum(field) || value > getMaximum(field)) {
throw new IllegalArgumentException(getFieldName(field));
}
}
originalFields[field] = value;
}
}
// Let the super class determine which calendar fields to be
// used to calculate the time.
int fieldMask = selectFields();
// The year defaults to the epoch start. We don't check
// fieldMask for YEAR because YEAR is a mandatory field to
// determine the date.
int year = isSet(YEAR) ? internalGet(YEAR) : EPOCH_YEAR;
int era = internalGetEra();
if (era == BCE) {
year = 1 - year;
} else if (era != CE) {
// Even in lenient mode we disallow ERA values other than CE & BCE.
// (The same normalization rule as add()/roll() could be
// applied here in lenient mode. But this checking is kept
// unchanged for compatibility as of 1.5.)
throw new IllegalArgumentException("Invalid era");
}
// If year is 0 or negative, we need to set the ERA value later.
if (year <= 0 && !isSet(ERA)) {
fieldMask |= ERA_MASK;
setFieldsComputed(ERA_MASK);
}
// Calculate the time of day. We rely on the convention that
// an UNSET field has 0.
long timeOfDay = 0;
if (isFieldSet(fieldMask, HOUR_OF_DAY)) {
timeOfDay += (long) internalGet(HOUR_OF_DAY);
} else {
timeOfDay += internalGet(HOUR);
// The default value of AM_PM is 0 which designates AM.
if (isFieldSet(fieldMask, AM_PM)) {
timeOfDay += 12 * internalGet(AM_PM);
}
}
timeOfDay *= 60;
timeOfDay += internalGet(MINUTE);
timeOfDay *= 60;
timeOfDay += internalGet(SECOND);
timeOfDay *= 1000;
timeOfDay += internalGet(MILLISECOND);
// Convert the time of day to the number of days and the
// millisecond offset from midnight.
long fixedDate = timeOfDay / ONE_DAY;
timeOfDay %= ONE_DAY;
while (timeOfDay < 0) {
timeOfDay += ONE_DAY;
--fixedDate;
}
// Calculate the fixed date since January 1, 1 (Gregorian).
calculateFixedDate: {
long gfd, jfd;
if (year > gregorianCutoverYear && year > gregorianCutoverYearJulian) {
gfd = fixedDate + getFixedDate(gcal, year, fieldMask);
if (gfd >= gregorianCutoverDate) {
fixedDate = gfd;
break calculateFixedDate;
}
jfd = fixedDate + getFixedDate(getJulianCalendarSystem(), year, fieldMask);
} else if (year < gregorianCutoverYear && year < gregorianCutoverYearJulian) {
jfd = fixedDate + getFixedDate(getJulianCalendarSystem(), year, fieldMask);
if (jfd < gregorianCutoverDate) {
fixedDate = jfd;
break calculateFixedDate;
}
gfd = fixedDate + getFixedDate(gcal, year, fieldMask);
} else {
gfd = fixedDate + getFixedDate(gcal, year, fieldMask);
jfd = fixedDate + getFixedDate(getJulianCalendarSystem(), year, fieldMask);
}
// Now we have to determine which calendar date it is.
if (gfd >= gregorianCutoverDate) {
if (jfd >= gregorianCutoverDate) {
fixedDate = gfd;
} else {
// The date is in an "overlapping" period. No way
// to disambiguate it. Determine it using the
// previous date calculation.
if (calsys == gcal || calsys == null) {
fixedDate = gfd;
} else {
fixedDate = jfd;
}
}
} else {
if (jfd < gregorianCutoverDate) {
fixedDate = jfd;
} else {
// The date is in a "missing" period.
if (!isLenient()) {
throw new IllegalArgumentException("the specified date doesn't exist");
}
// Take the Julian date for compatibility, which
// will produce a Gregorian date.
fixedDate = jfd;
}
}
}
// millis represents local wall-clock time in milliseconds.
long millis = (fixedDate - EPOCH_OFFSET) * ONE_DAY + timeOfDay;
// Compute the time zone offset and DST offset. There are two potential
// ambiguities here. We'll assume a 2:00 am (wall time) switchover time
// for discussion purposes here.
// 1. The transition into DST. Here, a designated time of 2:00 am - 2:59 am
// can be in standard or in DST depending. However, 2:00 am is an invalid
// representation (the representation jumps from 1:59:59 am Std to 3:00:00 am DST).
// We assume standard time.
// 2. The transition out of DST. Here, a designated time of 1:00 am - 1:59 am
// can be in standard or DST. Both are valid representations (the rep
// jumps from 1:59:59 DST to 1:00:00 Std).
// Again, we assume standard time.
// We use the TimeZone object, unless the user has explicitly set the ZONE_OFFSET
// or DST_OFFSET fields; then we use those fields.
TimeZone zone = getZone();
if (zoneOffsets == null) {
zoneOffsets = new int[2];
}
if (zone instanceof ZoneInfo) {
if ((fieldMask & (ZONE_OFFSET_MASK|DST_OFFSET_MASK))
!= (ZONE_OFFSET_MASK|DST_OFFSET_MASK)) {
((ZoneInfo)zone).getOffsetsByWall(millis, zoneOffsets);
}
if (isFieldSet(fieldMask, ZONE_OFFSET)) {
zoneOffsets[0] = internalGet(ZONE_OFFSET);
}
if (isFieldSet(fieldMask, DST_OFFSET)) {
zoneOffsets[1] = internalGet(DST_OFFSET);
}
} else {
zoneOffsets[0] = isFieldSet(fieldMask, ZONE_OFFSET) ?
internalGet(ZONE_OFFSET) : zone.getRawOffset();
if (isFieldSet(fieldMask, DST_OFFSET)) {
zoneOffsets[1] = internalGet(DST_OFFSET);
} else {
zoneOffsets[1] = zone.getOffsets(millis - (long)zoneOffsets[0], null)
- zoneOffsets[0];
}
}
// Adjust the time zone offset values to get the UTC time.
millis -= zoneOffsets[0] + zoneOffsets[1];
// Set this calendar's time in milliseconds
time = millis;
int mask = computeFields(fieldMask | getSetStateFields(), null, 0);
if (!isLenient()) {
for (int field = 0; field < FIELD_COUNT; field++) {
if (!isExternallySet(field)) {
continue;
}
if (originalFields[field] != internalGet(field)) {
// Restore the original field values
System.arraycopy(originalFields, 0, fields, 0, fields.length);
throw new IllegalArgumentException(getFieldName(field));
}
}
}
setFieldsNormalized(mask);
| public boolean | equals(java.lang.Object obj)Compares this GregorianCalendar to the specified
Object . The result is true if and
only if the argument is a GregorianCalendar object
that represents the same time value (millisecond offset from
the Epoch) under the same
Calendar parameters and Gregorian change date as
this object.
return obj instanceof GregorianCalendar &&
super.equals(obj) &&
gregorianCutover == ((GregorianCalendar)obj).gregorianCutover;
| public int | getActualMaximum(int field)Returns the maximum value that this calendar field could have,
taking into consideration the given time value and the current
values of the
{@link Calendar#getFirstDayOfWeek() getFirstDayOfWeek},
{@link Calendar#getMinimalDaysInFirstWeek() getMinimalDaysInFirstWeek},
{@link #getGregorianChange(Date) getGregorianChange} and
{@link Calendar#getTimeZone() getTimeZone} methods.
For example, if the date of this instance is February 1, 2004,
the actual maximum value of the DAY_OF_MONTH field
is 29 because 2004 is a leap year, and if the date of this
instance is February 1, 2005, it's 28.
final int fieldsForFixedMax = ERA_MASK|DAY_OF_WEEK_MASK|HOUR_MASK|AM_PM_MASK|
HOUR_OF_DAY_MASK|MINUTE_MASK|SECOND_MASK|MILLISECOND_MASK|
ZONE_OFFSET_MASK|DST_OFFSET_MASK;
if ((fieldsForFixedMax & (1<<field)) != 0) {
return getMaximum(field);
}
GregorianCalendar gc = getNormalizedCalendar();
BaseCalendar.Date date = gc.cdate;
BaseCalendar cal = gc.calsys;
int normalizedYear = date.getNormalizedYear();
int value = -1;
switch (field) {
case MONTH:
{
if (!gc.isCutoverYear(normalizedYear)) {
value = DECEMBER;
break;
}
// January 1 of the next year may or may not exist.
long nextJan1;
do {
nextJan1 = gcal.getFixedDate(++normalizedYear, BaseCalendar.JANUARY, 1, null);
} while (nextJan1 < gregorianCutoverDate);
BaseCalendar.Date d = (BaseCalendar.Date) date.clone();
cal.getCalendarDateFromFixedDate(d, nextJan1 - 1);
value = d.getMonth() - 1;
}
break;
case DAY_OF_MONTH:
{
value = cal.getMonthLength(date);
if (!gc.isCutoverYear(normalizedYear) || date.getDayOfMonth() == value) {
break;
}
// Handle cutover year.
long fd = gc.getCurrentFixedDate();
if (fd >= gregorianCutoverDate) {
break;
}
int monthLength = gc.actualMonthLength();
long monthEnd = gc.getFixedDateMonth1(gc.cdate, fd) + monthLength - 1;
// Convert the fixed date to its calendar date.
BaseCalendar.Date d = gc.getCalendarDate(monthEnd);
value = d.getDayOfMonth();
}
break;
case DAY_OF_YEAR:
{
if (!gc.isCutoverYear(normalizedYear)) {
value = cal.getYearLength(date);
break;
}
// Handle cutover year.
long jan1;
if (gregorianCutoverYear == gregorianCutoverYearJulian) {
BaseCalendar cocal = gc.getCutoverCalendarSystem();
jan1 = cocal.getFixedDate(normalizedYear, 1, 1, null);
} else if (normalizedYear == gregorianCutoverYearJulian) {
jan1 = cal.getFixedDate(normalizedYear, 1, 1, null);
} else {
jan1 = gregorianCutoverDate;
}
// January 1 of the next year may or may not exist.
long nextJan1 = gcal.getFixedDate(++normalizedYear, 1, 1, null);
if (nextJan1 < gregorianCutoverDate) {
nextJan1 = gregorianCutoverDate;
}
assert jan1 <= cal.getFixedDate(date.getNormalizedYear(), date.getMonth(),
date.getDayOfMonth(), date);
assert nextJan1 >= cal.getFixedDate(date.getNormalizedYear(), date.getMonth(),
date.getDayOfMonth(), date);
value = (int)(nextJan1 - jan1);
}
break;
case WEEK_OF_YEAR:
{
if (!gc.isCutoverYear(normalizedYear)) {
// Get the day of week of January 1 of the year
CalendarDate d = cal.newCalendarDate(TimeZone.NO_TIMEZONE);
d.setDate(date.getYear(), BaseCalendar.JANUARY, 1);
int dayOfWeek = cal.getDayOfWeek(d);
// Normalize the day of week with the firstDayOfWeek value
dayOfWeek -= getFirstDayOfWeek();
if (dayOfWeek < 0) {
dayOfWeek += 7;
}
value = 52;
int magic = dayOfWeek + getMinimalDaysInFirstWeek() - 1;
if ((magic == 6) ||
(date.isLeapYear() && (magic == 5 || magic == 12))) {
value++;
}
break;
}
if (gc == this) {
gc = (GregorianCalendar) gc.clone();
}
gc.set(DAY_OF_YEAR, getActualMaximum(DAY_OF_YEAR));
value = gc.get(WEEK_OF_YEAR);
}
break;
case WEEK_OF_MONTH:
{
if (!gc.isCutoverYear(normalizedYear)) {
CalendarDate d = cal.newCalendarDate(null);
d.setDate(date.getYear(), date.getMonth(), 1);
int dayOfWeek = cal.getDayOfWeek(d);
int monthLength = cal.getMonthLength(d);
dayOfWeek -= getFirstDayOfWeek();
if (dayOfWeek < 0) {
dayOfWeek += 7;
}
int nDaysFirstWeek = 7 - dayOfWeek; // # of days in the first week
value = 3;
if (nDaysFirstWeek >= getMinimalDaysInFirstWeek()) {
value++;
}
monthLength -= nDaysFirstWeek + 7 * 3;
if (monthLength > 0) {
value++;
if (monthLength > 7) {
value++;
}
}
break;
}
// Cutover year handling
if (gc == this) {
gc = (GregorianCalendar) gc.clone();
}
int y = gc.internalGet(YEAR);
int m = gc.internalGet(MONTH);
do {
value = gc.get(WEEK_OF_MONTH);
gc.add(WEEK_OF_MONTH, +1);
} while (gc.get(YEAR) == y && gc.get(MONTH) == m);
}
break;
case DAY_OF_WEEK_IN_MONTH:
{
// may be in the Gregorian cutover month
int ndays, dow1;
int dow = date.getDayOfWeek();
if (!gc.isCutoverYear(normalizedYear)) {
BaseCalendar.Date d = (BaseCalendar.Date) date.clone();
ndays = cal.getMonthLength(d);
d.setDayOfMonth(1);
cal.normalize(d);
dow1 = d.getDayOfWeek();
} else {
// Let a cloned GregorianCalendar take care of the cutover cases.
if (gc == this) {
gc = (GregorianCalendar) clone();
}
ndays = gc.actualMonthLength();
gc.set(DAY_OF_MONTH, gc.getActualMinimum(DAY_OF_MONTH));
dow1 = gc.get(DAY_OF_WEEK);
}
int x = dow - dow1;
if (x < 0) {
x += 7;
}
ndays -= x;
value = (ndays + 6) / 7;
}
break;
case YEAR:
/* The year computation is no different, in principle, from the
* others, however, the range of possible maxima is large. In
* addition, the way we know we've exceeded the range is different.
* For these reasons, we use the special case code below to handle
* this field.
*
* The actual maxima for YEAR depend on the type of calendar:
*
* Gregorian = May 17, 292275056 BCE - Aug 17, 292278994 CE
* Julian = Dec 2, 292269055 BCE - Jan 3, 292272993 CE
* Hybrid = Dec 2, 292269055 BCE - Aug 17, 292278994 CE
*
* We know we've exceeded the maximum when either the month, date,
* time, or era changes in response to setting the year. We don't
* check for month, date, and time here because the year and era are
* sufficient to detect an invalid year setting. NOTE: If code is
* added to check the month and date in the future for some reason,
* Feb 29 must be allowed to shift to Mar 1 when setting the year.
*/
{
if (gc == this) {
gc = (GregorianCalendar) clone();
}
// Calculate the millisecond offset from the beginning
// of the year of this calendar and adjust the max
// year value if we are beyond the limit in the max
// year.
long current = gc.getYearOffsetInMillis();
if (gc.internalGetEra() == CE) {
gc.setTimeInMillis(Long.MAX_VALUE);
value = gc.get(YEAR);
long maxEnd = gc.getYearOffsetInMillis();
if (current > maxEnd) {
value--;
}
} else {
CalendarSystem mincal = gc.getTimeInMillis() >= gregorianCutover ?
gcal : getJulianCalendarSystem();
CalendarDate d = mincal.getCalendarDate(Long.MIN_VALUE, getZone());
long maxEnd = (cal.getDayOfYear(d) - 1) * 24 + d.getHours();
maxEnd *= 60;
maxEnd += d.getMinutes();
maxEnd *= 60;
maxEnd += d.getSeconds();
maxEnd *= 1000;
maxEnd += d.getMillis();
value = d.getYear();
if (value <= 0) {
assert mincal == gcal;
value = 1 - value;
}
if (current < maxEnd) {
value--;
}
}
}
break;
default:
throw new ArrayIndexOutOfBoundsException(field);
}
return value;
| public int | getActualMinimum(int field)Returns the minimum value that this calendar field could have,
taking into consideration the given time value and the current
values of the
{@link Calendar#getFirstDayOfWeek() getFirstDayOfWeek},
{@link Calendar#getMinimalDaysInFirstWeek() getMinimalDaysInFirstWeek},
{@link #getGregorianChange(Date) getGregorianChange} and
{@link Calendar#getTimeZone() getTimeZone} methods.
For example, if the Gregorian change date is January 10,
1970 and the date of this GregorianCalendar is
January 20, 1970, the actual minimum value of the
DAY_OF_MONTH field is 10 because the previous date
of January 10, 1970 is December 27, 1996 (in the Julian
calendar). Therefore, December 28, 1969 to January 9, 1970
don't exist.
if (field == DAY_OF_MONTH) {
GregorianCalendar gc = getNormalizedCalendar();
int year = gc.cdate.getNormalizedYear();
if (year == gregorianCutoverYear || year == gregorianCutoverYearJulian) {
long month1 = getFixedDateMonth1(gc.cdate, gc.calsys.getFixedDate(gc.cdate));
BaseCalendar.Date d = getCalendarDate(month1);
return d.getDayOfMonth();
}
}
return getMinimum(field);
| private final sun.util.calendar.BaseCalendar$Date | getCalendarDate(long fd)Returns a CalendarDate produced from the specified fixed date.
BaseCalendar cal = (fd >= gregorianCutoverDate) ? gcal : getJulianCalendarSystem();
BaseCalendar.Date d = (BaseCalendar.Date) cal.newCalendarDate(TimeZone.NO_TIMEZONE);
cal.getCalendarDateFromFixedDate(d, fd);
return d;
| private final long | getCurrentFixedDate()Returns the fixed date value of this object. The time value and
calendar fields must be in synch.
assert isTimeSet && areFieldsSet
&& ((calsys == gcal) ? cachedFixedDate != Long.MIN_VALUE : true);
return (calsys == gcal) ? cachedFixedDate : calsys.getFixedDate(cdate);
| private sun.util.calendar.BaseCalendar | getCutoverCalendarSystem()Returns the calendar system for dates before the cutover date
in the cutover year. If the cutover date is January 1, the
method returns Gregorian. Otherwise, Julian.
CalendarDate date = getGregorianCutoverDate();
if (date.getMonth() == BaseCalendar.JANUARY
&& date.getDayOfMonth() == 1) {
return gcal;
}
return getJulianCalendarSystem();
| private long | getFixedDate(sun.util.calendar.BaseCalendar cal, int year, int fieldMask)Computes the fixed date under either the Gregorian or the
Julian calendar, using the given year and the specified calendar fields.
int month = JANUARY;
if (isFieldSet(fieldMask, MONTH)) {
// No need to check if MONTH has been set (no isSet(MONTH)
// call) since its unset value happens to be JANUARY (0).
month = internalGet(MONTH);
// If the month is out of range, adjust it into range
if (month > DECEMBER) {
year += month / 12;
month %= 12;
} else if (month < JANUARY) {
int[] rem = new int[1];
year += CalendarUtils.floorDivide(month, 12, rem);
month = rem[0];
}
}
// Get the fixed date since Jan 1, 1 (Gregorian). We are on
// the first day of either `month' or January in 'year'.
long fixedDate = cal.getFixedDate(year, month + 1, 1,
cal == gcal ? gdate : null);
if (isFieldSet(fieldMask, MONTH)) {
// Month-based calculations
if (isFieldSet(fieldMask, DAY_OF_MONTH)) {
// We are on the first day of the month. Just add the
// offset if DAY_OF_MONTH is set. If the isSet call
// returns false, that means DAY_OF_MONTH has been
// selected just because of the selected
// combination. We don't need to add any since the
// default value is the 1st.
if (isSet(DAY_OF_MONTH)) {
// To avoid underflow with DAY_OF_MONTH-1, add
// DAY_OF_MONTH, then subtract 1.
fixedDate += internalGet(DAY_OF_MONTH);
fixedDate--;
}
} else {
if (isFieldSet(fieldMask, WEEK_OF_MONTH)) {
long firstDayOfWeek = cal.getDayOfWeekDateOnOrBefore(fixedDate + 6,
getFirstDayOfWeek());
// If we have enough days in the first week, then
// move to the previous week.
if ((firstDayOfWeek - fixedDate) >= getMinimalDaysInFirstWeek()) {
firstDayOfWeek -= 7;
}
if (isFieldSet(fieldMask, DAY_OF_WEEK)) {
firstDayOfWeek = cal.getDayOfWeekDateOnOrBefore(firstDayOfWeek + 6,
internalGet(DAY_OF_WEEK));
}
// In lenient mode, we treat days of the previous
// months as a part of the specified
// WEEK_OF_MONTH. See 4633646.
fixedDate = firstDayOfWeek + 7 * (internalGet(WEEK_OF_MONTH) - 1);
} else {
int dayOfWeek;
if (isFieldSet(fieldMask, DAY_OF_WEEK)) {
dayOfWeek = internalGet(DAY_OF_WEEK);
} else {
dayOfWeek = getFirstDayOfWeek();
}
// We are basing this on the day-of-week-in-month. The only
// trickiness occurs if the day-of-week-in-month is
// negative.
int dowim;
if (isFieldSet(fieldMask, DAY_OF_WEEK_IN_MONTH)) {
dowim = internalGet(DAY_OF_WEEK_IN_MONTH);
} else {
dowim = 1;
}
if (dowim >= 0) {
fixedDate = cal.getDayOfWeekDateOnOrBefore(fixedDate + (7 * dowim) - 1,
dayOfWeek);
} else {
// Go to the first day of the next week of
// the specified week boundary.
int lastDate = monthLength(month, year) + (7 * (dowim + 1));
// Then, get the day of week date on or before the last date.
fixedDate = cal.getDayOfWeekDateOnOrBefore(fixedDate + lastDate - 1,
dayOfWeek);
}
}
}
} else {
if (year == gregorianCutoverYear && cal == gcal
&& fixedDate < gregorianCutoverDate
&& gregorianCutoverYear != gregorianCutoverYearJulian) {
// January 1 of the year doesn't exist. Use
// gregorianCutoverDate as the first day of the
// year.
fixedDate = gregorianCutoverDate;
}
// We are on the first day of the year.
if (isFieldSet(fieldMask, DAY_OF_YEAR)) {
// Add the offset, then subtract 1. (Make sure to avoid underflow.)
fixedDate += internalGet(DAY_OF_YEAR);
fixedDate--;
} else {
long firstDayOfWeek = cal.getDayOfWeekDateOnOrBefore(fixedDate + 6,
getFirstDayOfWeek());
// If we have enough days in the first week, then move
// to the previous week.
if ((firstDayOfWeek - fixedDate) >= getMinimalDaysInFirstWeek()) {
firstDayOfWeek -= 7;
}
if (isFieldSet(fieldMask, DAY_OF_WEEK)) {
int dayOfWeek = internalGet(DAY_OF_WEEK);
if (dayOfWeek != getFirstDayOfWeek()) {
firstDayOfWeek = cal.getDayOfWeekDateOnOrBefore(firstDayOfWeek + 6,
dayOfWeek);
}
}
fixedDate = firstDayOfWeek + 7 * ((long)internalGet(WEEK_OF_YEAR) - 1);
}
}
return fixedDate;
| private final long | getFixedDateJan1(sun.util.calendar.BaseCalendar$Date date, long fixedDate)Returns the fixed date of the first day of the year (usually
January 1) before the specified date.
assert date.getNormalizedYear() == gregorianCutoverYear ||
date.getNormalizedYear() == gregorianCutoverYearJulian;
if (gregorianCutoverYear != gregorianCutoverYearJulian) {
if (fixedDate >= gregorianCutoverDate) {
// Dates before the cutover date don't exist
// in the same (Gregorian) year. So, no
// January 1 exists in the year. Use the
// cutover date as the first day of the year.
return gregorianCutoverDate;
}
}
// January 1 of the normalized year should exist.
BaseCalendar jcal = getJulianCalendarSystem();
return jcal.getFixedDate(date.getNormalizedYear(), BaseCalendar.JANUARY, 1, null);
| private final long | getFixedDateMonth1(sun.util.calendar.BaseCalendar$Date date, long fixedDate)Returns the fixed date of the first date of the month (usually
the 1st of the month) before the specified date.
assert date.getNormalizedYear() == gregorianCutoverYear ||
date.getNormalizedYear() == gregorianCutoverYearJulian;
BaseCalendar.Date gCutover = getGregorianCutoverDate();
if (gCutover.getMonth() == BaseCalendar.JANUARY
&& gCutover.getDayOfMonth() == 1) {
// The cutover happened on January 1.
return fixedDate - date.getDayOfMonth() + 1;
}
long fixedDateMonth1;
// The cutover happened sometime during the year.
if (date.getMonth() == gCutover.getMonth()) {
// The cutover happened in the month.
BaseCalendar.Date jLastDate = getLastJulianDate();
if (gregorianCutoverYear == gregorianCutoverYearJulian
&& gCutover.getMonth() == jLastDate.getMonth()) {
// The "gap" fits in the same month.
fixedDateMonth1 = jcal.getFixedDate(date.getNormalizedYear(),
date.getMonth(),
1,
null);
} else {
// Use the cutover date as the first day of the month.
fixedDateMonth1 = gregorianCutoverDate;
}
} else {
// The cutover happened before the month.
fixedDateMonth1 = fixedDate - date.getDayOfMonth() + 1;
}
return fixedDateMonth1;
| public int | getGreatestMinimum(int field)Returns the highest minimum value for the given calendar field
of this GregorianCalendar instance. The highest
minimum value is defined as the largest value returned by
{@link #getActualMinimum(int)} for any possible time value,
taking into consideration the current values of the
{@link Calendar#getFirstDayOfWeek() getFirstDayOfWeek},
{@link Calendar#getMinimalDaysInFirstWeek() getMinimalDaysInFirstWeek},
{@link #getGregorianChange(Date) getGregorianChange} and
{@link Calendar#getTimeZone() getTimeZone} methods.
if (field == DAY_OF_MONTH) {
BaseCalendar.Date d = getGregorianCutoverDate();
long mon1 = getFixedDateMonth1(d, gregorianCutoverDate);
d = getCalendarDate(mon1);
return Math.max(MIN_VALUES[field], d.getDayOfMonth());
}
return MIN_VALUES[field];
| public final java.util.Date | getGregorianChange()Gets the Gregorian Calendar change date. This is the point when the
switch from Julian dates to Gregorian dates occurred. Default is
October 15, 1582 (Gregorian). Previous to this, dates will be in the Julian
calendar.
return new Date(gregorianCutover);
| private final sun.util.calendar.BaseCalendar$Date | getGregorianCutoverDate()Returns the Gregorian cutover date as a BaseCalendar.Date. The
date is a Gregorian date.
return getCalendarDate(gregorianCutoverDate);
| private static final synchronized sun.util.calendar.BaseCalendar | getJulianCalendarSystem()Returns the Julian calendar system instance (singleton). 'jcal'
and 'jeras' are set upon the return.
if (jcal == null) {
jcal = (JulianCalendar) CalendarSystem.forName("julian");
jeras = jcal.getEras();
}
return jcal;
| private final sun.util.calendar.BaseCalendar$Date | getLastJulianDate()Returns the day before the Gregorian cutover date as a
BaseCalendar.Date. The date is a Julian date.
return getCalendarDate(gregorianCutoverDate - 1);
| public int | getLeastMaximum(int field)Returns the lowest maximum value for the given calendar field
of this GregorianCalendar instance. The lowest
maximum value is defined as the smallest value returned by
{@link #getActualMaximum(int)} for any possible time value,
taking into consideration the current values of the
{@link Calendar#getFirstDayOfWeek() getFirstDayOfWeek},
{@link Calendar#getMinimalDaysInFirstWeek() getMinimalDaysInFirstWeek},
{@link #getGregorianChange(Date) getGregorianChange} and
{@link Calendar#getTimeZone() getTimeZone} methods.
switch (field) {
case MONTH:
case DAY_OF_MONTH:
case DAY_OF_YEAR:
case WEEK_OF_YEAR:
case WEEK_OF_MONTH:
case DAY_OF_WEEK_IN_MONTH:
case YEAR:
{
GregorianCalendar gc = (GregorianCalendar) clone();
gc.setLenient(true);
gc.setTimeInMillis(gregorianCutover);
int v1 = gc.getActualMaximum(field);
gc.setTimeInMillis(gregorianCutover-1);
int v2 = gc.getActualMaximum(field);
return Math.min(LEAST_MAX_VALUES[field], Math.min(v1, v2));
}
}
return LEAST_MAX_VALUES[field];
| public int | getMaximum(int field)Returns the maximum value for the given calendar field of this
GregorianCalendar instance. The maximum value is
defined as the largest value returned by the {@link
Calendar#get(int) get} method for any possible time value,
taking into consideration the current values of the
{@link Calendar#getFirstDayOfWeek() getFirstDayOfWeek},
{@link Calendar#getMinimalDaysInFirstWeek() getMinimalDaysInFirstWeek},
{@link #getGregorianChange(Date) getGregorianChange} and
{@link Calendar#getTimeZone() getTimeZone} methods.
switch (field) {
case MONTH:
case DAY_OF_MONTH:
case DAY_OF_YEAR:
case WEEK_OF_YEAR:
case WEEK_OF_MONTH:
case DAY_OF_WEEK_IN_MONTH:
case YEAR:
{
// On or after Gregorian 200-3-1, Julian and Gregorian
// calendar dates are the same or Gregorian dates are
// larger (i.e., there is a "gap") after 300-3-1.
if (gregorianCutoverYear > 200) {
break;
}
// There might be "overlapping" dates.
GregorianCalendar gc = (GregorianCalendar) clone();
gc.setLenient(true);
gc.setTimeInMillis(gregorianCutover);
int v1 = gc.getActualMaximum(field);
gc.setTimeInMillis(gregorianCutover-1);
int v2 = gc.getActualMaximum(field);
return Math.max(MAX_VALUES[field], Math.max(v1, v2));
}
}
return MAX_VALUES[field];
| public int | getMinimum(int field)Returns the minimum value for the given calendar field of this
GregorianCalendar instance. The minimum value is
defined as the smallest value returned by the {@link
Calendar#get(int) get} method for any possible time value,
taking into consideration the current values of the
{@link Calendar#getFirstDayOfWeek() getFirstDayOfWeek},
{@link Calendar#getMinimalDaysInFirstWeek() getMinimalDaysInFirstWeek},
{@link #getGregorianChange(Date) getGregorianChange} and
{@link Calendar#getTimeZone() getTimeZone} methods.
return MIN_VALUES[field];
| private final java.util.GregorianCalendar | getNormalizedCalendar()Returns this object if it's normalized (all fields and time are
in sync). Otherwise, a cloned object is returned after calling
complete() in lenient mode.
GregorianCalendar gc;
if (isFullyNormalized()) {
gc = this;
} else {
// Create a clone and normalize the calendar fields
gc = (GregorianCalendar) this.clone();
gc.setLenient(true);
gc.complete();
}
return gc;
| private static final int | getRolledValue(int value, int amount, int min, int max)Returns the new value after 'roll'ing the specified value and amount.
assert value >= min && value <= max;
int range = max - min + 1;
amount %= range;
int n = value + amount;
if (n > max) {
n -= range;
} else if (n < min) {
n += range;
}
assert n >= min && n <= max;
return n;
| public java.util.TimeZone | getTimeZone()
TimeZone zone = super.getTimeZone();
// To share the zone by CalendarDates
gdate.setZone(zone);
if (cdate != null && cdate != gdate) {
cdate.setZone(zone);
}
return zone;
| private final int | getWeekNumber(long fixedDay1, long fixedDate)Returns the number of weeks in a period between fixedDay1 and
fixedDate. The getFirstDayOfWeek-getMinimalDaysInFirstWeek rule
is applied to calculate the number of weeks.
// We can always use `gcal' since Julian and Gregorian are the
// same thing for this calculation.
long fixedDay1st = gcal.getDayOfWeekDateOnOrBefore(fixedDay1 + 6,
getFirstDayOfWeek());
int ndays = (int)(fixedDay1st - fixedDay1);
assert ndays <= 7;
if (ndays >= getMinimalDaysInFirstWeek()) {
fixedDay1st -= 7;
}
int normalizedDayOfPeriod = (int)(fixedDate - fixedDay1st);
if (normalizedDayOfPeriod >= 0) {
return normalizedDayOfPeriod / 7 + 1;
}
return CalendarUtils.floorDivide(normalizedDayOfPeriod, 7) + 1;
| private final long | getYearOffsetInMillis()Returns the millisecond offset from the beginning of this
year. This Calendar object must have been normalized.
long t = (internalGet(DAY_OF_YEAR) - 1) * 24;
t += internalGet(HOUR_OF_DAY);
t *= 60;
t += internalGet(MINUTE);
t *= 60;
t += internalGet(SECOND);
t *= 1000;
return t + internalGet(MILLISECOND) -
(internalGet(ZONE_OFFSET) + internalGet(DST_OFFSET));
| public int | hashCode()Generates the hash code for this GregorianCalendar object.
return super.hashCode() ^ (int)gregorianCutoverDate;
| private final int | internalGetEra()Returns the ERA. We need a special method for this because the
default ERA is CE, but a zero (unset) ERA is BCE.
return isSet(ERA) ? internalGet(ERA) : CE;
| private final boolean | isCutoverYear(int normalizedYear)Determines if the specified year (normalized) is the Gregorian
cutover year. This object must have been normalized.
int cutoverYear = (calsys == gcal) ? gregorianCutoverYear : gregorianCutoverYearJulian;
return normalizedYear == cutoverYear;
| public boolean | isLeapYear(int year)Determines if the given year is a leap year. Returns true if
the given year is a leap year. To specify BC year numbers,
1 - year number must be given. For example, year BC 4 is
specified as -3.
if ((year & 3) != 0) {
return false;
}
if (year > gregorianCutoverYear) {
return (year%100 != 0) || (year%400 == 0); // Gregorian
}
if (year < gregorianCutoverYearJulian) {
return true; // Julian
}
boolean gregorian;
// If the given year is the Gregorian cutover year, we need to
// determine which calendar system to be applied to February in the year.
if (gregorianCutoverYear == gregorianCutoverYearJulian) {
BaseCalendar.Date d = getCalendarDate(gregorianCutoverDate); // Gregorian
gregorian = d.getMonth() < BaseCalendar.MARCH;
} else {
gregorian = year == gregorianCutoverYear;
}
return gregorian ? (year%100 != 0) || (year%400 == 0) : true;
| private final int | monthLength(int month, int year)Returns the length of the specified month in the specified
year. The year number must be normalized.
return isLeapYear(year) ? LEAP_MONTH_LENGTH[month] : MONTH_LENGTH[month];
| private final int | monthLength(int month)Returns the length of the specified month in the year provided
by internalGet(YEAR).
int year = internalGet(YEAR);
if (internalGetEra() == BCE) {
year = 1 - year;
}
return monthLength(month, year);
| private final void | pinDayOfMonth()After adjustments such as add(MONTH), add(YEAR), we don't want the
month to jump around. E.g., we don't want Jan 31 + 1 month to go to Mar
3, we want it to go to Feb 28. Adjustments which might run into this
problem call this method to retain the proper month.
int year = internalGet(YEAR);
int monthLen;
if (year > gregorianCutoverYear || year < gregorianCutoverYearJulian) {
monthLen = monthLength(internalGet(MONTH));
} else {
GregorianCalendar gc = getNormalizedCalendar();
monthLen = gc.getActualMaximum(DAY_OF_MONTH);
}
int dom = internalGet(DAY_OF_MONTH);
if (dom > monthLen) {
set(DAY_OF_MONTH, monthLen);
}
| private void | readObject(java.io.ObjectInputStream stream)Updates internal state.
stream.defaultReadObject();
if (gdate == null) {
gdate = (BaseCalendar.Date) gcal.newCalendarDate(getZone());
cachedFixedDate = Long.MIN_VALUE;
}
setGregorianChange(gregorianCutover);
| public void | roll(int field, boolean up)Adds or subtracts (up/down) a single unit of time on the given time
field without changing larger fields.
Example: Consider a GregorianCalendar
originally set to December 31, 1999. Calling {@link #roll(int,boolean) roll(Calendar.MONTH, true)}
sets the calendar to January 31, 1999. The YEAR field is unchanged
because it is a larger field than MONTH .
roll(field, up ? +1 : -1);
| public void | roll(int field, int amount)Adds a signed amount to the specified calendar field without changing larger fields.
A negative roll amount means to subtract from field without changing
larger fields. If the specified amount is 0, this method performs nothing.
This method calls {@link #complete()} before adding the
amount so that all the calendar fields are normalized. If there
is any calendar field having an out-of-range value in non-lenient mode, then an
IllegalArgumentException is thrown.
Example: Consider a GregorianCalendar
originally set to August 31, 1999. Calling roll(Calendar.MONTH,
8) sets the calendar to April 30, 1999. Using a
GregorianCalendar , the DAY_OF_MONTH field cannot
be 31 in the month April. DAY_OF_MONTH is set to the closest possible
value, 30. The YEAR field maintains the value of 1999 because it
is a larger field than MONTH .
Example: Consider a GregorianCalendar
originally set to Sunday June 6, 1999. Calling
roll(Calendar.WEEK_OF_MONTH, -1) sets the calendar to
Tuesday June 1, 1999, whereas calling
add(Calendar.WEEK_OF_MONTH, -1) sets the calendar to
Sunday May 30, 1999. This is because the roll rule imposes an
additional constraint: The MONTH must not change when the
WEEK_OF_MONTH is rolled. Taken together with add rule 1,
the resultant date must be between Tuesday June 1 and Saturday June
5. According to add rule 2, the DAY_OF_WEEK , an invariant
when changing the WEEK_OF_MONTH , is set to Tuesday, the
closest possible value to Sunday (where Sunday is the first day of the
week).
// If amount == 0, do nothing even the given field is out of
// range. This is tested by JCK.
if (amount == 0) {
return;
}
if (field < 0 || field >= ZONE_OFFSET) {
throw new IllegalArgumentException();
}
// Sync the time and calendar fields.
complete();
int min = getMinimum(field);
int max = getMaximum(field);
switch (field) {
case AM_PM:
case ERA:
case YEAR:
case MINUTE:
case SECOND:
case MILLISECOND:
// These fields are handled simply, since they have fixed minima
// and maxima. The field DAY_OF_MONTH is almost as simple. Other
// fields are complicated, since the range within they must roll
// varies depending on the date.
break;
case HOUR:
case HOUR_OF_DAY:
{
int unit = max + 1; // 12 or 24 hours
int h = internalGet(field);
int nh = (h + amount) % unit;
if (nh < 0) {
nh += unit;
}
time += ONE_HOUR * (nh - h);
// The day might have changed, which could happen if
// the daylight saving time transition brings it to
// the next day, although it's very unlikely. But we
// have to make sure not to change the larger fields.
CalendarDate d = calsys.getCalendarDate(time, getZone());
if (internalGet(DAY_OF_MONTH) != d.getDayOfMonth()) {
d.setDate(internalGet(YEAR),
internalGet(MONTH) + 1,
internalGet(DAY_OF_MONTH));
if (field == HOUR) {
assert (internalGet(AM_PM) == PM);
d.addHours(+12); // restore PM
}
time = calsys.getTime(d);
}
internalSet(field, d.getHours() % unit);
// Time zone offset and/or daylight saving might have changed.
int zoneOffset = d.getZoneOffset();
int saving = d.getDaylightSaving();
internalSet(ZONE_OFFSET, zoneOffset - saving);
internalSet(DST_OFFSET, saving);
return;
}
case MONTH:
// Rolling the month involves both pinning the final value to [0, 11]
// and adjusting the DAY_OF_MONTH if necessary. We only adjust the
// DAY_OF_MONTH if, after updating the MONTH field, it is illegal.
// E.g., <jan31>.roll(MONTH, 1) -> <feb28> or <feb29>.
{
if (!isCutoverYear(cdate.getNormalizedYear())) {
int mon = (internalGet(MONTH) + amount) % 12;
if (mon < 0) {
mon += 12;
}
set(MONTH, mon);
// Keep the day of month in the range. We don't want to spill over
// into the next month; e.g., we don't want jan31 + 1 mo -> feb31 ->
// mar3.
int monthLen = monthLength(mon);
if (internalGet(DAY_OF_MONTH) > monthLen) {
set(DAY_OF_MONTH, monthLen);
}
} else {
// We need to take care of different lengths in
// year and month due to the cutover.
int yearLength = getActualMaximum(MONTH) + 1;
int mon = (internalGet(MONTH) + amount) % yearLength;
if (mon < 0) {
mon += yearLength;
}
set(MONTH, mon);
int monthLen = getActualMaximum(DAY_OF_MONTH);
if (internalGet(DAY_OF_MONTH) > monthLen) {
set(DAY_OF_MONTH, monthLen);
}
}
return;
}
case WEEK_OF_YEAR:
{
int y = cdate.getNormalizedYear();
max = getActualMaximum(WEEK_OF_YEAR);
set(DAY_OF_WEEK, internalGet(DAY_OF_WEEK));
int woy = internalGet(WEEK_OF_YEAR);
int value = woy + amount;
if (!isCutoverYear(y)) {
// If the new value is in between min and max
// (exclusive), then we can use the value.
if (value > min && value < max) {
set(WEEK_OF_YEAR, value);
return;
}
long fd = getCurrentFixedDate();
// Make sure that the min week has the current DAY_OF_WEEK
long day1 = fd - (7 * (woy - min));
if (calsys.getYearFromFixedDate(day1) != y) {
min++;
}
// Make sure the same thing for the max week
fd += 7 * (max - internalGet(WEEK_OF_YEAR));
if (calsys.getYearFromFixedDate(fd) != y) {
max--;
}
break;
}
// Handle cutover here.
long fd = getCurrentFixedDate();
BaseCalendar cal;
if (gregorianCutoverYear == gregorianCutoverYearJulian) {
cal = getCutoverCalendarSystem();
} else if (y == gregorianCutoverYear) {
cal = gcal;
} else {
cal = getJulianCalendarSystem();
}
long day1 = fd - (7 * (woy - min));
// Make sure that the min week has the current DAY_OF_WEEK
if (cal.getYearFromFixedDate(day1) != y) {
min++;
}
// Make sure the same thing for the max week
fd += 7 * (max - woy);
cal = (fd >= gregorianCutoverDate) ? gcal : getJulianCalendarSystem();
if (cal.getYearFromFixedDate(fd) != y) {
max--;
}
// value: the new WEEK_OF_YEAR which must be converted
// to month and day of month.
value = getRolledValue(woy, amount, min, max) - 1;
BaseCalendar.Date d = getCalendarDate(day1 + value * 7);
set(MONTH, d.getMonth() - 1);
set(DAY_OF_MONTH, d.getDayOfMonth());
return;
}
case WEEK_OF_MONTH:
{
boolean isCutoverYear = isCutoverYear(cdate.getNormalizedYear());
// dow: relative day of week from first day of week
int dow = internalGet(DAY_OF_WEEK) - getFirstDayOfWeek();
if (dow < 0) {
dow += 7;
}
long fd = getCurrentFixedDate();
long month1; // fixed date of the first day (usually 1) of the month
int monthLength; // actual month length
if (isCutoverYear) {
month1 = getFixedDateMonth1(cdate, fd);
monthLength = actualMonthLength();
} else {
month1 = fd - internalGet(DAY_OF_MONTH) + 1;
monthLength = calsys.getMonthLength(cdate);
}
// the first day of week of the month.
long monthDay1st = calsys.getDayOfWeekDateOnOrBefore(month1 + 6,
getFirstDayOfWeek());
// if the week has enough days to form a week, the
// week starts from the previous month.
if ((int)(monthDay1st - month1) >= getMinimalDaysInFirstWeek()) {
monthDay1st -= 7;
}
max = getActualMaximum(field);
// value: the new WEEK_OF_MONTH value
int value = getRolledValue(internalGet(field), amount, 1, max) - 1;
// nfd: fixed date of the rolled date
long nfd = monthDay1st + value * 7 + dow;
// Unlike WEEK_OF_YEAR, we need to change day of week if the
// nfd is out of the month.
if (nfd < month1) {
nfd = month1;
} else if (nfd >= (month1 + monthLength)) {
nfd = month1 + monthLength - 1;
}
int dayOfMonth;
if (isCutoverYear) {
// If we are in the cutover year, convert nfd to
// its calendar date and use dayOfMonth.
BaseCalendar.Date d = getCalendarDate(nfd);
dayOfMonth = d.getDayOfMonth();
} else {
dayOfMonth = (int)(nfd - month1) + 1;
}
set(DAY_OF_MONTH, dayOfMonth);
return;
}
case DAY_OF_MONTH:
{
if (!isCutoverYear(cdate.getNormalizedYear())) {
max = calsys.getMonthLength(cdate);
break;
}
// Cutover year handling
long fd = getCurrentFixedDate();
long month1 = getFixedDateMonth1(cdate, fd);
// It may not be a regular month. Convert the date and range to
// the relative values, perform the roll, and
// convert the result back to the rolled date.
int value = getRolledValue((int)(fd - month1), amount, 0, actualMonthLength() - 1);
BaseCalendar.Date d = getCalendarDate(month1 + value);
assert d.getMonth()-1 == internalGet(MONTH);
set(DAY_OF_MONTH, d.getDayOfMonth());
return;
}
case DAY_OF_YEAR:
{
max = getActualMaximum(field);
if (!isCutoverYear(cdate.getNormalizedYear())) {
break;
}
// Handle cutover here.
long fd = getCurrentFixedDate();
long jan1 = fd - internalGet(DAY_OF_YEAR) + 1;
int value = getRolledValue((int)(fd - jan1) + 1, amount, min, max);
BaseCalendar.Date d = getCalendarDate(jan1 + value - 1);
set(MONTH, d.getMonth() - 1);
set(DAY_OF_MONTH, d.getDayOfMonth());
return;
}
case DAY_OF_WEEK:
{
if (!isCutoverYear(cdate.getNormalizedYear())) {
// If the week of year is in the same year, we can
// just change DAY_OF_WEEK.
int weekOfYear = internalGet(WEEK_OF_YEAR);
if (weekOfYear > 1 && weekOfYear < 52) {
set(WEEK_OF_YEAR, weekOfYear); // update stamp[WEEK_OF_YEAR]
max = SATURDAY;
break;
}
}
// We need to handle it in a different way around year
// boundaries and in the cutover year. Note that
// changing era and year values violates the roll
// rule: not changing larger calendar fields...
amount %= 7;
if (amount == 0) {
return;
}
long fd = getCurrentFixedDate();
long dowFirst = calsys.getDayOfWeekDateOnOrBefore(fd, getFirstDayOfWeek());
fd += amount;
if (fd < dowFirst) {
fd += 7;
} else if (fd >= dowFirst + 7) {
fd -= 7;
}
BaseCalendar.Date d = getCalendarDate(fd);
set(ERA, (d.getNormalizedYear() <= 0 ? BCE : CE));
set(d.getYear(), d.getMonth() - 1, d.getDayOfMonth());
return;
}
case DAY_OF_WEEK_IN_MONTH:
{
min = 1; // after normalized, min should be 1.
if (!isCutoverYear(cdate.getNormalizedYear())) {
int dom = internalGet(DAY_OF_MONTH);
int monthLength = calsys.getMonthLength(cdate);
int lastDays = monthLength % 7;
max = monthLength / 7;
int x = (dom - 1) % 7;
if (x < lastDays) {
max++;
}
set(DAY_OF_WEEK, internalGet(DAY_OF_WEEK));
break;
}
// Cutover year handling
long fd = getCurrentFixedDate();
long month1 = getFixedDateMonth1(cdate, fd);
int monthLength = actualMonthLength();
int lastDays = monthLength % 7;
max = monthLength / 7;
int x = (int)(fd - month1) % 7;
if (x < lastDays) {
max++;
}
int value = getRolledValue(internalGet(field), amount, min, max) - 1;
fd = month1 + value * 7 + x;
BaseCalendar cal = (fd >= gregorianCutoverDate) ? gcal : getJulianCalendarSystem();
BaseCalendar.Date d = (BaseCalendar.Date) cal.newCalendarDate(TimeZone.NO_TIMEZONE);
cal.getCalendarDateFromFixedDate(d, fd);
set(DAY_OF_MONTH, d.getDayOfMonth());
return;
}
}
set(field, getRolledValue(internalGet(field), amount, min, max));
| private void | setGregorianChange(long cutoverTime)
gregorianCutover = cutoverTime;
gregorianCutoverDate = CalendarUtils.floorDivide(cutoverTime, ONE_DAY)
+ EPOCH_OFFSET;
// To provide the "pure" Julian calendar as advertised.
// Strictly speaking, the last millisecond should be a
// Gregorian date. However, the API doc specifies that setting
// the cutover date to Long.MAX_VALUE will make this calendar
// a pure Julian calendar. (See 4167995)
if (cutoverTime == Long.MAX_VALUE) {
gregorianCutoverDate++;
}
BaseCalendar.Date d = getGregorianCutoverDate();
// Set the cutover year (in the Gregorian year numbering)
gregorianCutoverYear = d.getYear();
BaseCalendar jcal = getJulianCalendarSystem();
d = (BaseCalendar.Date) jcal.newCalendarDate(TimeZone.NO_TIMEZONE);
jcal.getCalendarDateFromFixedDate(d, gregorianCutoverDate - 1);
gregorianCutoverYearJulian = d.getNormalizedYear();
if (time < gregorianCutover) {
// The field values are no longer valid under the new
// cutover date.
setUnnormalized();
}
| public void | setGregorianChange(java.util.Date date)Sets the GregorianCalendar change date. This is the point when the switch
from Julian dates to Gregorian dates occurred. Default is October 15,
1582 (Gregorian). Previous to this, dates will be in the Julian calendar.
To obtain a pure Julian calendar, set the change date to
Date(Long.MAX_VALUE) . To obtain a pure Gregorian calendar,
set the change date to Date(Long.MIN_VALUE) .
long cutoverTime = date.getTime();
if (cutoverTime == gregorianCutover) {
return;
}
// Before changing the cutover date, make sure to have the
// time of this calendar.
complete();
setGregorianChange(cutoverTime);
| public void | setTimeZone(java.util.TimeZone zone)
super.setTimeZone(zone);
// To share the zone by CalendarDates
gdate.setZone(zone);
if (cdate != null && cdate != gdate) {
cdate.setZone(zone);
}
| private final int | yearLength(int year)Returns the length (in days) of the specified year. The year
must be normalized.
return isLeapYear(year) ? 366 : 365;
| private final int | yearLength()Returns the length (in days) of the year provided by
internalGet(YEAR).
int year = internalGet(YEAR);
if (internalGetEra() == BCE) {
year = 1 - year;
}
return yearLength(year);
|
|