A {@link java.util.Queue} that additionally supports operations
that wait for the queue to become non-empty when retrieving an element,
and wait for space to become available in the queue when storing an
element.
A BlockingQueue does not accept null elements.
Implementations throw NullPointerException on attempts
to add, put or offer a null. A
null is used as a sentinel value to indicate failure of
poll operations.
A BlockingQueue may be capacity bounded. At any given
time it may have a remainingCapacity beyond which no
additional elements can be put without blocking.
A BlockingQueue without any intrinsic capacity constraints always
reports a remaining capacity of Integer.MAX_VALUE.
While BlockingQueue is designed to be used primarily
for producer-consumer queues, it additionally supports the {@link
java.util.Collection} interface. So, for example, it is possible
to remove an arbitrary element from a queue using
remove(x). However, such operations are in general
not performed very efficiently, and are intended for only
occasional use, such as when a queued message is cancelled. Also,
the bulk Collection operations, most notably addAll, are
not necessarily performed atomically, so it is possible
for addAll(c) to fail (throwing an exception) after adding
only some of the elements in c.
A BlockingQueue does not intrinsically support
any kind of "close" or "shutdown" operation to
indicate that no more items will be added. The needs and usage of
such features tend to be implementation-dependent. For example, a
common tactic is for producers to insert special
end-of-stream or poison objects, that are
interpreted accordingly when taken by consumers.
Usage example, based on a typical producer-consumer scenario.
Note that a BlockingQueue can safely be used with multiple
producers and multiple consumers.
class Producer implements Runnable {
private final BlockingQueue queue;
Producer(BlockingQueue q) { queue = q; }
public void run() {
try {
while(true) { queue.put(produce()); }
} catch (InterruptedException ex) { ... handle ...}
}
Object produce() { ... }
}
class Consumer implements Runnable {
private final BlockingQueue queue;
Consumer(BlockingQueue q) { queue = q; }
public void run() {
try {
while(true) { consume(queue.take()); }
} catch (InterruptedException ex) { ... handle ...}
}
void consume(Object x) { ... }
}
class Setup {
void main() {
BlockingQueue q = new SomeQueueImplementation();
Producer p = new Producer(q);
Consumer c1 = new Consumer(q);
Consumer c2 = new Consumer(q);
new Thread(p).start();
new Thread(c1).start();
new Thread(c2).start();
}
}
|