GridBagLayoutpublic class GridBagLayout extends Object implements LayoutManager2, SerializableThe GridBagLayout class is a flexible layout
manager that aligns components vertically, horizontally or along their
baseline without requiring that the components be of the same size.
Each GridBagLayout object maintains a dynamic,
rectangular grid of cells, with each component occupying
one or more cells, called its display area.
Each component managed by a GridBagLayout is associated with
an instance of {@link GridBagConstraints}. The constraints object
specifies where a component's display area should be located on the grid
and how the component should be positioned within its display area. In
addition to its constraints object, the GridBagLayout also
considers each component's minimum and preferred sizes in order to
determine a component's size.
The overall orientation of the grid depends on the container's
{@link ComponentOrientation} property. For horizontal left-to-right
orientations, grid coordinate (0,0) is in the upper left corner of the
container with x increasing to the right and y increasing downward. For
horizontal right-to-left orientations, grid coordinate (0,0) is in the upper
right corner of the container with x increasing to the left and y
increasing downward.
To use a grid bag layout effectively, you must customize one or more
of the GridBagConstraints objects that are associated
with its components. You customize a GridBagConstraints
object by setting one or more of its instance variables:
- {@link GridBagConstraints#gridx},
{@link GridBagConstraints#gridy}
- Specifies the cell containing the leading corner of the component's
display area, where the cell at the origin of the grid has address
gridx = 0 ,
gridy = 0 . For horizontal left-to-right layout,
a component's leading corner is its upper left. For horizontal
right-to-left layout, a component's leading corner is its upper right.
Use GridBagConstraints.RELATIVE (the default value)
to specify that the component be placed immediately following
(along the x axis for gridx or the y axis for
gridy ) the component that was added to the container
just before this component was added.
- {@link GridBagConstraints#gridwidth},
{@link GridBagConstraints#gridheight}
- Specifies the number of cells in a row (for
gridwidth )
or column (for gridheight )
in the component's display area.
The default value is 1.
Use GridBagConstraints.REMAINDER to specify
that the component's display area will be from gridx
to the last cell in the row (for gridwidth )
or from gridy to the last cell in the column
(for gridheight ).
Use GridBagConstraints.RELATIVE to specify
that the component's display area will be from gridx
to the next to the last cell in its row (for gridwidth
or from gridy to the next to the last cell in its
column (for gridheight ).
- {@link GridBagConstraints#fill}
- Used when the component's display area
is larger than the component's requested size
to determine whether (and how) to resize the component.
Possible values are
GridBagConstraints.NONE (the default),
GridBagConstraints.HORIZONTAL
(make the component wide enough to fill its display area
horizontally, but don't change its height),
GridBagConstraints.VERTICAL
(make the component tall enough to fill its display area
vertically, but don't change its width), and
GridBagConstraints.BOTH
(make the component fill its display area entirely).
- {@link GridBagConstraints#ipadx},
{@link GridBagConstraints#ipady}
- Specifies the component's internal padding within the layout,
how much to add to the minimum size of the component.
The width of the component will be at least its minimum width
plus
ipadx pixels. Similarly, the height of
the component will be at least the minimum height plus
ipady pixels.
- {@link GridBagConstraints#insets}
- Specifies the component's external padding, the minimum
amount of space between the component and the edges of its display area.
- {@link GridBagConstraints#anchor}
- Specifies where the component should be positioned in its display area.
There are three kinds of possible values: absolute, orientation-relative,
and baseline-relative
Orientation relative values are interpreted relative to the container's
ComponentOrientation property while absolute values
are not. Baseline relative values are calculated relative to the
baseline. Valid values are:
Absolute Values |
Orientation Relative Values |
Baseline Relative Values |
GridBagConstraints.NORTH
GridBagConstraints.SOUTH
GridBagConstraints.WEST
GridBagConstraints.EAST
GridBagConstraints.NORTHWEST
GridBagConstraints.NORTHEAST
GridBagConstraints.SOUTHWEST
GridBagConstraints.SOUTHEAST
GridBagConstraints.CENTER (the default)
|
GridBagConstraints.PAGE_START
GridBagConstraints.PAGE_END
GridBagConstraints.LINE_START
GridBagConstraints.LINE_END
GridBagConstraints.FIRST_LINE_START
GridBagConstraints.FIRST_LINE_END
GridBagConstraints.LAST_LINE_START
GridBagConstraints.LAST_LINE_END
|
GridBagConstraints.BASELINE
GridBagConstraints.BASELINE_LEADING
GridBagConstraints.BASELINE_TRAILING
GridBagConstraints.ABOVE_BASELINE
GridBagConstraints.ABOVE_BASELINE_LEADING
GridBagConstraints.ABOVE_BASELINE_TRAILING
GridBagConstraints.BELOW_BASELINE
GridBagConstraints.BELOW_BASELINE_LEADING
GridBagConstraints.BELOW_BASELINE_TRAILING
|
- {@link GridBagConstraints#weightx},
{@link GridBagConstraints#weighty}
- Used to determine how to distribute space, which is
important for specifying resizing behavior.
Unless you specify a weight for at least one component
in a row (
weightx ) and column (weighty ),
all the components clump together in the center of their container.
This is because when the weight is zero (the default),
the GridBagLayout object puts any extra space
between its grid of cells and the edges of the container.
Each row may have a baseline; the baseline is determined by the
components in that row that have a valid baseline and are aligned
along the baseline (the component's anchor value is one of {@code
BASELINE}, {@code BASELINE_LEADING} or {@code BASELINE_TRAILING}).
If none of the components in the row has a valid baseline, the row
does not have a baseline.
If a component spans rows it is aligned either to the baseline of
the start row (if the baseline-resize behavior is {@code
CONSTANT_ASCENT}) or the end row (if the baseline-resize behavior
is {@code CONSTANT_DESCENT}). The row that the component is
aligned to is called the prevailing row.
The following figure shows a baseline layout and includes a
component that spans rows:
This layout consists of three components:
- A panel that starts in row 0 and ends in row 1. The panel
has a baseline-resize behavior of
CONSTANT_DESCENT and has
an anchor of BASELINE . As the baseline-resize behavior
is CONSTANT_DESCENT the prevailing row for the panel is
row 1.
- Two buttons, each with a baseline-resize behavior of
CENTER_OFFSET and an anchor of BASELINE .
Because the second button and the panel share the same prevailing row,
they are both aligned along their baseline.
Components positioned using one of the baseline-relative values resize
differently than when positioned using an absolute or orientation-relative
value. How components change is dictated by how the baseline of the
prevailing row changes. The baseline is anchored to the
bottom of the display area if any components with the same prevailing row
have a baseline-resize behavior of CONSTANT_DESCENT ,
otherwise the baseline is anchored to the top of the display area.
The following rules dictate the resize behavior:
- Resizable components positioned above the baseline can only
grow as tall as the baseline. For example, if the baseline is at 100
and anchored at the top, a resizable component positioned above the
baseline can never grow more than 100 units.
- Similarly, resizable components positioned below the baseline can
only grow as high as the difference between the display height and the
baseline.
- Resizable components positioned on the baseline with a
baseline-resize behavior of
OTHER are only resized if
the baseline at the resized size fits within the display area. If
the baseline is such that it does not fit within the display area
the component is not resized.
- Components positioned on the baseline that do not have a
baseline-resize behavior of
OTHER
can only grow as tall as {@code display height - baseline + baseline of component}.
If you position a component along the baseline, but the
component does not have a valid baseline, it will be vertically centered
in its space. Similarly if you have positioned a component relative
to the baseline and none of the components in the row have a valid
baseline the component is vertically centered.
The following figures show ten components (all buttons)
managed by a grid bag layout. Figure 2 shows the layout for a horizontal,
left-to-right container and Figure 3 shows the layout for a horizontal,
right-to-left container.
|
|
Figure 2: Horizontal, Left-to-Right |
Figure 3: Horizontal, Right-to-Left |
Each of the ten components has the fill field
of its associated GridBagConstraints object
set to GridBagConstraints.BOTH .
In addition, the components have the following non-default constraints:
- Button1, Button2, Button3:
weightx = 1.0
- Button4:
weightx = 1.0 ,
gridwidth = GridBagConstraints.REMAINDER
- Button5:
gridwidth = GridBagConstraints.REMAINDER
- Button6:
gridwidth = GridBagConstraints.RELATIVE
- Button7:
gridwidth = GridBagConstraints.REMAINDER
- Button8:
gridheight = 2 ,
weighty = 1.0
- Button9, Button 10:
gridwidth = GridBagConstraints.REMAINDER
Here is the code that implements the example shown above:
import java.awt.*;
import java.util.*;
import java.applet.Applet;
public class GridBagEx1 extends Applet {
protected void makebutton(String name,
GridBagLayout gridbag,
GridBagConstraints c) {
Button button = new Button(name);
gridbag.setConstraints(button, c);
add(button);
}
public void init() {
GridBagLayout gridbag = new GridBagLayout();
GridBagConstraints c = new GridBagConstraints();
setFont(new Font("SansSerif", Font.PLAIN, 14));
setLayout(gridbag);
c.fill = GridBagConstraints.BOTH;
c.weightx = 1.0;
makebutton("Button1", gridbag, c);
makebutton("Button2", gridbag, c);
makebutton("Button3", gridbag, c);
c.gridwidth = GridBagConstraints.REMAINDER; //end row
makebutton("Button4", gridbag, c);
c.weightx = 0.0; //reset to the default
makebutton("Button5", gridbag, c); //another row
c.gridwidth = GridBagConstraints.RELATIVE; //next-to-last in row
makebutton("Button6", gridbag, c);
c.gridwidth = GridBagConstraints.REMAINDER; //end row
makebutton("Button7", gridbag, c);
c.gridwidth = 1; //reset to the default
c.gridheight = 2;
c.weighty = 1.0;
makebutton("Button8", gridbag, c);
c.weighty = 0.0; //reset to the default
c.gridwidth = GridBagConstraints.REMAINDER; //end row
c.gridheight = 1; //reset to the default
makebutton("Button9", gridbag, c);
makebutton("Button10", gridbag, c);
setSize(300, 100);
}
public static void main(String args[]) {
Frame f = new Frame("GridBag Layout Example");
GridBagEx1 ex1 = new GridBagEx1();
ex1.init();
f.add("Center", ex1);
f.pack();
f.setSize(f.getPreferredSize());
f.show();
}
}
|
Fields Summary |
---|
static final int | EMPIRICMULTIPLIER | protected static final int | MAXGRIDSIZEThis field is no longer used to reserve arrays and keeped for backward
compatibility. Previously, this was
the maximum number of grid positions (both horizontal and
vertical) that could be laid out by the grid bag layout.
Current implementation doesn't impose any limits
on the size of a grid. | protected static final int | MINSIZEThe smallest grid that can be laid out by the grid bag layout. | protected static final int | PREFERREDSIZEThe preferred grid size that can be laid out by the grid bag layout. | protected Hashtable | comptableThis hashtable maintains the association between
a component and its gridbag constraints.
The Keys in comptable are the components and the
values are the instances of GridBagConstraints . | protected GridBagConstraints | defaultConstraintsThis field holds a gridbag constraints instance
containing the default values, so if a component
does not have gridbag constraints associated with
it, then the component will be assigned a
copy of the defaultConstraints . | protected GridBagLayoutInfo | layoutInfoThis field holds the layout information
for the gridbag. The information in this field
is based on the most recent validation of the
gridbag.
If layoutInfo is null
this indicates that there are no components in
the gridbag or if there are components, they have
not yet been validated. | public int[] | columnWidthsThis field holds the overrides to the column minimum
width. If this field is non-null the values are
applied to the gridbag after all of the minimum columns
widths have been calculated.
If columnWidths has more elements than the number of
columns, columns are added to the gridbag to match
the number of elements in columnWidth. | public int[] | rowHeightsThis field holds the overrides to the row minimum
heights. If this field is non-null the values are
applied to the gridbag after all of the minimum row
heights have been calculated.
If rowHeights has more elements than the number of
rows, rowa are added to the gridbag to match
the number of elements in rowHeights . | public double[] | columnWeightsThis field holds the overrides to the column weights.
If this field is non-null the values are
applied to the gridbag after all of the columns
weights have been calculated.
If columnWeights[i] > weight for column i, then
column i is assigned the weight in columnWeights[i] .
If columnWeights has more elements than the number
of columns, the excess elements are ignored - they do
not cause more columns to be created. | public double[] | rowWeightsThis field holds the overrides to the row weights.
If this field is non-null the values are
applied to the gridbag after all of the rows
weights have been calculated.
If rowWeights[i] > weight for row i, then
row i is assigned the weight in rowWeights[i] .
If rowWeights has more elements than the number
of rows, the excess elements are ignored - they do
not cause more rows to be created. | private Component | componentAdjustingThe component being positioned. This is set before calling into
adjustForGravity . | transient boolean | rightToLeft | static final long | serialVersionUID |
Constructors Summary |
---|
public GridBagLayout()Creates a grid bag layout manager.
comptable = new Hashtable<Component,GridBagConstraints>();
defaultConstraints = new GridBagConstraints();
|
Methods Summary |
---|
protected void | AdjustForGravity(java.awt.GridBagConstraints constraints, java.awt.Rectangle r)This method is obsolete and supplied for backwards
compatability only; new code should call {@link
#adjustForGravity(java.awt.GridBagConstraints, java.awt.Rectangle)
adjustForGravity} instead.
This method is the same as adjustForGravity ;
refer to adjustForGravity for details
on parameters.
int diffx, diffy;
int cellY = r.y;
int cellHeight = r.height;
if (!rightToLeft) {
r.x += constraints.insets.left;
} else {
r.x -= r.width - constraints.insets.right;
}
r.width -= (constraints.insets.left + constraints.insets.right);
r.y += constraints.insets.top;
r.height -= (constraints.insets.top + constraints.insets.bottom);
diffx = 0;
if ((constraints.fill != GridBagConstraints.HORIZONTAL &&
constraints.fill != GridBagConstraints.BOTH)
&& (r.width > (constraints.minWidth + constraints.ipadx))) {
diffx = r.width - (constraints.minWidth + constraints.ipadx);
r.width = constraints.minWidth + constraints.ipadx;
}
diffy = 0;
if ((constraints.fill != GridBagConstraints.VERTICAL &&
constraints.fill != GridBagConstraints.BOTH)
&& (r.height > (constraints.minHeight + constraints.ipady))) {
diffy = r.height - (constraints.minHeight + constraints.ipady);
r.height = constraints.minHeight + constraints.ipady;
}
switch (constraints.anchor) {
case GridBagConstraints.BASELINE:
r.x += diffx/2;
alignOnBaseline(constraints, r, cellY, cellHeight);
break;
case GridBagConstraints.BASELINE_LEADING:
if (rightToLeft) {
r.x += diffx;
}
alignOnBaseline(constraints, r, cellY, cellHeight);
break;
case GridBagConstraints.BASELINE_TRAILING:
if (!rightToLeft) {
r.x += diffx;
}
alignOnBaseline(constraints, r, cellY, cellHeight);
break;
case GridBagConstraints.ABOVE_BASELINE:
r.x += diffx/2;
alignAboveBaseline(constraints, r, cellY, cellHeight);
break;
case GridBagConstraints.ABOVE_BASELINE_LEADING:
if (rightToLeft) {
r.x += diffx;
}
alignAboveBaseline(constraints, r, cellY, cellHeight);
break;
case GridBagConstraints.ABOVE_BASELINE_TRAILING:
if (!rightToLeft) {
r.x += diffx;
}
alignAboveBaseline(constraints, r, cellY, cellHeight);
break;
case GridBagConstraints.BELOW_BASELINE:
r.x += diffx/2;
alignBelowBaseline(constraints, r, cellY, cellHeight);
break;
case GridBagConstraints.BELOW_BASELINE_LEADING:
if (rightToLeft) {
r.x += diffx;
}
alignBelowBaseline(constraints, r, cellY, cellHeight);
break;
case GridBagConstraints.BELOW_BASELINE_TRAILING:
if (!rightToLeft) {
r.x += diffx;
}
alignBelowBaseline(constraints, r, cellY, cellHeight);
break;
case GridBagConstraints.CENTER:
r.x += diffx/2;
r.y += diffy/2;
break;
case GridBagConstraints.PAGE_START:
case GridBagConstraints.NORTH:
r.x += diffx/2;
break;
case GridBagConstraints.NORTHEAST:
r.x += diffx;
break;
case GridBagConstraints.EAST:
r.x += diffx;
r.y += diffy/2;
break;
case GridBagConstraints.SOUTHEAST:
r.x += diffx;
r.y += diffy;
break;
case GridBagConstraints.PAGE_END:
case GridBagConstraints.SOUTH:
r.x += diffx/2;
r.y += diffy;
break;
case GridBagConstraints.SOUTHWEST:
r.y += diffy;
break;
case GridBagConstraints.WEST:
r.y += diffy/2;
break;
case GridBagConstraints.NORTHWEST:
break;
case GridBagConstraints.LINE_START:
if (rightToLeft) {
r.x += diffx;
}
r.y += diffy/2;
break;
case GridBagConstraints.LINE_END:
if (!rightToLeft) {
r.x += diffx;
}
r.y += diffy/2;
break;
case GridBagConstraints.FIRST_LINE_START:
if (rightToLeft) {
r.x += diffx;
}
break;
case GridBagConstraints.FIRST_LINE_END:
if (!rightToLeft) {
r.x += diffx;
}
break;
case GridBagConstraints.LAST_LINE_START:
if (rightToLeft) {
r.x += diffx;
}
r.y += diffy;
break;
case GridBagConstraints.LAST_LINE_END:
if (!rightToLeft) {
r.x += diffx;
}
r.y += diffy;
break;
default:
throw new IllegalArgumentException("illegal anchor value");
}
| protected void | ArrangeGrid(java.awt.Container parent)This method is obsolete and supplied for backwards
compatability only; new code should call {@link
#arrangeGrid(Container) arrangeGrid} instead.
This method is the same as arrangeGrid ;
refer to arrangeGrid for details on the
parameter.
Component comp;
int compindex;
GridBagConstraints constraints;
Insets insets = parent.getInsets();
Component components[] = parent.getComponents();
Dimension d;
Rectangle r = new Rectangle();
int i, diffw, diffh;
double weight;
GridBagLayoutInfo info;
rightToLeft = !parent.getComponentOrientation().isLeftToRight();
/*
* If the parent has no slaves anymore, then don't do anything
* at all: just leave the parent's size as-is.
*/
if (components.length == 0 &&
(columnWidths == null || columnWidths.length == 0) &&
(rowHeights == null || rowHeights.length == 0)) {
return;
}
/*
* Pass #1: scan all the slaves to figure out the total amount
* of space needed.
*/
info = getLayoutInfo(parent, PREFERREDSIZE);
d = getMinSize(parent, info);
if (parent.width < d.width || parent.height < d.height) {
info = getLayoutInfo(parent, MINSIZE);
d = getMinSize(parent, info);
}
layoutInfo = info;
r.width = d.width;
r.height = d.height;
/*
* DEBUG
*
* DumpLayoutInfo(info);
* for (compindex = 0 ; compindex < components.length ; compindex++) {
* comp = components[compindex];
* if (!comp.isVisible())
* continue;
* constraints = lookupConstraints(comp);
* DumpConstraints(constraints);
* }
* System.out.println("minSize " + r.width + " " + r.height);
*/
/*
* If the current dimensions of the window don't match the desired
* dimensions, then adjust the minWidth and minHeight arrays
* according to the weights.
*/
diffw = parent.width - r.width;
if (diffw != 0) {
weight = 0.0;
for (i = 0; i < info.width; i++)
weight += info.weightX[i];
if (weight > 0.0) {
for (i = 0; i < info.width; i++) {
int dx = (int)(( ((double)diffw) * info.weightX[i]) / weight);
info.minWidth[i] += dx;
r.width += dx;
if (info.minWidth[i] < 0) {
r.width -= info.minWidth[i];
info.minWidth[i] = 0;
}
}
}
diffw = parent.width - r.width;
}
else {
diffw = 0;
}
diffh = parent.height - r.height;
if (diffh != 0) {
weight = 0.0;
for (i = 0; i < info.height; i++)
weight += info.weightY[i];
if (weight > 0.0) {
for (i = 0; i < info.height; i++) {
int dy = (int)(( ((double)diffh) * info.weightY[i]) / weight);
info.minHeight[i] += dy;
r.height += dy;
if (info.minHeight[i] < 0) {
r.height -= info.minHeight[i];
info.minHeight[i] = 0;
}
}
}
diffh = parent.height - r.height;
}
else {
diffh = 0;
}
/*
* DEBUG
*
* System.out.println("Re-adjusted:");
* DumpLayoutInfo(info);
*/
/*
* Now do the actual layout of the slaves using the layout information
* that has been collected.
*/
info.startx = diffw/2 + insets.left;
info.starty = diffh/2 + insets.top;
for (compindex = 0 ; compindex < components.length ; compindex++) {
comp = components[compindex];
if (!comp.isVisible()){
continue;
}
constraints = lookupConstraints(comp);
if (!rightToLeft) {
r.x = info.startx;
for(i = 0; i < constraints.tempX; i++)
r.x += info.minWidth[i];
} else {
r.x = parent.width - (diffw/2 + insets.right);
for(i = 0; i < constraints.tempX; i++)
r.x -= info.minWidth[i];
}
r.y = info.starty;
for(i = 0; i < constraints.tempY; i++)
r.y += info.minHeight[i];
r.width = 0;
for(i = constraints.tempX;
i < (constraints.tempX + constraints.tempWidth);
i++) {
r.width += info.minWidth[i];
}
r.height = 0;
for(i = constraints.tempY;
i < (constraints.tempY + constraints.tempHeight);
i++) {
r.height += info.minHeight[i];
}
componentAdjusting = comp;
adjustForGravity(constraints, r);
/* fix for 4408108 - components were being created outside of the container */
/* fix for 4969409 "-" replaced by "+" */
if (r.x < 0) {
r.width += r.x;
r.x = 0;
}
if (r.y < 0) {
r.height += r.y;
r.y = 0;
}
/*
* If the window is too small to be interesting then
* unmap it. Otherwise configure it and then make sure
* it's mapped.
*/
if ((r.width <= 0) || (r.height <= 0)) {
comp.setBounds(0, 0, 0, 0);
}
else {
if (comp.x != r.x || comp.y != r.y ||
comp.width != r.width || comp.height != r.height) {
comp.setBounds(r.x, r.y, r.width, r.height);
}
}
}
| protected java.awt.GridBagLayoutInfo | GetLayoutInfo(java.awt.Container parent, int sizeflag)This method is obsolete and supplied for backwards
compatability only; new code should call {@link
#getLayoutInfo(java.awt.Container, int) getLayoutInfo} instead.
This method is the same as getLayoutInfo ;
refer to getLayoutInfo for details on parameters
and return value.
synchronized (parent.getTreeLock()) {
GridBagLayoutInfo r;
Component comp;
GridBagConstraints constraints;
Dimension d;
Component components[] = parent.getComponents();
// Code below will address index curX+curWidth in the case of yMaxArray, weightY
// ( respectively curY+curHeight for xMaxArray, weightX ) where
// curX in 0 to preInitMaximumArraySizes.y
// Thus, the maximum index that could
// be calculated in the following code is curX+curX.
// EmpericMultier equals 2 because of this.
int layoutWidth, layoutHeight;
int []xMaxArray;
int []yMaxArray;
int compindex, i, k, px, py, pixels_diff, nextSize;
int curX = 0; // constraints.gridx
int curY = 0; // constraints.gridy
int curWidth = 1; // constraints.gridwidth
int curHeight = 1; // constraints.gridheight
int curRow, curCol;
double weight_diff, weight;
int maximumArrayXIndex = 0;
int maximumArrayYIndex = 0;
int anchor;
/*
* Pass #1
*
* Figure out the dimensions of the layout grid (use a value of 1 for
* zero or negative widths and heights).
*/
layoutWidth = layoutHeight = 0;
curRow = curCol = -1;
long [] arraySizes = preInitMaximumArraySizes(parent);
/* fix for 4623196.
* If user try to create a very big grid we can
* get NegativeArraySizeException because of integer value
* overflow (EMPIRICMULTIPLIER*gridSize might be more then Integer.MAX_VALUE).
* We need to detect this situation and try to create a
* grid with Integer.MAX_VALUE size instead.
*/
maximumArrayXIndex = (EMPIRICMULTIPLIER * arraySizes[0] > Integer.MAX_VALUE )? Integer.MAX_VALUE : EMPIRICMULTIPLIER*(int)arraySizes[0];
maximumArrayYIndex = (EMPIRICMULTIPLIER * arraySizes[1] > Integer.MAX_VALUE )? Integer.MAX_VALUE : EMPIRICMULTIPLIER*(int)arraySizes[1];
if (rowHeights != null){
maximumArrayXIndex = Math.max(maximumArrayXIndex, rowHeights.length);
}
if (columnWidths != null){
maximumArrayYIndex = Math.max(maximumArrayYIndex, columnWidths.length);
}
xMaxArray = new int[maximumArrayXIndex];
yMaxArray = new int[maximumArrayYIndex];
boolean hasBaseline = false;
for (compindex = 0 ; compindex < components.length ; compindex++) {
comp = components[compindex];
if (!comp.isVisible())
continue;
constraints = lookupConstraints(comp);
curX = constraints.gridx;
curY = constraints.gridy;
curWidth = constraints.gridwidth;
if (curWidth <= 0)
curWidth = 1;
curHeight = constraints.gridheight;
if (curHeight <= 0)
curHeight = 1;
/* If x or y is negative, then use relative positioning: */
if (curX < 0 && curY < 0) {
if (curRow >= 0)
curY = curRow;
else if (curCol >= 0)
curX = curCol;
else
curY = 0;
}
if (curX < 0) {
px = 0;
for (i = curY; i < (curY + curHeight); i++) {
px = Math.max(px, xMaxArray[i]);
}
curX = px - curX - 1;
if(curX < 0)
curX = 0;
}
else if (curY < 0) {
py = 0;
for (i = curX; i < (curX + curWidth); i++) {
py = Math.max(py, yMaxArray[i]);
}
curY = py - curY - 1;
if(curY < 0)
curY = 0;
}
/* Adjust the grid width and height
* fix for 5005945: unneccessary loops removed
*/
px = curX + curWidth;
if (layoutWidth < px) {
layoutWidth = px;
}
py = curY + curHeight;
if (layoutHeight < py) {
layoutHeight = py;
}
/* Adjust xMaxArray and yMaxArray */
for (i = curX; i < (curX + curWidth); i++) {
yMaxArray[i] =py;
}
for (i = curY; i < (curY + curHeight); i++) {
xMaxArray[i] = px;
}
/* Cache the current slave's size. */
if (sizeflag == PREFERREDSIZE)
d = comp.getPreferredSize();
else
d = comp.getMinimumSize();
constraints.minWidth = d.width;
constraints.minHeight = d.height;
if (calculateBaseline(comp, constraints, d)) {
hasBaseline = true;
}
/* Zero width and height must mean that this is the last item (or
* else something is wrong). */
if (constraints.gridheight == 0 && constraints.gridwidth == 0)
curRow = curCol = -1;
/* Zero width starts a new row */
if (constraints.gridheight == 0 && curRow < 0)
curCol = curX + curWidth;
/* Zero height starts a new column */
else if (constraints.gridwidth == 0 && curCol < 0)
curRow = curY + curHeight;
} //for (components) loop
/*
* Apply minimum row/column dimensions
*/
if (columnWidths != null && layoutWidth < columnWidths.length)
layoutWidth = columnWidths.length;
if (rowHeights != null && layoutHeight < rowHeights.length)
layoutHeight = rowHeights.length;
r = new GridBagLayoutInfo(layoutWidth, layoutHeight);
/*
* Pass #2
*
* Negative values for gridX are filled in with the current x value.
* Negative values for gridY are filled in with the current y value.
* Negative or zero values for gridWidth and gridHeight end the current
* row or column, respectively.
*/
curRow = curCol = -1;
Arrays.fill(xMaxArray, 0);
Arrays.fill(yMaxArray, 0);
int[] maxAscent = null;
int[] maxDescent = null;
short[] baselineType = null;
if (hasBaseline) {
r.maxAscent = maxAscent = new int[layoutHeight];
r.maxDescent = maxDescent = new int[layoutHeight];
r.baselineType = baselineType = new short[layoutHeight];
r.hasBaseline = true;
}
for (compindex = 0 ; compindex < components.length ; compindex++) {
comp = components[compindex];
if (!comp.isVisible())
continue;
constraints = lookupConstraints(comp);
curX = constraints.gridx;
curY = constraints.gridy;
curWidth = constraints.gridwidth;
curHeight = constraints.gridheight;
/* If x or y is negative, then use relative positioning: */
if (curX < 0 && curY < 0) {
if(curRow >= 0)
curY = curRow;
else if(curCol >= 0)
curX = curCol;
else
curY = 0;
}
if (curX < 0) {
if (curHeight <= 0) {
curHeight += r.height - curY;
if (curHeight < 1)
curHeight = 1;
}
px = 0;
for (i = curY; i < (curY + curHeight); i++)
px = Math.max(px, xMaxArray[i]);
curX = px - curX - 1;
if(curX < 0)
curX = 0;
}
else if (curY < 0) {
if (curWidth <= 0) {
curWidth += r.width - curX;
if (curWidth < 1)
curWidth = 1;
}
py = 0;
for (i = curX; i < (curX + curWidth); i++){
py = Math.max(py, yMaxArray[i]);
}
curY = py - curY - 1;
if(curY < 0)
curY = 0;
}
if (curWidth <= 0) {
curWidth += r.width - curX;
if (curWidth < 1)
curWidth = 1;
}
if (curHeight <= 0) {
curHeight += r.height - curY;
if (curHeight < 1)
curHeight = 1;
}
px = curX + curWidth;
py = curY + curHeight;
for (i = curX; i < (curX + curWidth); i++) { yMaxArray[i] = py; }
for (i = curY; i < (curY + curHeight); i++) { xMaxArray[i] = px; }
/* Make negative sizes start a new row/column */
if (constraints.gridheight == 0 && constraints.gridwidth == 0)
curRow = curCol = -1;
if (constraints.gridheight == 0 && curRow < 0)
curCol = curX + curWidth;
else if (constraints.gridwidth == 0 && curCol < 0)
curRow = curY + curHeight;
/* Assign the new values to the gridbag slave */
constraints.tempX = curX;
constraints.tempY = curY;
constraints.tempWidth = curWidth;
constraints.tempHeight = curHeight;
anchor = constraints.anchor;
if (hasBaseline) {
switch(anchor) {
case GridBagConstraints.BASELINE:
case GridBagConstraints.BASELINE_LEADING:
case GridBagConstraints.BASELINE_TRAILING:
if (constraints.ascent >= 0) {
if (curHeight == 1) {
maxAscent[curY] =
Math.max(maxAscent[curY],
constraints.ascent);
maxDescent[curY] =
Math.max(maxDescent[curY],
constraints.descent);
}
else {
if (constraints.baselineResizeBehavior ==
Component.BaselineResizeBehavior.
CONSTANT_DESCENT) {
maxDescent[curY + curHeight - 1] =
Math.max(maxDescent[curY + curHeight
- 1],
constraints.descent);
}
else {
maxAscent[curY] = Math.max(maxAscent[curY],
constraints.ascent);
}
}
if (constraints.baselineResizeBehavior ==
Component.BaselineResizeBehavior.CONSTANT_DESCENT) {
baselineType[curY + curHeight - 1] |=
(1 << constraints.
baselineResizeBehavior.ordinal());
}
else {
baselineType[curY] |= (1 << constraints.
baselineResizeBehavior.ordinal());
}
}
break;
case GridBagConstraints.ABOVE_BASELINE:
case GridBagConstraints.ABOVE_BASELINE_LEADING:
case GridBagConstraints.ABOVE_BASELINE_TRAILING:
// Component positioned above the baseline.
// To make the bottom edge of the component aligned
// with the baseline the bottom inset is
// added to the descent, the rest to the ascent.
pixels_diff = constraints.minHeight +
constraints.insets.top +
constraints.ipady;
maxAscent[curY] = Math.max(maxAscent[curY],
pixels_diff);
maxDescent[curY] = Math.max(maxDescent[curY],
constraints.insets.bottom);
break;
case GridBagConstraints.BELOW_BASELINE:
case GridBagConstraints.BELOW_BASELINE_LEADING:
case GridBagConstraints.BELOW_BASELINE_TRAILING:
// Component positioned below the baseline.
// To make the top edge of the component aligned
// with the baseline the top inset is
// added to the ascent, the rest to the descent.
pixels_diff = constraints.minHeight +
constraints.insets.bottom + constraints.ipady;
maxDescent[curY] = Math.max(maxDescent[curY],
pixels_diff);
maxAscent[curY] = Math.max(maxAscent[curY],
constraints.insets.top);
break;
}
}
}
r.weightX = new double[maximumArrayYIndex];
r.weightY = new double[maximumArrayXIndex];
r.minWidth = new int[maximumArrayYIndex];
r.minHeight = new int[maximumArrayXIndex];
/*
* Apply minimum row/column dimensions and weights
*/
if (columnWidths != null)
System.arraycopy(columnWidths, 0, r.minWidth, 0, columnWidths.length);
if (rowHeights != null)
System.arraycopy(rowHeights, 0, r.minHeight, 0, rowHeights.length);
if (columnWeights != null)
System.arraycopy(columnWeights, 0, r.weightX, 0, Math.min(r.weightX.length, columnWeights.length));
if (rowWeights != null)
System.arraycopy(rowWeights, 0, r.weightY, 0, Math.min(r.weightY.length, rowWeights.length));
/*
* Pass #3
*
* Distribute the minimun widths and weights:
*/
nextSize = Integer.MAX_VALUE;
for (i = 1;
i != Integer.MAX_VALUE;
i = nextSize, nextSize = Integer.MAX_VALUE) {
for (compindex = 0 ; compindex < components.length ; compindex++) {
comp = components[compindex];
if (!comp.isVisible())
continue;
constraints = lookupConstraints(comp);
if (constraints.tempWidth == i) {
px = constraints.tempX + constraints.tempWidth; /* right column */
/*
* Figure out if we should use this slave\'s weight. If the weight
* is less than the total weight spanned by the width of the cell,
* then discard the weight. Otherwise split the difference
* according to the existing weights.
*/
weight_diff = constraints.weightx;
for (k = constraints.tempX; k < px; k++)
weight_diff -= r.weightX[k];
if (weight_diff > 0.0) {
weight = 0.0;
for (k = constraints.tempX; k < px; k++)
weight += r.weightX[k];
for (k = constraints.tempX; weight > 0.0 && k < px; k++) {
double wt = r.weightX[k];
double dx = (wt * weight_diff) / weight;
r.weightX[k] += dx;
weight_diff -= dx;
weight -= wt;
}
/* Assign the remainder to the rightmost cell */
r.weightX[px-1] += weight_diff;
}
/*
* Calculate the minWidth array values.
* First, figure out how wide the current slave needs to be.
* Then, see if it will fit within the current minWidth values.
* If it will not fit, add the difference according to the
* weightX array.
*/
pixels_diff =
constraints.minWidth + constraints.ipadx +
constraints.insets.left + constraints.insets.right;
for (k = constraints.tempX; k < px; k++)
pixels_diff -= r.minWidth[k];
if (pixels_diff > 0) {
weight = 0.0;
for (k = constraints.tempX; k < px; k++)
weight += r.weightX[k];
for (k = constraints.tempX; weight > 0.0 && k < px; k++) {
double wt = r.weightX[k];
int dx = (int)((wt * ((double)pixels_diff)) / weight);
r.minWidth[k] += dx;
pixels_diff -= dx;
weight -= wt;
}
/* Any leftovers go into the rightmost cell */
r.minWidth[px-1] += pixels_diff;
}
}
else if (constraints.tempWidth > i && constraints.tempWidth < nextSize)
nextSize = constraints.tempWidth;
if (constraints.tempHeight == i) {
py = constraints.tempY + constraints.tempHeight; /* bottom row */
/*
* Figure out if we should use this slave's weight. If the weight
* is less than the total weight spanned by the height of the cell,
* then discard the weight. Otherwise split it the difference
* according to the existing weights.
*/
weight_diff = constraints.weighty;
for (k = constraints.tempY; k < py; k++)
weight_diff -= r.weightY[k];
if (weight_diff > 0.0) {
weight = 0.0;
for (k = constraints.tempY; k < py; k++)
weight += r.weightY[k];
for (k = constraints.tempY; weight > 0.0 && k < py; k++) {
double wt = r.weightY[k];
double dy = (wt * weight_diff) / weight;
r.weightY[k] += dy;
weight_diff -= dy;
weight -= wt;
}
/* Assign the remainder to the bottom cell */
r.weightY[py-1] += weight_diff;
}
/*
* Calculate the minHeight array values.
* First, figure out how tall the current slave needs to be.
* Then, see if it will fit within the current minHeight values.
* If it will not fit, add the difference according to the
* weightY array.
*/
pixels_diff = -1;
if (hasBaseline) {
switch(constraints.anchor) {
case GridBagConstraints.BASELINE:
case GridBagConstraints.BASELINE_LEADING:
case GridBagConstraints.BASELINE_TRAILING:
if (constraints.ascent >= 0) {
if (constraints.tempHeight == 1) {
pixels_diff =
maxAscent[constraints.tempY] +
maxDescent[constraints.tempY];
}
else if (constraints.baselineResizeBehavior !=
Component.BaselineResizeBehavior.
CONSTANT_DESCENT) {
pixels_diff =
maxAscent[constraints.tempY] +
constraints.descent;
}
else {
pixels_diff = constraints.ascent +
maxDescent[constraints.tempY +
constraints.tempHeight - 1];
}
}
break;
case GridBagConstraints.ABOVE_BASELINE:
case GridBagConstraints.ABOVE_BASELINE_LEADING:
case GridBagConstraints.ABOVE_BASELINE_TRAILING:
pixels_diff = constraints.insets.top +
constraints.minHeight +
constraints.ipady +
maxDescent[constraints.tempY];
break;
case GridBagConstraints.BELOW_BASELINE:
case GridBagConstraints.BELOW_BASELINE_LEADING:
case GridBagConstraints.BELOW_BASELINE_TRAILING:
pixels_diff = maxAscent[constraints.tempY] +
constraints.minHeight +
constraints.insets.bottom +
constraints.ipady;
break;
}
}
if (pixels_diff == -1) {
pixels_diff =
constraints.minHeight + constraints.ipady +
constraints.insets.top +
constraints.insets.bottom;
}
for (k = constraints.tempY; k < py; k++)
pixels_diff -= r.minHeight[k];
if (pixels_diff > 0) {
weight = 0.0;
for (k = constraints.tempY; k < py; k++)
weight += r.weightY[k];
for (k = constraints.tempY; weight > 0.0 && k < py; k++) {
double wt = r.weightY[k];
int dy = (int)((wt * ((double)pixels_diff)) / weight);
r.minHeight[k] += dy;
pixels_diff -= dy;
weight -= wt;
}
/* Any leftovers go into the bottom cell */
r.minHeight[py-1] += pixels_diff;
}
}
else if (constraints.tempHeight > i &&
constraints.tempHeight < nextSize)
nextSize = constraints.tempHeight;
}
}
return r;
}
| protected java.awt.Dimension | GetMinSize(java.awt.Container parent, java.awt.GridBagLayoutInfo info)This method is obsolete and supplied for backwards
compatability only; new code should call {@link
#getMinSize(java.awt.Container, GridBagLayoutInfo) getMinSize} instead.
This method is the same as getMinSize ;
refer to getMinSize for details on parameters
and return value.
Dimension d = new Dimension();
int i, t;
Insets insets = parent.getInsets();
t = 0;
for(i = 0; i < info.width; i++)
t += info.minWidth[i];
d.width = t + insets.left + insets.right;
t = 0;
for(i = 0; i < info.height; i++)
t += info.minHeight[i];
d.height = t + insets.top + insets.bottom;
return d;
| public void | addLayoutComponent(java.lang.String name, java.awt.Component comp)Has no effect, since this layout manager does not use a per-component string.
| public void | addLayoutComponent(java.awt.Component comp, java.lang.Object constraints)Adds the specified component to the layout, using the specified
constraints object. Note that constraints
are mutable and are, therefore, cloned when cached.
if (constraints instanceof GridBagConstraints) {
setConstraints(comp, (GridBagConstraints)constraints);
} else if (constraints != null) {
throw new IllegalArgumentException("cannot add to layout: constraints must be a GridBagConstraint");
}
| protected void | adjustForGravity(java.awt.GridBagConstraints constraints, java.awt.Rectangle r)Adjusts the x, y, width, and height fields to the correct
values depending on the constraint geometry and pads.
This method should only be used internally by
GridBagLayout .
AdjustForGravity(constraints, r);
| private void | alignAboveBaseline(java.awt.GridBagConstraints cons, java.awt.Rectangle r, int cellY, int cellHeight)Positions the specified component above the baseline. That is
the bottom edge of the component will be aligned along the baseline.
If the row does not have a baseline, this centers the component.
if (layoutInfo.hasBaseline(cons.tempY)) {
int maxY; // Baseline for the row
if (layoutInfo.hasConstantDescent(cons.tempY)) {
// Prefer descent
maxY = cellY + cellHeight - layoutInfo.maxDescent[cons.tempY];
}
else {
// Prefer ascent
maxY = cellY + layoutInfo.maxAscent[cons.tempY];
}
if (cons.isVerticallyResizable()) {
// Component is resizable. Top edge is offset by top
// inset, bottom edge on baseline.
r.y = cellY + cons.insets.top;
r.height = maxY - r.y;
}
else {
// Not resizable.
r.height = cons.minHeight + cons.ipady;
r.y = maxY - r.height;
}
}
else {
centerVertically(cons, r, cellHeight);
}
| private void | alignBelowBaseline(java.awt.GridBagConstraints cons, java.awt.Rectangle r, int cellY, int cellHeight)Positions below the baseline.
if (layoutInfo.hasBaseline(cons.tempY)) {
if (layoutInfo.hasConstantDescent(cons.tempY)) {
// Prefer descent
r.y = cellY + cellHeight - layoutInfo.maxDescent[cons.tempY];
}
else {
// Prefer ascent
r.y = cellY + layoutInfo.maxAscent[cons.tempY];
}
if (cons.isVerticallyResizable()) {
r.height = cellY + cellHeight - r.y - cons.insets.bottom;
}
}
else {
centerVertically(cons, r, cellHeight);
}
| private void | alignOnBaseline(java.awt.GridBagConstraints cons, java.awt.Rectangle r, int cellY, int cellHeight)Positions on the baseline.
if (cons.ascent >= 0) {
if (cons.baselineResizeBehavior == Component.
BaselineResizeBehavior.CONSTANT_DESCENT) {
// Anchor to the bottom.
// Baseline is at (cellY + cellHeight - maxDescent).
// Bottom of component (maxY) is at baseline + descent
// of component. We need to subtract the bottom inset here
// as the descent in the constraints object includes the
// bottom inset.
int maxY = cellY + cellHeight -
layoutInfo.maxDescent[cons.tempY + cons.tempHeight - 1] +
cons.descent - cons.insets.bottom;
if (!cons.isVerticallyResizable()) {
// Component not resizable, calculate y location
// from maxY - height.
r.y = maxY - cons.minHeight;
r.height = cons.minHeight;
} else {
// Component is resizable. As brb is constant descent,
// can expand component to fill region above baseline.
// Subtract out the top inset so that components insets
// are honored.
r.height = maxY - cellY - cons.insets.top;
}
}
else {
// BRB is not constant_descent
int baseline; // baseline for the row, relative to cellY
// Component baseline, includes insets.top
int ascent = cons.ascent;
if (layoutInfo.hasConstantDescent(cons.tempY)) {
// Mixed ascent/descent in same row, calculate position
// off maxDescent
baseline = cellHeight - layoutInfo.maxDescent[cons.tempY];
}
else {
// Only ascents/unknown in this row, anchor to top
baseline = layoutInfo.maxAscent[cons.tempY];
}
if (cons.baselineResizeBehavior == Component.
BaselineResizeBehavior.OTHER) {
// BRB is other, which means we can only determine
// the baseline by asking for it again giving the
// size we plan on using for the component.
boolean fits = false;
ascent = componentAdjusting.getBaseline(r.width, r.height);
if (ascent >= 0) {
// Component has a baseline, pad with top inset
// (this follows from calculateBaseline which
// does the same).
ascent += cons.insets.top;
}
if (ascent >= 0 && ascent <= baseline) {
// Components baseline fits within rows baseline.
// Make sure the descent fits within the space as well.
if (baseline + (r.height - ascent - cons.insets.top) <=
cellHeight - cons.insets.bottom) {
// It fits, we're good.
fits = true;
}
else if (cons.isVerticallyResizable()) {
// Doesn't fit, but it's resizable. Try
// again assuming we'll get ascent again.
int ascent2 = componentAdjusting.getBaseline(
r.width, cellHeight - cons.insets.bottom -
baseline + ascent);
if (ascent2 >= 0) {
ascent2 += cons.insets.top;
}
if (ascent2 >= 0 && ascent2 <= ascent) {
// It'll fit
r.height = cellHeight - cons.insets.bottom -
baseline + ascent;
ascent = ascent2;
fits = true;
}
}
}
if (!fits) {
// Doesn't fit, use min size and original ascent
ascent = cons.ascent;
r.width = cons.minWidth;
r.height = cons.minHeight;
}
}
// Reset the components y location based on
// components ascent and baseline for row. Because ascent
// includes the baseline
r.y = cellY + baseline - ascent + cons.insets.top;
if (cons.isVerticallyResizable()) {
switch(cons.baselineResizeBehavior) {
case CONSTANT_ASCENT:
r.height = Math.max(cons.minHeight,cellY + cellHeight -
r.y - cons.insets.bottom);
break;
case CENTER_OFFSET:
{
int upper = r.y - cellY - cons.insets.top;
int lower = cellY + cellHeight - r.y -
cons.minHeight - cons.insets.bottom;
int delta = Math.min(upper, lower);
delta += delta;
if (delta > 0 &&
(cons.minHeight + cons.centerPadding +
delta) / 2 + cons.centerOffset != baseline) {
// Off by 1
delta--;
}
r.height = cons.minHeight + delta;
r.y = cellY + baseline -
(r.height + cons.centerPadding) / 2 -
cons.centerOffset;
}
break;
case OTHER:
// Handled above
break;
default:
break;
}
}
}
}
else {
centerVertically(cons, r, cellHeight);
}
| protected void | arrangeGrid(java.awt.Container parent)Lays out the grid.
This method should only be used internally by
GridBagLayout .
ArrangeGrid(parent);
| private boolean | calculateBaseline(java.awt.Component c, java.awt.GridBagConstraints constraints, java.awt.Dimension size)Calculate the baseline for the specified component.
If {@code c} is positioned along it's baseline, the baseline is
obtained and the {@code constraints} ascent, descent and
baseline resize behavior are set from the component; and true is
returned. Otherwise false is returned.
int anchor = constraints.anchor;
if (anchor == GridBagConstraints.BASELINE ||
anchor == GridBagConstraints.BASELINE_LEADING ||
anchor == GridBagConstraints.BASELINE_TRAILING) {
// Apply the padding to the component, then ask for the baseline.
int w = size.width + constraints.ipadx;
int h = size.height + constraints.ipady;
constraints.ascent = c.getBaseline(w, h);
if (constraints.ascent >= 0) {
// Component has a baseline
int baseline = constraints.ascent;
// Adjust the ascent and descent to include the insets.
constraints.descent = h - constraints.ascent +
constraints.insets.bottom;
constraints.ascent += constraints.insets.top;
constraints.baselineResizeBehavior =
c.getBaselineResizeBehavior();
constraints.centerPadding = 0;
if (constraints.baselineResizeBehavior == Component.
BaselineResizeBehavior.CENTER_OFFSET) {
// Component has a baseline resize behavior of
// CENTER_OFFSET, calculate centerPadding and
// centerOffset (see the description of
// CENTER_OFFSET in the enum for detais on this
// algorithm).
int nextBaseline = c.getBaseline(w, h + 1);
constraints.centerOffset = baseline - h / 2;
if (h % 2 == 0) {
if (baseline != nextBaseline) {
constraints.centerPadding = 1;
}
}
else if (baseline == nextBaseline){
constraints.centerOffset--;
constraints.centerPadding = 1;
}
}
}
return true;
}
else {
constraints.ascent = -1;
return false;
}
| private void | centerVertically(java.awt.GridBagConstraints cons, java.awt.Rectangle r, int cellHeight)
if (!cons.isVerticallyResizable()) {
r.y += Math.max(0, (cellHeight - cons.insets.top -
cons.insets.bottom - cons.minHeight -
cons.ipady) / 2);
}
| public java.awt.GridBagConstraints | getConstraints(java.awt.Component comp)Gets the constraints for the specified component. A copy of
the actual GridBagConstraints object is returned.
GridBagConstraints constraints = comptable.get(comp);
if (constraints == null) {
setConstraints(comp, defaultConstraints);
constraints = comptable.get(comp);
}
return (GridBagConstraints)constraints.clone();
| public float | getLayoutAlignmentX(java.awt.Container parent)Returns the alignment along the x axis. This specifies how
the component would like to be aligned relative to other
components. The value should be a number between 0 and 1
where 0 represents alignment along the origin, 1 is aligned
the furthest away from the origin, 0.5 is centered, etc.
return 0.5f;
| public float | getLayoutAlignmentY(java.awt.Container parent)Returns the alignment along the y axis. This specifies how
the component would like to be aligned relative to other
components. The value should be a number between 0 and 1
where 0 represents alignment along the origin, 1 is aligned
the furthest away from the origin, 0.5 is centered, etc.
return 0.5f;
| public int[][] | getLayoutDimensions()Determines column widths and row heights for the layout grid.
Most applications do not call this method directly.
if (layoutInfo == null)
return new int[2][0];
int dim[][] = new int [2][];
dim[0] = new int[layoutInfo.width];
dim[1] = new int[layoutInfo.height];
System.arraycopy(layoutInfo.minWidth, 0, dim[0], 0, layoutInfo.width);
System.arraycopy(layoutInfo.minHeight, 0, dim[1], 0, layoutInfo.height);
return dim;
| protected java.awt.GridBagLayoutInfo | getLayoutInfo(java.awt.Container parent, int sizeflag)Fills in an instance of GridBagLayoutInfo for the
current set of managed children. This requires three passes through the
set of children:
- Figure out the dimensions of the layout grid.
- Determine which cells the components occupy.
- Distribute the weights and min sizes amoung the rows/columns.
This also caches the minsizes for all the children when they are
first encountered (so subsequent loops don't need to ask again).
This method should only be used internally by
GridBagLayout .
return GetLayoutInfo(parent, sizeflag);
| public java.awt.Point | getLayoutOrigin()Determines the origin of the layout area, in the graphics coordinate
space of the target container. This value represents the pixel
coordinates of the top-left corner of the layout area regardless of
the ComponentOrientation value of the container. This
is distinct from the grid origin given by the cell coordinates (0,0).
Most applications do not call this method directly.
Point origin = new Point(0,0);
if (layoutInfo != null) {
origin.x = layoutInfo.startx;
origin.y = layoutInfo.starty;
}
return origin;
| public double[][] | getLayoutWeights()Determines the weights of the layout grid's columns and rows.
Weights are used to calculate how much a given column or row
stretches beyond its preferred size, if the layout has extra
room to fill.
Most applications do not call this method directly.
if (layoutInfo == null)
return new double[2][0];
double weights[][] = new double [2][];
weights[0] = new double[layoutInfo.width];
weights[1] = new double[layoutInfo.height];
System.arraycopy(layoutInfo.weightX, 0, weights[0], 0, layoutInfo.width);
System.arraycopy(layoutInfo.weightY, 0, weights[1], 0, layoutInfo.height);
return weights;
| protected java.awt.Dimension | getMinSize(java.awt.Container parent, java.awt.GridBagLayoutInfo info)Figures out the minimum size of the
master based on the information from getLayoutInfo .
This method should only be used internally by
GridBagLayout .
return GetMinSize(parent, info);
| public void | invalidateLayout(java.awt.Container target)Invalidates the layout, indicating that if the layout manager
has cached information it should be discarded.
| public void | layoutContainer(java.awt.Container parent)Lays out the specified container using this grid bag layout.
This method reshapes components in the specified container in
order to satisfy the contraints of this GridBagLayout
object.
Most applications do not call this method directly.
arrangeGrid(parent);
| public java.awt.Point | location(int x, int y)Determines which cell in the layout grid contains the point
specified by (x, y) . Each cell is identified
by its column index (ranging from 0 to the number of columns
minus 1) and its row index (ranging from 0 to the number of
rows minus 1).
If the (x, y) point lies
outside the grid, the following rules are used.
The column index is returned as zero if x lies to the
left of the layout for a left-to-right container or to the right of
the layout for a right-to-left container. The column index is returned
as the number of columns if x lies
to the right of the layout in a left-to-right container or to the left
in a right-to-left container.
The row index is returned as zero if y lies above the
layout, and as the number of rows if y lies
below the layout. The orientation of a container is determined by its
ComponentOrientation property.
Point loc = new Point(0,0);
int i, d;
if (layoutInfo == null)
return loc;
d = layoutInfo.startx;
if (!rightToLeft) {
for (i=0; i<layoutInfo.width; i++) {
d += layoutInfo.minWidth[i];
if (d > x)
break;
}
} else {
for (i=layoutInfo.width-1; i>=0; i--) {
if (d > x)
break;
d += layoutInfo.minWidth[i];
}
i++;
}
loc.x = i;
d = layoutInfo.starty;
for (i=0; i<layoutInfo.height; i++) {
d += layoutInfo.minHeight[i];
if (d > y)
break;
}
loc.y = i;
return loc;
| protected java.awt.GridBagConstraints | lookupConstraints(java.awt.Component comp)Retrieves the constraints for the specified component.
The return value is not a copy, but is the actual
GridBagConstraints object used by the layout mechanism.
If comp is not in the GridBagLayout ,
a set of default GridBagConstraints are returned.
A comp value of null is invalid
and returns null .
GridBagConstraints constraints = comptable.get(comp);
if (constraints == null) {
setConstraints(comp, defaultConstraints);
constraints = comptable.get(comp);
}
return constraints;
| public java.awt.Dimension | maximumLayoutSize(java.awt.Container target)Returns the maximum dimensions for this layout given the components
in the specified target container.
return new Dimension(Integer.MAX_VALUE, Integer.MAX_VALUE);
| public java.awt.Dimension | minimumLayoutSize(java.awt.Container parent)Determines the minimum size of the parent container
using this grid bag layout.
Most applications do not call this method directly.
GridBagLayoutInfo info = getLayoutInfo(parent, MINSIZE);
return getMinSize(parent, info);
| private long[] | preInitMaximumArraySizes(java.awt.Container parent)
Component components[] = parent.getComponents();
Component comp;
GridBagConstraints constraints;
int curX, curY;
int curWidth, curHeight;
int preMaximumArrayXIndex = 0;
int preMaximumArrayYIndex = 0;
long [] returnArray = new long[2];
for (int compId = 0 ; compId < components.length ; compId++) {
comp = components[compId];
if (!comp.isVisible()) {
continue;
}
constraints = lookupConstraints(comp);
curX = constraints.gridx;
curY = constraints.gridy;
curWidth = constraints.gridwidth;
curHeight = constraints.gridheight;
// -1==RELATIVE, means that column|row equals to previously added component,
// since each next Component with gridx|gridy == RELATIVE starts from
// previous position, so we should start from previous component which
// already used in maximumArray[X|Y]Index calculation. We could just increase
// maximum by 1 to handle situation when component with gridx=-1 was added.
if (curX < 0){
curX = ++preMaximumArrayYIndex;
}
if (curY < 0){
curY = ++preMaximumArrayXIndex;
}
// gridwidth|gridheight may be equal to RELATIVE (-1) or REMAINDER (0)
// in any case using 1 instead of 0 or -1 should be sufficient to for
// correct maximumArraySizes calculation
if (curWidth <= 0){
curWidth = 1;
}
if (curHeight <= 0){
curHeight = 1;
}
preMaximumArrayXIndex = Math.max(curY + curHeight, preMaximumArrayXIndex);
preMaximumArrayYIndex = Math.max(curX + curWidth, preMaximumArrayYIndex);
} //for (components) loop
// Must specify index++ to allocate well-working arrays.
/* fix for 4623196.
* now return long array instead of Point
*/
returnArray[0] = preMaximumArrayXIndex;
returnArray[1] = preMaximumArrayYIndex;
return returnArray;
| public java.awt.Dimension | preferredLayoutSize(java.awt.Container parent)Determines the preferred size of the parent
container using this grid bag layout.
Most applications do not call this method directly.
GridBagLayoutInfo info = getLayoutInfo(parent, PREFERREDSIZE);
return getMinSize(parent, info);
| private void | removeConstraints(java.awt.Component comp)Removes the constraints for the specified component in this layout
comptable.remove(comp);
| public void | removeLayoutComponent(java.awt.Component comp)Removes the specified component from this layout.
Most applications do not call this method directly.
removeConstraints(comp);
| public void | setConstraints(java.awt.Component comp, java.awt.GridBagConstraints constraints)Sets the constraints for the specified component in this layout.
comptable.put(comp, (GridBagConstraints)constraints.clone());
| public java.lang.String | toString()Returns a string representation of this grid bag layout's values.
return getClass().getName();
|
|