/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.bordeaux.services;
import android.util.Log;
import android.bordeaux.learning.StochasticLinearRanker;
import java.util.HashMap;
import java.util.Map;
import java.io.Serializable;
public class StochasticLinearRankerWithPrior extends StochasticLinearRanker {
private final String TAG = "StochasticLinearRankerWithPrior";
private final float EPSILON = 0.0001f;
/* If the is parameter is true, the final score would be a
linear combination of user model and prior model */
private final String USE_PRIOR = "usePriorInformation";
/* When prior model is used, this parmaeter will set the mixing factor, alpha. */
private final String SET_ALPHA = "setAlpha";
/* When prior model is used, If this parameter is true then algorithm will use
the automatic cross validated alpha for mixing user model and prior model */
private final String USE_AUTO_ALPHA = "useAutoAlpha";
/* When automatic cross validation is active, this parameter will
set the forget rate in cross validation. */
private final String SET_FORGET_RATE = "setForgetRate";
/* When automatic cross validation is active, this parameter will
set the minium number of required training pairs before using the user model */
private final String SET_MIN_TRAIN_PAIR = "setMinTrainingPair";
private final String SET_USER_PERF = "setUserPerformance";
private final String SET_PRIOR_PERF = "setPriorPerformance";
private final String SET_NUM_TRAIN_PAIR = "setNumberTrainingPairs";
private final String SET_AUTO_ALPHA = "setAutoAlpha";
private HashMap<String, Float> mPriorWeights = new HashMap<String, Float>();
private float mAlpha = 0;
private float mAutoAlpha = 0;
private float mForgetRate = 0;
private float mUserRankerPerf = 0;
private float mPriorRankerPerf = 0;
private int mMinReqTrainingPair = 0;
private int mNumTrainPair = 0;
private boolean mUsePrior = false;
private boolean mUseAutoAlpha = false;
static public class Model implements Serializable {
public StochasticLinearRanker.Model uModel = new StochasticLinearRanker.Model();
public HashMap<String, Float> priorWeights = new HashMap<String, Float>();
public HashMap<String, String> priorParameters = new HashMap<String, String>();
}
@Override
public void resetRanker(){
super.resetRanker();
mPriorWeights.clear();
mAlpha = 0;
mAutoAlpha = 0;
mForgetRate = 0;
mMinReqTrainingPair = 0;
mUserRankerPerf = 0;
mPriorRankerPerf = 0;
mNumTrainPair = 0;
mUsePrior = false;
mUseAutoAlpha = false;
}
@Override
public float scoreSample(String[] keys, float[] values) {
if (!mUsePrior){
return super.scoreSample(keys, values);
} else {
if (mUseAutoAlpha) {
if (mNumTrainPair > mMinReqTrainingPair)
return (1 - mAutoAlpha) * super.scoreSample(keys,values) +
mAutoAlpha * priorScoreSample(keys,values);
else
return priorScoreSample(keys,values);
} else
return (1 - mAlpha) * super.scoreSample(keys,values) +
mAlpha * priorScoreSample(keys,values);
}
}
public float priorScoreSample(String[] keys, float[] values) {
float score = 0;
for (int i=0; i< keys.length; i++){
if (mPriorWeights.get(keys[i]) != null )
score = score + mPriorWeights.get(keys[i]) * values[i];
}
return score;
}
@Override
public boolean updateClassifier(String[] keys_positive,
float[] values_positive,
String[] keys_negative,
float[] values_negative){
if (mUsePrior && mUseAutoAlpha && (mNumTrainPair > mMinReqTrainingPair))
updateAutoAlpha(keys_positive, values_positive, keys_negative, values_negative);
mNumTrainPair ++;
return super.updateClassifier(keys_positive, values_positive,
keys_negative, values_negative);
}
void updateAutoAlpha(String[] keys_positive,
float[] values_positive,
String[] keys_negative,
float[] values_negative) {
float positiveUserScore = super.scoreSample(keys_positive, values_positive);
float negativeUserScore = super.scoreSample(keys_negative, values_negative);
float positivePriorScore = priorScoreSample(keys_positive, values_positive);
float negativePriorScore = priorScoreSample(keys_negative, values_negative);
float userDecision = 0;
float priorDecision = 0;
if (positiveUserScore > negativeUserScore)
userDecision = 1;
if (positivePriorScore > negativePriorScore)
priorDecision = 1;
mUserRankerPerf = (1 - mForgetRate) * mUserRankerPerf + userDecision;
mPriorRankerPerf = (1 - mForgetRate) * mPriorRankerPerf + priorDecision;
mAutoAlpha = (mPriorRankerPerf + EPSILON) / (mUserRankerPerf + mPriorRankerPerf + EPSILON);
}
public Model getModel(){
Model m = new Model();
m.uModel = super.getUModel();
m.priorWeights.putAll(mPriorWeights);
m.priorParameters.put(SET_ALPHA, String.valueOf(mAlpha));
m.priorParameters.put(SET_AUTO_ALPHA, String.valueOf(mAutoAlpha));
m.priorParameters.put(SET_FORGET_RATE, String.valueOf(mForgetRate));
m.priorParameters.put(SET_MIN_TRAIN_PAIR, String.valueOf(mMinReqTrainingPair));
m.priorParameters.put(SET_USER_PERF, String.valueOf(mUserRankerPerf));
m.priorParameters.put(SET_PRIOR_PERF, String.valueOf(mPriorRankerPerf));
m.priorParameters.put(SET_NUM_TRAIN_PAIR, String.valueOf(mNumTrainPair));
m.priorParameters.put(USE_AUTO_ALPHA, String.valueOf(mUseAutoAlpha));
m.priorParameters.put(USE_PRIOR, String.valueOf(mUsePrior));
return m;
}
public boolean loadModel(Model m) {
mPriorWeights.clear();
mPriorWeights.putAll(m.priorWeights);
for (Map.Entry<String, String> e : m.priorParameters.entrySet()) {
boolean res = setModelParameter(e.getKey(), e.getValue());
if (!res) return false;
}
return super.loadModel(m.uModel);
}
public boolean setModelPriorWeights(HashMap<String, Float> pw){
mPriorWeights.clear();
mPriorWeights.putAll(pw);
return true;
}
public boolean setModelParameter(String key, String value){
if (key.equals(USE_AUTO_ALPHA)){
mUseAutoAlpha = Boolean.parseBoolean(value);
} else if (key.equals(USE_PRIOR)){
mUsePrior = Boolean.parseBoolean(value);
} else if (key.equals(SET_ALPHA)){
mAlpha = Float.valueOf(value.trim()).floatValue();
}else if (key.equals(SET_AUTO_ALPHA)){
mAutoAlpha = Float.valueOf(value.trim()).floatValue();
}else if (key.equals(SET_FORGET_RATE)){
mForgetRate = Float.valueOf(value.trim()).floatValue();
}else if (key.equals(SET_MIN_TRAIN_PAIR)){
mMinReqTrainingPair = (int) Float.valueOf(value.trim()).floatValue();
}else if (key.equals(SET_USER_PERF)){
mUserRankerPerf = Float.valueOf(value.trim()).floatValue();
}else if (key.equals(SET_PRIOR_PERF)){
mPriorRankerPerf = Float.valueOf(value.trim()).floatValue();
}else if (key.equals(SET_NUM_TRAIN_PAIR)){
mNumTrainPair = (int) Float.valueOf(value.trim()).floatValue();
}else
return super.setModelParameter(key, value);
return true;
}
public void print(Model m){
super.print(m.uModel);
String Spw = "";
for (Map.Entry<String, Float> e : m.priorWeights.entrySet())
Spw = Spw + "<" + e.getKey() + "," + e.getValue() + "> ";
Log.i(TAG, "Prior model is " + Spw);
String Spp = "";
for (Map.Entry<String, String> e : m.priorParameters.entrySet())
Spp = Spp + "<" + e.getKey() + "," + e.getValue() + "> ";
Log.i(TAG, "Prior parameters are " + Spp);
}
}
|