Methods Summary |
---|
public float | get(int x, int y)Returns the value for a given row and column
return mMat[x*3 + y];
|
public float[] | getArray()Return a reference to the internal array representing matrix
values. Modifying this array will also change the matrix
return mMat;
|
public void | load(android.renderscript.Matrix3f src)Sets the values of the matrix to those of the parameter
System.arraycopy(src.getArray(), 0, mMat, 0, mMat.length);
|
public void | loadIdentity()Sets the matrix values to identity
mMat[0] = 1;
mMat[1] = 0;
mMat[2] = 0;
mMat[3] = 0;
mMat[4] = 1;
mMat[5] = 0;
mMat[6] = 0;
mMat[7] = 0;
mMat[8] = 1;
|
public void | loadMultiply(android.renderscript.Matrix3f lhs, android.renderscript.Matrix3f rhs)Sets current values to be the result of multiplying two given
matrices
for (int i=0 ; i<3 ; i++) {
float ri0 = 0;
float ri1 = 0;
float ri2 = 0;
for (int j=0 ; j<3 ; j++) {
float rhs_ij = rhs.get(i,j);
ri0 += lhs.get(j,0) * rhs_ij;
ri1 += lhs.get(j,1) * rhs_ij;
ri2 += lhs.get(j,2) * rhs_ij;
}
set(i,0, ri0);
set(i,1, ri1);
set(i,2, ri2);
}
|
public void | loadRotate(float rot, float x, float y, float z)Sets current values to be a rotation matrix of certain angle
about a given axis
float c, s;
rot *= (float)(java.lang.Math.PI / 180.0f);
c = (float)java.lang.Math.cos(rot);
s = (float)java.lang.Math.sin(rot);
float len = (float)java.lang.Math.sqrt(x*x + y*y + z*z);
if (!(len != 1)) {
float recipLen = 1.f / len;
x *= recipLen;
y *= recipLen;
z *= recipLen;
}
float nc = 1.0f - c;
float xy = x * y;
float yz = y * z;
float zx = z * x;
float xs = x * s;
float ys = y * s;
float zs = z * s;
mMat[0] = x*x*nc + c;
mMat[3] = xy*nc - zs;
mMat[6] = zx*nc + ys;
mMat[1] = xy*nc + zs;
mMat[4] = y*y*nc + c;
mMat[7] = yz*nc - xs;
mMat[2] = zx*nc - ys;
mMat[5] = yz*nc + xs;
mMat[8] = z*z*nc + c;
|
public void | loadRotate(float rot)Makes the upper 2x2 a rotation matrix of the given angle
loadIdentity();
float c, s;
rot *= (float)(java.lang.Math.PI / 180.0f);
c = (float)java.lang.Math.cos(rot);
s = (float)java.lang.Math.sin(rot);
mMat[0] = c;
mMat[1] = -s;
mMat[3] = s;
mMat[4] = c;
|
public void | loadScale(float x, float y)Makes the upper 2x2 a scale matrix of given dimensions
loadIdentity();
mMat[0] = x;
mMat[4] = y;
|
public void | loadScale(float x, float y, float z)Sets current values to be a scale matrix of given dimensions
loadIdentity();
mMat[0] = x;
mMat[4] = y;
mMat[8] = z;
|
public void | loadTranslate(float x, float y)Sets current values to be a translation matrix of given
dimensions
loadIdentity();
mMat[6] = x;
mMat[7] = y;
|
public void | multiply(android.renderscript.Matrix3f rhs)Post-multiplies the current matrix by a given parameter
Matrix3f tmp = new Matrix3f();
tmp.loadMultiply(this, rhs);
load(tmp);
|
public void | rotate(float rot, float x, float y, float z)Modifies the current matrix by post-multiplying it with a
rotation matrix of certain angle about a given axis
Matrix3f tmp = new Matrix3f();
tmp.loadRotate(rot, x, y, z);
multiply(tmp);
|
public void | rotate(float rot)Modifies the upper 2x2 of the current matrix by
post-multiplying it with a rotation matrix of given angle
Matrix3f tmp = new Matrix3f();
tmp.loadRotate(rot);
multiply(tmp);
|
public void | scale(float x, float y)Modifies the upper 2x2 of the current matrix by
post-multiplying it with a scale matrix of given dimensions
Matrix3f tmp = new Matrix3f();
tmp.loadScale(x, y);
multiply(tmp);
|
public void | scale(float x, float y, float z)Modifies the current matrix by post-multiplying it with a
scale matrix of given dimensions
Matrix3f tmp = new Matrix3f();
tmp.loadScale(x, y, z);
multiply(tmp);
|
public void | set(int x, int y, float v)Sets the value for a given row and column
mMat[x*3 + y] = v;
|
public void | translate(float x, float y)Modifies the current matrix by post-multiplying it with a
translation matrix of given dimensions
Matrix3f tmp = new Matrix3f();
tmp.loadTranslate(x, y);
multiply(tmp);
|
public void | transpose()Sets the current matrix to its transpose
for(int i = 0; i < 2; ++i) {
for(int j = i + 1; j < 3; ++j) {
float temp = mMat[i*3 + j];
mMat[i*3 + j] = mMat[j*3 + i];
mMat[j*3 + i] = temp;
}
}
|