SHA256Digestpublic class SHA256Digest extends org.bouncycastle.crypto.digests.GeneralDigest FIPS 180-2 implementation of SHA-256.
block word digest
SHA-1 512 32 160
SHA-256 512 32 256
SHA-384 1024 64 384
SHA-512 1024 64 512
|
Fields Summary |
---|
private static final int | DIGEST_LENGTH | private int | H1 | private int | H2 | private int | H3 | private int | H4 | private int | H5 | private int | H6 | private int | H7 | private int | H8 | private int[] | X | private int | xOff | static final int[] | K |
Constructors Summary |
---|
public SHA256Digest()Standard constructor
reset();
| public SHA256Digest(SHA256Digest t)Copy constructor. This will copy the state of the provided
message digest.
super(t);
H1 = t.H1;
H2 = t.H2;
H3 = t.H3;
H4 = t.H4;
H5 = t.H5;
H6 = t.H6;
H7 = t.H7;
H8 = t.H8;
System.arraycopy(t.X, 0, X, 0, t.X.length);
xOff = t.xOff;
|
Methods Summary |
---|
private int | Ch(int x, int y, int z)
return (x & y) ^ ((~x) & z);
| private int | Maj(int x, int y, int z)
return (x & y) ^ (x & z) ^ (y & z);
| private int | Sum0(int x)
return ((x >>> 2) | (x << 30)) ^ ((x >>> 13) | (x << 19)) ^ ((x >>> 22) | (x << 10));
| private int | Sum1(int x)
return ((x >>> 6) | (x << 26)) ^ ((x >>> 11) | (x << 21)) ^ ((x >>> 25) | (x << 7));
| private int | Theta0(int x)
return ((x >>> 7) | (x << 25)) ^ ((x >>> 18) | (x << 14)) ^ (x >>> 3);
| private int | Theta1(int x)
return ((x >>> 17) | (x << 15)) ^ ((x >>> 19) | (x << 13)) ^ (x >>> 10);
| public int | doFinal(byte[] out, int outOff)
finish();
unpackWord(H1, out, outOff);
unpackWord(H2, out, outOff + 4);
unpackWord(H3, out, outOff + 8);
unpackWord(H4, out, outOff + 12);
unpackWord(H5, out, outOff + 16);
unpackWord(H6, out, outOff + 20);
unpackWord(H7, out, outOff + 24);
unpackWord(H8, out, outOff + 28);
reset();
return DIGEST_LENGTH;
| public java.lang.String | getAlgorithmName()
return "SHA-256";
| public int | getDigestSize()
return DIGEST_LENGTH;
| protected void | processBlock()
//
// expand 16 word block into 64 word blocks.
//
for (int t = 16; t <= 63; t++)
{
X[t] = Theta1(X[t - 2]) + X[t - 7] + Theta0(X[t - 15]) + X[t - 16];
}
//
// set up working variables.
//
int a = H1;
int b = H2;
int c = H3;
int d = H4;
int e = H5;
int f = H6;
int g = H7;
int h = H8;
int t = 0;
for(int i = 0; i < 8; i ++)
{
// t = 8 * i
h += Sum1(e) + Ch(e, f, g) + K[t] + X[t++];
d += h;
h += Sum0(a) + Maj(a, b, c);
// t = 8 * i + 1
g += Sum1(d) + Ch(d, e, f) + K[t] + X[t++];
c += g;
g += Sum0(h) + Maj(h, a, b);
// t = 8 * i + 2
f += Sum1(c) + Ch(c, d, e) + K[t] + X[t++];
b += f;
f += Sum0(g) + Maj(g, h, a);
// t = 8 * i + 3
e += Sum1(b) + Ch(b, c, d) + K[t] + X[t++];
a += e;
e += Sum0(f) + Maj(f, g, h);
// t = 8 * i + 4
d += Sum1(a) + Ch(a, b, c) + K[t] + X[t++];
h += d;
d += Sum0(e) + Maj(e, f, g);
// t = 8 * i + 5
c += Sum1(h) + Ch(h, a, b) + K[t] + X[t++];
g += c;
c += Sum0(d) + Maj(d, e, f);
// t = 8 * i + 6
b += Sum1(g) + Ch(g, h, a) + K[t] + X[t++];
f += b;
b += Sum0(c) + Maj(c, d, e);
// t = 8 * i + 7
a += Sum1(f) + Ch(f, g, h) + K[t] + X[t++];
e += a;
a += Sum0(b) + Maj(b, c, d);
}
H1 += a;
H2 += b;
H3 += c;
H4 += d;
H5 += e;
H6 += f;
H7 += g;
H8 += h;
//
// reset the offset and clean out the word buffer.
//
xOff = 0;
for (int i = 0; i < 16; i++)
{
X[i] = 0;
}
| protected void | processLength(long bitLength)
if (xOff > 14)
{
processBlock();
}
X[14] = (int)(bitLength >>> 32);
X[15] = (int)(bitLength & 0xffffffff);
| protected void | processWord(byte[] in, int inOff)
X[xOff++] = ((in[inOff] & 0xff) << 24) | ((in[inOff + 1] & 0xff) << 16)
| ((in[inOff + 2] & 0xff) << 8) | ((in[inOff + 3] & 0xff));
if (xOff == 16)
{
processBlock();
}
| public void | reset()reset the chaining variables
super.reset();
/* SHA-256 initial hash value
* The first 32 bits of the fractional parts of the square roots
* of the first eight prime numbers
*/
H1 = 0x6a09e667;
H2 = 0xbb67ae85;
H3 = 0x3c6ef372;
H4 = 0xa54ff53a;
H5 = 0x510e527f;
H6 = 0x9b05688c;
H7 = 0x1f83d9ab;
H8 = 0x5be0cd19;
xOff = 0;
for (int i = 0; i != X.length; i++)
{
X[i] = 0;
}
| private void | unpackWord(int word, byte[] out, int outOff)
out[outOff] = (byte)(word >>> 24);
out[outOff + 1] = (byte)(word >>> 16);
out[outOff + 2] = (byte)(word >>> 8);
out[outOff + 3] = (byte)word;
|
|