/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.bordeaux.learning;
import android.util.Log;
import java.io.Serializable;
import java.util.List;
import java.util.Arrays;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Map;
/**
* Stochastic Linear Ranker, learns how to rank a sample. The learned rank score
* can be used to compare samples.
* This java class wraps the native StochasticLinearRanker class.
* To update the ranker, call updateClassifier with two samples, with the first
* one having higher rank than the second one.
* To get the rank score of the sample call scoreSample.
* TODO: adding more interfaces for changing the learning parameters
*/
public class StochasticLinearRanker {
String TAG = "StochasticLinearRanker";
public static int VAR_NUM = 14;
static public class Model implements Serializable {
public HashMap<String, Float> weights = new HashMap<String, Float>();
public float weightNormalizer = 1;
public HashMap<String, String> parameters = new HashMap<String, String>();
}
/**
* Initializing a ranker
*/
public StochasticLinearRanker() {
mNativeClassifier = initNativeClassifier();
}
/**
* Reset the ranker
*/
public void resetRanker(){
deleteNativeClassifier(mNativeClassifier);
mNativeClassifier = initNativeClassifier();
}
/**
* Train the ranker with a pair of samples. A sample, a pair of arrays of
* keys and values. The first sample should have higher rank than the second
* one.
*/
public boolean updateClassifier(String[] keys_positive,
float[] values_positive,
String[] keys_negative,
float[] values_negative) {
return nativeUpdateClassifier(keys_positive, values_positive,
keys_negative, values_negative,
mNativeClassifier);
}
/**
* Get the rank score of the sample, a sample is a list of key, value pairs.
*/
public float scoreSample(String[] keys, float[] values) {
return nativeScoreSample(keys, values, mNativeClassifier);
}
/**
* Get the current model and parameters of ranker
*/
public Model getUModel(){
Model slrModel = new Model();
int len = nativeGetLengthClassifier(mNativeClassifier);
String[] wKeys = new String[len];
float[] wValues = new float[len];
float wNormalizer = 1;
nativeGetWeightClassifier(wKeys, wValues, wNormalizer, mNativeClassifier);
slrModel.weightNormalizer = wNormalizer;
for (int i=0; i< wKeys.length ; i++)
slrModel.weights.put(wKeys[i], wValues[i]);
String[] paramKeys = new String[VAR_NUM];
String[] paramValues = new String[VAR_NUM];
nativeGetParameterClassifier(paramKeys, paramValues, mNativeClassifier);
for (int i=0; i< paramKeys.length ; i++)
slrModel.parameters.put(paramKeys[i], paramValues[i]);
return slrModel;
}
/**
* load the given model and parameters to the ranker
*/
public boolean loadModel(Model model) {
String[] wKeys = new String[model.weights.size()];
float[] wValues = new float[model.weights.size()];
int i = 0 ;
for (Map.Entry<String, Float> e : model.weights.entrySet()){
wKeys[i] = e.getKey();
wValues[i] = e.getValue();
i++;
}
boolean res = setModelWeights(wKeys, wValues, model.weightNormalizer);
if (!res)
return false;
for (Map.Entry<String, String> e : model.parameters.entrySet()){
res = setModelParameter(e.getKey(), e.getValue());
if (!res)
return false;
}
return res;
}
public boolean setModelWeights(String[] keys, float [] values, float normalizer){
return nativeSetWeightClassifier(keys, values, normalizer, mNativeClassifier);
}
public boolean setModelParameter(String key, String value){
boolean res = nativeSetParameterClassifier(key, value, mNativeClassifier);
return res;
}
/**
* Print a model for debugging
*/
public void print(Model model){
String Sw = "";
String Sp = "";
for (Map.Entry<String, Float> e : model.weights.entrySet())
Sw = Sw + "<" + e.getKey() + "," + e.getValue() + "> ";
for (Map.Entry<String, String> e : model.parameters.entrySet())
Sp = Sp + "<" + e.getKey() + "," + e.getValue() + "> ";
Log.i(TAG, "Weights are " + Sw);
Log.i(TAG, "Normalizer is " + model.weightNormalizer);
Log.i(TAG, "Parameters are " + Sp);
}
@Override
protected void finalize() throws Throwable {
deleteNativeClassifier(mNativeClassifier);
}
static {
System.loadLibrary("bordeaux");
}
private long mNativeClassifier;
/*
* The following methods are the java stubs for the jni implementations.
*/
private native long initNativeClassifier();
private native void deleteNativeClassifier(long classifierPtr);
private native boolean nativeUpdateClassifier(
String[] keys_positive,
float[] values_positive,
String[] keys_negative,
float[] values_negative,
long classifierPtr);
private native float nativeScoreSample(String[] keys, float[] values, long classifierPtr);
private native void nativeGetWeightClassifier(String [] keys, float[] values, float normalizer,
long classifierPtr);
private native void nativeGetParameterClassifier(String [] keys, String[] values,
long classifierPtr);
private native int nativeGetLengthClassifier(long classifierPtr);
private native boolean nativeSetWeightClassifier(String [] keys, float[] values,
float normalizer, long classifierPtr);
private native boolean nativeSetParameterClassifier(String key, String value,
long classifierPtr);
}
|