DecimalFormatpublic class DecimalFormat extends NumberFormat A concrete subclass of {@link NumberFormat} that formats decimal numbers. It
has a variety of features designed to make it possible to parse and format
numbers in any locale, including support for Western, Arabic, or Indic
digits. It also supports different flavors of numbers, including integers
("123"), fixed-point numbers ("123.4"), scientific notation ("1.23E4"),
percentages ("12%"), and currency amounts ("$123"). All of these flavors can
be easily localized.
This is an enhanced version of {@code DecimalFormat} that is based on
the standard version in the RI. New or changed functionality is labeled
NEW.
To obtain a {@link NumberFormat} for a specific locale (including the default
locale), call one of {@code NumberFormat}'s factory methods such as
{@code NumberFormat.getInstance}. Do not call the {@code DecimalFormat}
constructors directly, unless you know what you are doing, since the
{@link NumberFormat} factory methods may return subclasses other than
{@code DecimalFormat}. If you need to customize the format object, do
something like this:
NumberFormat f = NumberFormat.getInstance(loc);
if (f instanceof DecimalFormat) {
((DecimalFormat)f).setDecimalSeparatorAlwaysShown(true);
}
Example:
// Print out a number using the localized number, currency,
// and percent format for each locale
Locale[] locales = NumberFormat.getAvailableLocales();
double myNumber = -1234.56;
NumberFormat format;
for (int j = 0; j < 3; ++j) {
System.out.println("FORMAT");
for (int i = 0; i < locales.length; ++i) {
if (locales[i].getCountry().length() == 0) {
// Skip language-only locales
continue;
}
System.out.print(locales[i].getDisplayName());
switch (j) {
case 0:
format = NumberFormat.getInstance(locales[i]);
break;
case 1:
format = NumberFormat.getCurrencyInstance(locales[i]);
break;
default:
format = NumberFormat.getPercentInstance(locales[i]);
break;
}
try {
// Assume format is a DecimalFormat
System.out.print(": "; + ((DecimalFormat)format).toPattern() + " -> "
+ form.format(myNumber));
} catch (Exception e) {
}
try {
System.out.println(" -> " + format.parse(form.format(myNumber)));
} catch (ParseException e) {
}
}
}
Patterns
A {@code DecimalFormat} consists of a pattern and a set of
symbols. The pattern may be set directly using
{@link #applyPattern(String)}, or indirectly using other API methods which
manipulate aspects of the pattern, such as the minimum number of integer
digits. The symbols are stored in a {@link DecimalFormatSymbols} object. When
using the {@link NumberFormat} factory methods, the pattern and symbols are
read from ICU's locale data.
Special Pattern Characters
Many characters in a pattern are taken literally; they are matched during
parsing and are written out unchanged during formatting. On the other hand,
special characters stand for other characters, strings, or classes of
characters. For example, the '#' character is replaced by a localized digit.
Often the replacement character is the same as the pattern character; in the
U.S. locale, the ',' grouping character is replaced by ','. However, the
replacement is still happening, and if the symbols are modified, the grouping
character changes. Some special characters affect the behavior of the
formatter by their presence; for example, if the percent character is seen,
then the value is multiplied by 100 before being displayed.
To insert a special character in a pattern as a literal, that is, without any
special meaning, the character must be quoted. There are some exceptions to
this which are noted below.
The characters listed here are used in non-localized patterns. Localized
patterns use the corresponding characters taken from this formatter's
{@link DecimalFormatSymbols} object instead, and these characters lose their
special status. Two exceptions are the currency sign and quote, which are not
localized.
Symbol |
Location |
Localized? |
Meaning |
{@code 0} |
Number |
Yes |
Digit. |
{@code @} |
Number |
No |
NEW Significant
digit. |
{@code #} |
Number |
Yes |
Digit, leading zeroes are not shown. |
{@code .} |
Number |
Yes |
Decimal separator or monetary decimal separator. |
{@code -} |
Number |
Yes |
Minus sign. |
{@code ,} |
Number |
Yes |
Grouping separator. |
{@code E} |
Number |
Yes |
Separates mantissa and exponent in scientific notation.
Does not need to be quoted in prefix or suffix. |
{@code +} |
Exponent |
Yes |
NEW Prefix
positive exponents with localized plus sign.
Does not need to be quoted in prefix or suffix. |
{@code ;} |
Subpattern boundary |
Yes |
Separates positive and negative subpatterns. |
{@code %} |
Prefix or suffix |
Yes |
Multiply by 100 and show as percentage. |
{@code \u2030} ({@code \u2030}) |
Prefix or suffix |
Yes |
Multiply by 1000 and show as per mille. |
{@code ¤} ({@code \u00A4}) |
Prefix or suffix |
No |
Currency sign, replaced by currency symbol. If doubled, replaced by
international currency symbol. If present in a pattern, the monetary decimal
separator is used instead of the decimal separator. |
{@code '} |
Prefix or suffix |
No |
Used to quote special characters in a prefix or suffix, for example,
{@code "'#'#"} formats 123 to {@code "#123"}. To create a single quote
itself, use two in a row: {@code "# o''clock"}. |
{@code *} |
Prefix or suffix boundary |
Yes |
NEW Pad escape,
precedes pad character. |
A {@code DecimalFormat} pattern contains a postive and negative subpattern,
for example, "#,##0.00;(#,##0.00)". Each subpattern has a prefix, a numeric
part and a suffix. If there is no explicit negative subpattern, the negative
subpattern is the localized minus sign prefixed to the positive subpattern.
That is, "0.00" alone is equivalent to "0.00;-0.00". If there is an explicit
negative subpattern, it serves only to specify the negative prefix and
suffix; the number of digits, minimal digits, and other characteristics are
ignored in the negative subpattern. This means that "#,##0.0#;(#)" produces
precisely the same result as "#,##0.0#;(#,##0.0#)".
The prefixes, suffixes, and various symbols used for infinity, digits,
thousands separators, decimal separators, etc. may be set to arbitrary
values, and they will appear properly during formatting. However, care must
be taken that the symbols and strings do not conflict, or parsing will be
unreliable. For example, either the positive and negative prefixes or the
suffixes must be distinct for {@link #parse} to be able to distinguish
positive from negative values. Another example is that the decimal separator
and thousands separator should be distinct characters, or parsing will be
impossible.
The grouping separator is a character that separates clusters of
integer digits to make large numbers more legible. It is commonly used for
thousands, but in some locales it separates ten-thousands. The grouping
size
is the number of digits between the grouping separators, such as 3 for
"100,000,000" or 4 for "1 0000 0000". There are actually two different
grouping sizes: One used for the least significant integer digits, the
primary grouping size, and one used for all others, the
secondary grouping size. In most locales these are the same, but
sometimes they are different. For example, if the primary grouping interval
is 3, and the secondary is 2, then this corresponds to the pattern
"#,##,##0", and the number 123456789 is formatted as "12,34,56,789". If a
pattern contains multiple grouping separators, the interval between the last
one and the end of the integer defines the primary grouping size, and the
interval between the last two defines the secondary grouping size. All others
are ignored, so "#,##,###,####", "###,###,####" and "##,#,###,####" produce
the same result.
Illegal patterns, such as "#.#.#" or "#.###,###", will cause
{@code DecimalFormat} to throw an {@link IllegalArgumentException} with a
message that describes the problem.
Pattern BNF
pattern := subpattern (';' subpattern)?
subpattern := prefix? number exponent? suffix?
number := (integer ('.' fraction)?) | sigDigits
prefix := '\\u0000'..'\\uFFFD' - specialCharacters
suffix := '\\u0000'..'\\uFFFD' - specialCharacters
integer := '#'* '0'* '0'
fraction := '0'* '#'*
sigDigits := '#'* '@' '@'* '#'*
exponent := 'E' '+'? '0'* '0'
padSpec := '*' padChar
padChar := '\\u0000'..'\\uFFFD' - quote
Notation:
X* 0 or more instances of X
X? 0 or 1 instances of X
X|Y either X or Y
C..D any character from C up to D, inclusive
S-T characters in S, except those in T
The first subpattern is for positive numbers. The second (optional)
subpattern is for negative numbers.
Not indicated in the BNF syntax above:
- The grouping separator ',' can occur inside the integer and sigDigits
elements, between any two pattern characters of that element, as long as the
integer or sigDigits element is not followed by the exponent element.
- NEW Two
grouping intervals are recognized: The one between the decimal point and the
first grouping symbol and the one between the first and second grouping
symbols. These intervals are identical in most locales, but in some locales
they differ. For example, the pattern "#,##,###" formats the number
123456789 as "12,34,56,789".
- NEW The pad
specifier {@code padSpec} may appear before the prefix, after the prefix,
before the suffix, after the suffix or not at all.
Parsing
{@code DecimalFormat} parses all Unicode characters that represent decimal
digits, as defined by {@link Character#digit(int, int)}. In addition,
{@code DecimalFormat} also recognizes as digits the ten consecutive
characters starting with the localized zero digit defined in the
{@link DecimalFormatSymbols} object. During formatting, the
{@link DecimalFormatSymbols}-based digits are written out.
During parsing, grouping separators are ignored.
If {@link #parse(String, ParsePosition)} fails to parse a string, it returns
{@code null} and leaves the parse position unchanged.
Formatting
Formatting is guided by several parameters, all of which can be specified
either using a pattern or using the API. The following description applies to
formats that do not use scientific notation or significant digits.
- If the number of actual integer digits exceeds the
maximum integer digits, then only the least significant digits
are shown. For example, 1997 is formatted as "97" if maximum integer digits
is set to 2.
- If the number of actual integer digits is less than the
minimum integer digits, then leading zeros are added. For
example, 1997 is formatted as "01997" if minimum integer digits is set to 5.
- If the number of actual fraction digits exceeds the maximum
fraction digits,
then half-even rounding is performed to the maximum fraction digits. For
example, 0.125 is formatted as "0.12" if the maximum fraction digits is 2.
- If the number of actual fraction digits is less than the
minimum fraction digits, then trailing zeros are added. For
example, 0.125 is formatted as "0.1250" if the mimimum fraction digits is set
to 4.
- Trailing fractional zeros are not displayed if they occur j
positions after the decimal, where j is less than the maximum
fraction digits. For example, 0.10004 is formatted as "0.1" if the maximum
fraction digits is four or less.
Special Values
{@code NaN} is represented as a single character, typically
{@code \uFFFD}. This character is determined by the
{@link DecimalFormatSymbols} object. This is the only value for which the
prefixes and suffixes are not used.
Infinity is represented as a single character, typically {@code \u221E},
with the positive or negative prefixes and suffixes applied. The infinity
character is determined by the {@link DecimalFormatSymbols} object.
Scientific Notation
Numbers in scientific notation are expressed as the product of a mantissa and
a power of ten, for example, 1234 can be expressed as 1.234 x 103.
The mantissa is typically in the half-open interval [1.0, 10.0) or sometimes
[0.0, 1.0), but it does not need to be. {@code DecimalFormat} supports
arbitrary mantissas. {@code DecimalFormat} can be instructed to use
scientific notation through the API or through the pattern. In a pattern, the
exponent character immediately followed by one or more digit characters
indicates scientific notation. Example: "0.###E0" formats the number 1234 as
"1.234E3".
- The number of digit characters after the exponent character gives the
minimum exponent digit count. There is no maximum. Negative exponents are
formatted using the localized minus sign, not the prefix and
suffix from the pattern. This allows patterns such as "0.###E0 m/s". To
prefix positive exponents with a localized plus sign, specify '+' between the
exponent and the digits: "0.###E+0" will produce formats "1E+1", "1E+0",
"1E-1", etc. (In localized patterns, use the localized plus sign rather than
'+'.)
- The minimum number of integer digits is achieved by adjusting the
exponent. Example: 0.00123 formatted with "00.###E0" yields "12.3E-4". This
only happens if there is no maximum number of integer digits. If there is a
maximum, then the minimum number of integer digits is fixed at one.
- The maximum number of integer digits, if present, specifies the exponent
grouping. The most common use of this is to generate engineering
notation,
in which the exponent is a multiple of three, e.g., "##0.###E0". The number
12345 is formatted using "##0.###E0" as "12.345E3".
- When using scientific notation, the formatter controls the digit counts
using significant digits logic. The maximum number of significant digits
limits the total number of integer and fraction digits that will be shown in
the mantissa; it does not affect parsing. For example, 12345 formatted with
"##0.##E0" is "12.3E3". See the section on significant digits for more
details.
- The number of significant digits shown is determined as follows: If no
significant digits are used in the pattern then the minimum number of
significant digits shown is one, the maximum number of significant digits
shown is the sum of the minimum integer and
maximum fraction digits, and it is unaffected by the maximum
integer digits. If this sum is zero, then all significant digits are shown.
If significant digits are used in the pattern then the number of integer
digits is fixed at one and there is no exponent grouping.
- Exponential patterns may not contain grouping separators.
NEW Significant
Digits
{@code DecimalFormat} has two ways of controlling how many digits are
shown: (a) significant digit counts or (b) integer and fraction digit counts.
Integer and fraction digit counts are described above. When a formatter uses
significant digits counts, the number of integer and fraction digits is not
specified directly, and the formatter settings for these counts are ignored.
Instead, the formatter uses as many integer and fraction digits as required
to display the specified number of significant digits.
Examples:
Pattern |
Minimum significant digits |
Maximum significant digits |
Number |
Output of format() |
{@code @@@}
| 3 |
3 |
12345 |
{@code 12300} |
{@code @@@} |
3 |
3 |
0.12345 |
{@code 0.123} |
{@code @@##} |
2 |
4 |
3.14159 |
{@code 3.142} |
{@code @@##} |
2 |
4 |
1.23004 |
{@code 1.23} |
- Significant digit counts may be expressed using patterns that specify a
minimum and maximum number of significant digits. These are indicated by the
{@code '@'} and {@code '#'} characters. The minimum number of significant
digits is the number of {@code '@'} characters. The maximum number of
significant digits is the number of {@code '@'} characters plus the number of
{@code '#'} characters following on the right. For example, the pattern
{@code "@@@"} indicates exactly 3 significant digits. The pattern
{@code "@##"} indicates from 1 to 3 significant digits. Trailing zero digits
to the right of the decimal separator are suppressed after the minimum number
of significant digits have been shown. For example, the pattern {@code "@##"}
formats the number 0.1203 as {@code "0.12"}.
- If a pattern uses significant digits, it may not contain a decimal
separator, nor the {@code '0'} pattern character. Patterns such as
{@code "@00"} or {@code "@.###"} are disallowed.
- Any number of {@code '#'} characters may be prepended to the left of the
leftmost {@code '@'} character. These have no effect on the minimum and
maximum significant digit counts, but may be used to position grouping
separators. For example, {@code "#,#@#"} indicates a minimum of one
significant digit, a maximum of two significant digits, and a grouping size
of three.
- In order to enable significant digits formatting, use a pattern
containing the {@code '@'} pattern character.
- In order to disable significant digits formatting, use a pattern that
does not contain the {@code '@'} pattern character.
- The number of significant digits has no effect on parsing.
- Significant digits may be used together with exponential notation. Such
patterns are equivalent to a normal exponential pattern with a minimum and
maximum integer digit count of one, a minimum fraction digit count of the
number of '@' characters in the pattern - 1, and a maximum fraction digit
count of the number of '@' and '#' characters in the pattern - 1. For
example, the pattern {@code "@@###E0"} is equivalent to {@code "0.0###E0"}.
- If signficant digits are in use then the integer and fraction digit
counts, as set via the API, are ignored.
NEW Padding
{@code DecimalFormat} supports padding the result of {@code format} to a
specific width. Padding may be specified either through the API or through
the pattern syntax. In a pattern, the pad escape character followed by a
single pad character causes padding to be parsed and formatted. The pad
escape character is '*' in unlocalized patterns. For example,
{@code "$*x#,##0.00"} formats 123 to {@code "$xx123.00"}, and 1234 to
{@code "$1,234.00"}.
- When padding is in effect, the width of the positive subpattern,
including prefix and suffix, determines the format width. For example, in the
pattern {@code "* #0 o''clock"}, the format width is 10.
- The width is counted in 16-bit code units (Java {@code char}s).
- Some parameters which usually do not matter have meaning when padding is
used, because the pattern width is significant with padding. In the pattern "*
##,##,#,##0.##", the format width is 14. The initial characters "##,##," do
not affect the grouping size or maximum integer digits, but they do affect
the format width.
- Padding may be inserted at one of four locations: before the prefix,
after the prefix, before the suffix or after the suffix. If padding is
specified in any other location, {@link #applyPattern} throws an {@link
IllegalArgumentException}. If there is no prefix, before the prefix and after
the prefix are equivalent, likewise for the suffix.
- When specified in a pattern, the 16-bit {@code char} immediately
following the pad escape is the pad character. This may be any character,
including a special pattern character. That is, the pad escape
escapes the following character. If there is no character after
the pad escape, then the pattern is illegal.
Synchronization
{@code DecimalFormat} objects are not synchronized. Multiple threads should
not access one formatter concurrently. |
Fields Summary |
---|
private static final long | serialVersionUID | private transient boolean | parseBigDecimal | private transient DecimalFormatSymbols | symbols | private transient com.ibm.icu4jni.text.DecimalFormat | dform | private transient com.ibm.icu4jni.text.DecimalFormatSymbols | icuSymbols | private static final int | CURRENT_SERIAL_VERTION | private transient int | serialVersionOnStream | private static final Double | NEGATIVE_ZERO_DOUBLE | private static final ObjectStreamField[] | serialPersistentFields |
Constructors Summary |
---|
public DecimalFormat()Constructs a new {@code DecimalFormat} for formatting and parsing numbers
for the default locale.
this(getPattern(Locale.getDefault(), "Number")); //$NON-NLS-1$
| public DecimalFormat(String pattern)Constructs a new {@code DecimalFormat} using the specified non-localized
pattern and the {@code DecimalFormatSymbols} for the default Locale.
this(pattern, new DecimalFormatSymbols());
| public DecimalFormat(String pattern, DecimalFormatSymbols value)Constructs a new {@code DecimalFormat} using the specified non-localized
pattern and {@code DecimalFormatSymbols}.
symbols = (DecimalFormatSymbols) value.clone();
Locale locale = (Locale) this.getInternalField("locale", symbols); //$NON-NLS-1$
icuSymbols = new com.ibm.icu4jni.text.DecimalFormatSymbols(locale);
copySymbols(icuSymbols, symbols);
dform = new com.ibm.icu4jni.text.DecimalFormat(pattern, icuSymbols);
super.setMaximumFractionDigits(dform.getMaximumFractionDigits());
super.setMaximumIntegerDigits(dform.getMaximumIntegerDigits());
super.setMinimumFractionDigits(dform.getMinimumFractionDigits());
super.setMinimumIntegerDigits(dform.getMinimumIntegerDigits());
|
Methods Summary |
---|
public void | applyLocalizedPattern(java.lang.String pattern)Changes the pattern of this decimal format to the specified pattern which
uses localized pattern characters.
dform.applyLocalizedPattern(pattern);
| public void | applyPattern(java.lang.String pattern)Changes the pattern of this decimal format to the specified pattern which
uses non-localized pattern characters.
dform.applyPattern(pattern);
| public java.lang.Object | clone()Returns a new instance of {@code DecimalFormat} with the same pattern and
properties as this decimal format.
DecimalFormat clone = (DecimalFormat) super.clone();
clone.dform = (com.ibm.icu4jni.text.DecimalFormat) dform.clone();
clone.symbols = (DecimalFormatSymbols) symbols.clone();
return clone;
| private void | copySymbols(com.ibm.icu4jni.text.DecimalFormatSymbols icu, java.text.DecimalFormatSymbols dfs)
// BEGIN android-changed
icu.setCurrency(Currency.getInstance(dfs.getCurrency()
.getCurrencyCode()));
// END android-changed
icu.setCurrencySymbol(dfs.getCurrencySymbol());
icu.setDecimalSeparator(dfs.getDecimalSeparator());
icu.setDigit(dfs.getDigit());
icu.setGroupingSeparator(dfs.getGroupingSeparator());
icu.setInfinity(dfs.getInfinity());
icu
.setInternationalCurrencySymbol(dfs
.getInternationalCurrencySymbol());
icu.setMinusSign(dfs.getMinusSign());
icu.setMonetaryDecimalSeparator(dfs.getMonetaryDecimalSeparator());
icu.setNaN(dfs.getNaN());
icu.setPatternSeparator(dfs.getPatternSeparator());
icu.setPercent(dfs.getPercent());
icu.setPerMill(dfs.getPerMill());
icu.setZeroDigit(dfs.getZeroDigit());
| public boolean | equals(java.lang.Object object)Compares the specified object to this decimal format and indicates if
they are equal. In order to be equal, {@code object} must be an instance
of {@code DecimalFormat} with the same pattern and properties.
if (this == object) {
return true;
}
if (!(object instanceof DecimalFormat)) {
return false;
}
DecimalFormat format = (DecimalFormat) object;
return (this.dform == null ? format.dform == null : this.dform
.equals(format.dform));
| public java.lang.StringBuffer | format(long value, java.lang.StringBuffer buffer, java.text.FieldPosition position)Formats the specified long value as a string using the pattern of this
decimal format and appends the string to the specified string buffer.
If the {@code field} member of {@code position} contains a value
specifying a format field, then its {@code beginIndex} and
{@code endIndex} members will be updated with the position of the first
occurrence of this field in the formatted text.
return dform.format(value, buffer, position);
| public final java.lang.StringBuffer | format(java.lang.Object number, java.lang.StringBuffer toAppendTo, java.text.FieldPosition pos)Formats the specified object as a string using the pattern of this
decimal format and appends the string to the specified string buffer.
If the {@code field} member of {@code position} contains a value
specifying a format field, then its {@code beginIndex} and
{@code endIndex} members will be updated with the position of the first
occurrence of this field in the formatted text.
if (!(number instanceof Number)) {
throw new IllegalArgumentException();
}
if (toAppendTo == null || pos == null) {
throw new NullPointerException();
}
if (number instanceof BigInteger || number instanceof BigDecimal) {
return dform.format(number, toAppendTo, pos);
}
return super.format(number, toAppendTo, pos);
| public java.lang.StringBuffer | format(double value, java.lang.StringBuffer buffer, java.text.FieldPosition position)Formats the specified double value as a string using the pattern of this
decimal format and appends the string to the specified string buffer.
If the {@code field} member of {@code position} contains a value
specifying a format field, then its {@code beginIndex} and
{@code endIndex} members will be updated with the position of the first
occurrence of this field in the formatted text.
return dform.format(value, buffer, position);
| public java.text.AttributedCharacterIterator | formatToCharacterIterator(java.lang.Object object)Formats the specified object using the rules of this decimal format and
returns an {@code AttributedCharacterIterator} with the formatted number
and attributes.
if (object == null) {
throw new NullPointerException();
}
return dform.formatToCharacterIterator(object);
| public java.util.Currency | getCurrency()Returns the currency used by this decimal format.
final Currency cur = dform.getCurrency();
final String code = (cur == null) ? "XXX" : cur.getCurrencyCode(); //$NON-NLS-1$
return Currency.getInstance(code);
| public java.text.DecimalFormatSymbols | getDecimalFormatSymbols()Returns the {@code DecimalFormatSymbols} used by this decimal format.
return (DecimalFormatSymbols) symbols.clone();
| public int | getGroupingSize()Returns the number of digits grouped together by the grouping separator.
This only allows to get the primary grouping size. There is no API to get
the secondary grouping size.
return dform.getGroupingSize();
| private java.lang.Object | getInternalField(java.lang.String fieldName, java.lang.Object target)
Object value = AccessController
.doPrivileged(new PrivilegedAction<Object>() {
public Object run() {
Object result = null;
java.lang.reflect.Field field = null;
try {
field = target.getClass().getDeclaredField(
fieldName);
field.setAccessible(true);
result = field.get(target);
} catch (Exception e1) {
return null;
}
return result;
}
});
return value;
| public int | getMultiplier()Returns the multiplier which is applied to the number before formatting
or after parsing.
return dform.getMultiplier();
| public java.lang.String | getNegativePrefix()Returns the prefix which is formatted or parsed before a negative number.
return dform.getNegativePrefix();
| public java.lang.String | getNegativeSuffix()Returns the suffix which is formatted or parsed after a negative number.
return dform.getNegativeSuffix();
| public java.lang.String | getPositivePrefix()Returns the prefix which is formatted or parsed before a positive number.
return dform.getPositivePrefix();
| public java.lang.String | getPositiveSuffix()Returns the suffix which is formatted or parsed after a positive number.
return dform.getPositiveSuffix();
| public int | hashCode()
return dform.hashCode();
| public boolean | isDecimalSeparatorAlwaysShown()Indicates whether the decimal separator is shown when there are no
fractional digits.
return dform.isDecimalSeparatorAlwaysShown();
| public boolean | isGroupingUsed()Indicates whether grouping will be used in this format.
return dform.isGroupingUsed();
| public boolean | isParseBigDecimal()This value indicates whether the return object of the parse operation is
of type {@code BigDecimal}. This value defaults to {@code false}.
return this.parseBigDecimal;
| public boolean | isParseIntegerOnly()Indicates whether parsing with this decimal format will only
return numbers of type {@code java.lang.Integer}.
return dform.isParseIntegerOnly();
| public java.lang.Number | parse(java.lang.String string, java.text.ParsePosition position)Parses a {@code Long} or {@code Double} from the specified string
starting at the index specified by {@code position}. If the string is
successfully parsed then the index of the {@code ParsePosition} is
updated to the index following the parsed text. On error, the index is
unchanged and the error index of {@code ParsePosition} is set to the
index where the error occurred.
Number number = dform.parse(string, position);
if (null == number) {
return null;
}
// BEGIN android-removed
// if (this.isParseBigDecimal()) {
// if (number instanceof Long) {
// return new BigDecimal(number.longValue());
// }
// if ((number instanceof Double) && !((Double) number).isInfinite()
// && !((Double) number).isNaN()) {
//
// return new BigDecimal(number.doubleValue());
// }
// if (number instanceof BigInteger) {
// return new BigDecimal(number.doubleValue());
// }
// if (number instanceof com.ibm.icu.math.BigDecimal) {
// return new BigDecimal(number.toString());
// }
// return number;
// }
// if ((number instanceof com.ibm.icu.math.BigDecimal)
// || (number instanceof BigInteger)) {
// return new Double(number.doubleValue());
// }
// END android-removed
// BEGIN android-added
if (this.isParseBigDecimal()) {
if (number instanceof Long) {
return new BigDecimal(number.longValue());
}
if ((number instanceof Double) && !((Double) number).isInfinite()
&& !((Double) number).isNaN()) {
return new BigDecimal(number.toString());
}
if (number instanceof BigInteger) {
return new BigDecimal(number.toString());
}
return number;
}
if ((number instanceof BigDecimal) || (number instanceof BigInteger)) {
return new Double(number.doubleValue());
}
// END android-added
if (this.isParseIntegerOnly() && number.equals(NEGATIVE_ZERO_DOUBLE)) {
return new Long(0);
}
return number;
| private void | readObject(java.io.ObjectInputStream stream)Reads serialized fields following serialized forms specified by Java
specification.
ObjectInputStream.GetField fields = stream.readFields();
String positivePrefix = (String) fields.get("positivePrefix", ""); //$NON-NLS-1$ //$NON-NLS-2$
String positiveSuffix = (String) fields.get("positiveSuffix", ""); //$NON-NLS-1$ //$NON-NLS-2$
String negativePrefix = (String) fields.get("negativePrefix", "-"); //$NON-NLS-1$ //$NON-NLS-2$
String negativeSuffix = (String) fields.get("negativeSuffix", ""); //$NON-NLS-1$ //$NON-NLS-2$
String posPrefixPattern = (String) fields.get("posPrefixPattern", ""); //$NON-NLS-1$ //$NON-NLS-2$
String posSuffixPattern = (String) fields.get("posSuffixPattern", ""); //$NON-NLS-1$ //$NON-NLS-2$
String negPrefixPattern = (String) fields.get("negPrefixPattern", "-"); //$NON-NLS-1$ //$NON-NLS-2$
String negSuffixPattern = (String) fields.get("negSuffixPattern", ""); //$NON-NLS-1$ //$NON-NLS-2$
int multiplier = fields.get("multiplier", 1); //$NON-NLS-1$
byte groupingSize = fields.get("groupingSize", (byte) 3); //$NON-NLS-1$
// BEGIN android-added
boolean groupingUsed = fields.get("groupingUsed", true); //$NON-NLS-1$
// END android-added
boolean decimalSeparatorAlwaysShown = fields.get(
"decimalSeparatorAlwaysShown", false); //$NON-NLS-1$
boolean parseBigDecimal = fields.get("parseBigDecimal", false); //$NON-NLS-1$
symbols = (DecimalFormatSymbols) fields.get("symbols", null); //$NON-NLS-1$
boolean useExponentialNotation = fields.get("useExponentialNotation", //$NON-NLS-1$
false);
byte minExponentDigits = fields.get("minExponentDigits", (byte) 0); //$NON-NLS-1$
int maximumIntegerDigits = fields.get("maximumIntegerDigits", 309); //$NON-NLS-1$
int minimumIntegerDigits = fields.get("minimumIntegerDigits", 309); //$NON-NLS-1$
int maximumFractionDigits = fields.get("maximumFractionDigits", 340); //$NON-NLS-1$
int minimumFractionDigits = fields.get("minimumFractionDigits", 340); //$NON-NLS-1$
this.serialVersionOnStream = fields.get("serialVersionOnStream", 0); //$NON-NLS-1$
Locale locale = (Locale) getInternalField("locale", symbols); //$NON-NLS-1$
// BEGIN android-removed
// dform = new com.ibm.icu4jni.text.DecimalFormat("", //$NON-NLS-1$
// new com.ibm.icu4jni.text.DecimalFormatSymbols(locale));
// END android-removed
// BEGIN android-added
icuSymbols = new com.ibm.icu4jni.text.DecimalFormatSymbols(locale);
copySymbols(icuSymbols, symbols);
dform = new com.ibm.icu4jni.text.DecimalFormat("", //$NON-NLS-1$
icuSymbols);
// END android-added
setInternalField("useExponentialNotation", dform, new Boolean( //$NON-NLS-1$
useExponentialNotation));
setInternalField("minExponentDigits", dform, //$NON-NLS-1$
new Byte(minExponentDigits));
dform.setPositivePrefix(positivePrefix);
dform.setPositiveSuffix(positiveSuffix);
dform.setNegativePrefix(negativePrefix);
dform.setNegativeSuffix(negativeSuffix);
setInternalField("posPrefixPattern", dform, posPrefixPattern); //$NON-NLS-1$
setInternalField("posSuffixPattern", dform, posSuffixPattern); //$NON-NLS-1$
setInternalField("negPrefixPattern", dform, negPrefixPattern); //$NON-NLS-1$
setInternalField("negSuffixPattern", dform, negSuffixPattern); //$NON-NLS-1$
dform.setMultiplier(multiplier);
dform.setGroupingSize(groupingSize);
// BEGIN android-added
dform.setGroupingUsed(groupingUsed);
// END android-added
dform.setDecimalSeparatorAlwaysShown(decimalSeparatorAlwaysShown);
dform.setMinimumIntegerDigits(minimumIntegerDigits);
dform.setMaximumIntegerDigits(maximumIntegerDigits);
dform.setMinimumFractionDigits(minimumFractionDigits);
dform.setMaximumFractionDigits(maximumFractionDigits);
this.setParseBigDecimal(parseBigDecimal);
if (super.getMaximumIntegerDigits() > Integer.MAX_VALUE
|| super.getMinimumIntegerDigits() > Integer.MAX_VALUE
|| super.getMaximumFractionDigits() > Integer.MAX_VALUE
|| super.getMinimumIntegerDigits() > Integer.MAX_VALUE) {
// text.09=The deserialized date is invalid
throw new InvalidObjectException(Messages.getString("text.09")); //$NON-NLS-1$
}
if (serialVersionOnStream < 3) {
setMaximumIntegerDigits(super.getMinimumIntegerDigits());
setMinimumIntegerDigits(super.getMinimumIntegerDigits());
setMaximumFractionDigits(super.getMaximumFractionDigits());
setMinimumFractionDigits(super.getMinimumFractionDigits());
}
if (serialVersionOnStream < 1) {
this.setInternalField("useExponentialNotation", dform, //$NON-NLS-1$
Boolean.FALSE);
}
serialVersionOnStream = 3;
| public void | setCurrency(java.util.Currency currency)Sets the currency used by this decimal format. The min and max fraction
digits remain the same.
// BEGIN android-changed
dform.setCurrency(Currency.getInstance(currency
.getCurrencyCode()));
// END android-changed
symbols.setCurrency(currency);
| public void | setDecimalFormatSymbols(java.text.DecimalFormatSymbols value)Sets the {@code DecimalFormatSymbols} used by this decimal format.
if (value != null) {
symbols = (DecimalFormatSymbols) value.clone();
icuSymbols = dform.getDecimalFormatSymbols();
copySymbols(icuSymbols, symbols);
dform.setDecimalFormatSymbols(icuSymbols);
}
| public void | setDecimalSeparatorAlwaysShown(boolean value)Sets whether the decimal separator is shown when there are no fractional
digits.
dform.setDecimalSeparatorAlwaysShown(value);
| public void | setGroupingSize(int value)Sets the number of digits grouped together by the grouping separator.
This only allows to set the primary grouping size; the secondary grouping
size can only be set with a pattern.
dform.setGroupingSize(value);
| public void | setGroupingUsed(boolean value)Sets whether or not grouping will be used in this format. Grouping
affects both parsing and formatting.
dform.setGroupingUsed(value);
| private void | setInternalField(java.lang.String fieldName, java.lang.Object target, java.lang.Object value)
AccessController
.doPrivileged(new PrivilegedAction<java.lang.reflect.Field>() {
public java.lang.reflect.Field run() {
java.lang.reflect.Field field = null;
try {
field = target.getClass().getDeclaredField(
fieldName);
field.setAccessible(true);
field.set(target, value);
} catch (Exception e) {
return null;
}
return field;
}
});
| public void | setMaximumFractionDigits(int value)Sets the maximum number of fraction digits that are printed when
formatting numbers other than {@code BigDecimal} and {@code BigInteger}.
If the maximum is less than the number of fraction digits, the least
significant digits are truncated. If the value passed is bigger than 340
then it is replaced by 340. If the value passed is negative then it is
replaced by 0.
super.setMaximumFractionDigits(value);
dform.setMaximumFractionDigits(value);
| public void | setMaximumIntegerDigits(int value)Sets the maximum number of integer digits that are printed when
formatting numbers other than {@code BigDecimal} and {@code BigInteger}.
If the maximum is less than the number of integer digits, the most
significant digits are truncated. If the value passed is bigger than 309
then it is replaced by 309. If the value passed is negative then it is
replaced by 0.
super.setMaximumIntegerDigits(value);
dform.setMaximumIntegerDigits(value);
| public void | setMinimumFractionDigits(int value)Sets the minimum number of fraction digits that are printed when
formatting numbers other than {@code BigDecimal} and {@code BigInteger}.
If the value passed is bigger than 340 then it is replaced by 340. If the
value passed is negative then it is replaced by 0.
super.setMinimumFractionDigits(value);
dform.setMinimumFractionDigits(value);
| public void | setMinimumIntegerDigits(int value)Sets the minimum number of integer digits that are printed when
formatting numbers other than {@code BigDecimal} and {@code BigInteger}.
If the value passed is bigger than 309 then it is replaced by 309. If the
value passed is negative then it is replaced by 0.
super.setMinimumIntegerDigits(value);
dform.setMinimumIntegerDigits(value);
| public void | setMultiplier(int value)Sets the multiplier which is applied to the number before formatting or
after parsing.
dform.setMultiplier(value);
| public void | setNegativePrefix(java.lang.String value)Sets the prefix which is formatted or parsed before a negative number.
dform.setNegativePrefix(value);
| public void | setNegativeSuffix(java.lang.String value)Sets the suffix which is formatted or parsed after a negative number.
dform.setNegativeSuffix(value);
| public void | setParseBigDecimal(boolean newValue)Sets the behaviour of the parse method. If set to {@code true} then all
the returned objects will be of type {@code BigDecimal}.
this.parseBigDecimal = newValue;
| public void | setParseIntegerOnly(boolean value)Sets the flag that indicates whether numbers will be parsed as integers.
When this decimal format is used for parsing and this value is set to
{@code true}, then the resulting numbers will be of type
{@code java.lang.Integer}. Special cases are NaN, positive and negative
infinity, which are still returned as {@code java.lang.Double}.
dform.setParseIntegerOnly(value);
| public void | setPositivePrefix(java.lang.String value)Sets the prefix which is formatted or parsed before a positive number.
dform.setPositivePrefix(value);
| public void | setPositiveSuffix(java.lang.String value)Sets the suffix which is formatted or parsed after a positive number.
dform.setPositiveSuffix(value);
| public java.lang.String | toLocalizedPattern()Returns the pattern of this decimal format using localized pattern
characters.
return dform.toLocalizedPattern();
| public java.lang.String | toPattern()Returns the pattern of this decimal format using non-localized pattern
characters.
return dform.toPattern();
| private void | writeObject(java.io.ObjectOutputStream stream)Writes serialized fields following serialized forms specified by Java
specification. //$NON-NLS-1$
ObjectOutputStream.PutField fields = stream.putFields();
fields.put("positivePrefix", dform.getPositivePrefix()); //$NON-NLS-1$
fields.put("positiveSuffix", dform.getPositiveSuffix()); //$NON-NLS-1$
fields.put("negativePrefix", dform.getNegativePrefix()); //$NON-NLS-1$
fields.put("negativeSuffix", dform.getNegativeSuffix()); //$NON-NLS-1$
String posPrefixPattern = (String) this.getInternalField(
"posPrefixPattern", dform); //$NON-NLS-1$
fields.put("posPrefixPattern", posPrefixPattern); //$NON-NLS-1$
String posSuffixPattern = (String) this.getInternalField(
"posSuffixPattern", dform); //$NON-NLS-1$
fields.put("posSuffixPattern", posSuffixPattern); //$NON-NLS-1$
String negPrefixPattern = (String) this.getInternalField(
"negPrefixPattern", dform); //$NON-NLS-1$
fields.put("negPrefixPattern", negPrefixPattern); //$NON-NLS-1$
String negSuffixPattern = (String) this.getInternalField(
"negSuffixPattern", dform); //$NON-NLS-1$
fields.put("negSuffixPattern", negSuffixPattern); //$NON-NLS-1$
fields.put("multiplier", dform.getMultiplier()); //$NON-NLS-1$
fields.put("groupingSize", (byte) dform.getGroupingSize()); //$NON-NLS-1$
// BEGIN android-added
fields.put("groupingUsed", dform.isGroupingUsed()); //$NON-NLS-1$
// END android-added
fields.put("decimalSeparatorAlwaysShown", dform //$NON-NLS-1$
.isDecimalSeparatorAlwaysShown());
fields.put("parseBigDecimal", parseBigDecimal); //$NON-NLS-1$
fields.put("symbols", symbols); //$NON-NLS-1$
boolean useExponentialNotation = ((Boolean) this.getInternalField(
"useExponentialNotation", dform)).booleanValue(); //$NON-NLS-1$
fields.put("useExponentialNotation", useExponentialNotation); //$NON-NLS-1$
byte minExponentDigits = ((Byte) this.getInternalField(
"minExponentDigits", dform)).byteValue(); //$NON-NLS-1$
fields.put("minExponentDigits", minExponentDigits); //$NON-NLS-1$
fields.put("maximumIntegerDigits", dform.getMaximumIntegerDigits()); //$NON-NLS-1$
fields.put("minimumIntegerDigits", dform.getMinimumIntegerDigits()); //$NON-NLS-1$
fields.put("maximumFractionDigits", dform.getMaximumFractionDigits()); //$NON-NLS-1$
fields.put("minimumFractionDigits", dform.getMinimumFractionDigits()); //$NON-NLS-1$
fields.put("serialVersionOnStream", CURRENT_SERIAL_VERTION); //$NON-NLS-1$
stream.writeFields();
|
|