FileDocCategorySizeDatePackage
DecimalFormat.javaAPI DocAndroid 1.5 API64420Wed May 06 22:41:06 BST 2009java.text

DecimalFormat

public class DecimalFormat extends NumberFormat
A concrete subclass of {@link NumberFormat} that formats decimal numbers. It has a variety of features designed to make it possible to parse and format numbers in any locale, including support for Western, Arabic, or Indic digits. It also supports different flavors of numbers, including integers ("123"), fixed-point numbers ("123.4"), scientific notation ("1.23E4"), percentages ("12%"), and currency amounts ("$123"). All of these flavors can be easily localized.

This is an enhanced version of {@code DecimalFormat} that is based on the standard version in the RI. New or changed functionality is labeled NEW.

To obtain a {@link NumberFormat} for a specific locale (including the default locale), call one of {@code NumberFormat}'s factory methods such as {@code NumberFormat.getInstance}. Do not call the {@code DecimalFormat} constructors directly, unless you know what you are doing, since the {@link NumberFormat} factory methods may return subclasses other than {@code DecimalFormat}. If you need to customize the format object, do something like this:

NumberFormat f = NumberFormat.getInstance(loc);
if (f instanceof DecimalFormat) {
((DecimalFormat)f).setDecimalSeparatorAlwaysShown(true);
}
Example:
// Print out a number using the localized number, currency,
// and percent format for each locale
Locale[] locales = NumberFormat.getAvailableLocales();
double myNumber = -1234.56;
NumberFormat format;
for (int j = 0; j < 3; ++j) {
System.out.println("FORMAT");
for (int i = 0; i < locales.length; ++i) {
if (locales[i].getCountry().length() == 0) {
// Skip language-only locales
continue;
}
System.out.print(locales[i].getDisplayName());
switch (j) {
case 0:
format = NumberFormat.getInstance(locales[i]);
break;
case 1:
format = NumberFormat.getCurrencyInstance(locales[i]);
break;
default:
format = NumberFormat.getPercentInstance(locales[i]);
break;
}
try {
// Assume format is a DecimalFormat
System.out.print(": "; + ((DecimalFormat)format).toPattern() + " -> "
+ form.format(myNumber));
} catch (Exception e) {
}
try {
System.out.println(" -> " + format.parse(form.format(myNumber)));
} catch (ParseException e) {
}
}
}

Patterns

A {@code DecimalFormat} consists of a pattern and a set of symbols. The pattern may be set directly using {@link #applyPattern(String)}, or indirectly using other API methods which manipulate aspects of the pattern, such as the minimum number of integer digits. The symbols are stored in a {@link DecimalFormatSymbols} object. When using the {@link NumberFormat} factory methods, the pattern and symbols are read from ICU's locale data.

Special Pattern Characters

Many characters in a pattern are taken literally; they are matched during parsing and are written out unchanged during formatting. On the other hand, special characters stand for other characters, strings, or classes of characters. For example, the '#' character is replaced by a localized digit. Often the replacement character is the same as the pattern character; in the U.S. locale, the ',' grouping character is replaced by ','. However, the replacement is still happening, and if the symbols are modified, the grouping character changes. Some special characters affect the behavior of the formatter by their presence; for example, if the percent character is seen, then the value is multiplied by 100 before being displayed.

To insert a special character in a pattern as a literal, that is, without any special meaning, the character must be quoted. There are some exceptions to this which are noted below.

The characters listed here are used in non-localized patterns. Localized patterns use the corresponding characters taken from this formatter's {@link DecimalFormatSymbols} object instead, and these characters lose their special status. Two exceptions are the currency sign and quote, which are not localized.

Symbol Location Localized? Meaning
{@code 0} Number Yes Digit.
{@code @} Number No NEW  Significant digit.
{@code #} Number Yes Digit, leading zeroes are not shown.
{@code .} Number Yes Decimal separator or monetary decimal separator.
{@code -} Number Yes Minus sign.
{@code ,} Number Yes Grouping separator.
{@code E} Number Yes Separates mantissa and exponent in scientific notation. Does not need to be quoted in prefix or suffix.
{@code +} Exponent Yes NEW  Prefix positive exponents with localized plus sign. Does not need to be quoted in prefix or suffix.
{@code ;} Subpattern boundary Yes Separates positive and negative subpatterns.
{@code %} Prefix or suffix Yes Multiply by 100 and show as percentage.
{@code \u2030} ({@code \u2030}) Prefix or suffix Yes Multiply by 1000 and show as per mille.
{@code ¤} ({@code \u00A4}) Prefix or suffix No Currency sign, replaced by currency symbol. If doubled, replaced by international currency symbol. If present in a pattern, the monetary decimal separator is used instead of the decimal separator.
{@code '} Prefix or suffix No Used to quote special characters in a prefix or suffix, for example, {@code "'#'#"} formats 123 to {@code "#123"}. To create a single quote itself, use two in a row: {@code "# o''clock"}.
{@code *} Prefix or suffix boundary Yes NEW  Pad escape, precedes pad character.

A {@code DecimalFormat} pattern contains a postive and negative subpattern, for example, "#,##0.00;(#,##0.00)". Each subpattern has a prefix, a numeric part and a suffix. If there is no explicit negative subpattern, the negative subpattern is the localized minus sign prefixed to the positive subpattern. That is, "0.00" alone is equivalent to "0.00;-0.00". If there is an explicit negative subpattern, it serves only to specify the negative prefix and suffix; the number of digits, minimal digits, and other characteristics are ignored in the negative subpattern. This means that "#,##0.0#;(#)" produces precisely the same result as "#,##0.0#;(#,##0.0#)".

The prefixes, suffixes, and various symbols used for infinity, digits, thousands separators, decimal separators, etc. may be set to arbitrary values, and they will appear properly during formatting. However, care must be taken that the symbols and strings do not conflict, or parsing will be unreliable. For example, either the positive and negative prefixes or the suffixes must be distinct for {@link #parse} to be able to distinguish positive from negative values. Another example is that the decimal separator and thousands separator should be distinct characters, or parsing will be impossible.

The grouping separator is a character that separates clusters of integer digits to make large numbers more legible. It is commonly used for thousands, but in some locales it separates ten-thousands. The grouping size is the number of digits between the grouping separators, such as 3 for "100,000,000" or 4 for "1 0000 0000". There are actually two different grouping sizes: One used for the least significant integer digits, the primary grouping size, and one used for all others, the secondary grouping size. In most locales these are the same, but sometimes they are different. For example, if the primary grouping interval is 3, and the secondary is 2, then this corresponds to the pattern "#,##,##0", and the number 123456789 is formatted as "12,34,56,789". If a pattern contains multiple grouping separators, the interval between the last one and the end of the integer defines the primary grouping size, and the interval between the last two defines the secondary grouping size. All others are ignored, so "#,##,###,####", "###,###,####" and "##,#,###,####" produce the same result.

Illegal patterns, such as "#.#.#" or "#.###,###", will cause {@code DecimalFormat} to throw an {@link IllegalArgumentException} with a message that describes the problem.

Pattern BNF

pattern := subpattern (';' subpattern)?
subpattern := prefix? number exponent? suffix?
number := (integer ('.' fraction)?) | sigDigits
prefix := '\\u0000'..'\\uFFFD' - specialCharacters
suffix := '\\u0000'..'\\uFFFD' - specialCharacters
integer := '#'* '0'* '0'
fraction := '0'* '#'*
sigDigits := '#'* '@' '@'* '#'*
exponent := 'E' '+'? '0'* '0'
padSpec := '*' padChar
padChar := '\\u0000'..'\\uFFFD' - quote

Notation:
X* 0 or more instances of X
X? 0 or 1 instances of X
X|Y either X or Y
C..D any character from C up to D, inclusive
S-T characters in S, except those in T
The first subpattern is for positive numbers. The second (optional) subpattern is for negative numbers.

Not indicated in the BNF syntax above:

  • The grouping separator ',' can occur inside the integer and sigDigits elements, between any two pattern characters of that element, as long as the integer or sigDigits element is not followed by the exponent element.
  • NEW  Two grouping intervals are recognized: The one between the decimal point and the first grouping symbol and the one between the first and second grouping symbols. These intervals are identical in most locales, but in some locales they differ. For example, the pattern "#,##,###" formats the number 123456789 as "12,34,56,789".
  • NEW  The pad specifier {@code padSpec} may appear before the prefix, after the prefix, before the suffix, after the suffix or not at all.

Parsing

{@code DecimalFormat} parses all Unicode characters that represent decimal digits, as defined by {@link Character#digit(int, int)}. In addition, {@code DecimalFormat} also recognizes as digits the ten consecutive characters starting with the localized zero digit defined in the {@link DecimalFormatSymbols} object. During formatting, the {@link DecimalFormatSymbols}-based digits are written out.

During parsing, grouping separators are ignored.

If {@link #parse(String, ParsePosition)} fails to parse a string, it returns {@code null} and leaves the parse position unchanged.

Formatting

Formatting is guided by several parameters, all of which can be specified either using a pattern or using the API. The following description applies to formats that do not use scientific notation or significant digits.

  • If the number of actual integer digits exceeds the maximum integer digits, then only the least significant digits are shown. For example, 1997 is formatted as "97" if maximum integer digits is set to 2.
  • If the number of actual integer digits is less than the minimum integer digits, then leading zeros are added. For example, 1997 is formatted as "01997" if minimum integer digits is set to 5.
  • If the number of actual fraction digits exceeds the maximum fraction digits, then half-even rounding is performed to the maximum fraction digits. For example, 0.125 is formatted as "0.12" if the maximum fraction digits is 2.
  • If the number of actual fraction digits is less than the minimum fraction digits, then trailing zeros are added. For example, 0.125 is formatted as "0.1250" if the mimimum fraction digits is set to 4.
  • Trailing fractional zeros are not displayed if they occur j positions after the decimal, where j is less than the maximum fraction digits. For example, 0.10004 is formatted as "0.1" if the maximum fraction digits is four or less.

Special Values

{@code NaN} is represented as a single character, typically {@code \uFFFD}. This character is determined by the {@link DecimalFormatSymbols} object. This is the only value for which the prefixes and suffixes are not used.

Infinity is represented as a single character, typically {@code \u221E}, with the positive or negative prefixes and suffixes applied. The infinity character is determined by the {@link DecimalFormatSymbols} object.

Scientific Notation

Numbers in scientific notation are expressed as the product of a mantissa and a power of ten, for example, 1234 can be expressed as 1.234 x 103. The mantissa is typically in the half-open interval [1.0, 10.0) or sometimes [0.0, 1.0), but it does not need to be. {@code DecimalFormat} supports arbitrary mantissas. {@code DecimalFormat} can be instructed to use scientific notation through the API or through the pattern. In a pattern, the exponent character immediately followed by one or more digit characters indicates scientific notation. Example: "0.###E0" formats the number 1234 as "1.234E3".

  • The number of digit characters after the exponent character gives the minimum exponent digit count. There is no maximum. Negative exponents are formatted using the localized minus sign, not the prefix and suffix from the pattern. This allows patterns such as "0.###E0 m/s". To prefix positive exponents with a localized plus sign, specify '+' between the exponent and the digits: "0.###E+0" will produce formats "1E+1", "1E+0", "1E-1", etc. (In localized patterns, use the localized plus sign rather than '+'.)
  • The minimum number of integer digits is achieved by adjusting the exponent. Example: 0.00123 formatted with "00.###E0" yields "12.3E-4". This only happens if there is no maximum number of integer digits. If there is a maximum, then the minimum number of integer digits is fixed at one.
  • The maximum number of integer digits, if present, specifies the exponent grouping. The most common use of this is to generate engineering notation, in which the exponent is a multiple of three, e.g., "##0.###E0". The number 12345 is formatted using "##0.###E0" as "12.345E3".
  • When using scientific notation, the formatter controls the digit counts using significant digits logic. The maximum number of significant digits limits the total number of integer and fraction digits that will be shown in the mantissa; it does not affect parsing. For example, 12345 formatted with "##0.##E0" is "12.3E3". See the section on significant digits for more details.
  • The number of significant digits shown is determined as follows: If no significant digits are used in the pattern then the minimum number of significant digits shown is one, the maximum number of significant digits shown is the sum of the minimum integer and maximum fraction digits, and it is unaffected by the maximum integer digits. If this sum is zero, then all significant digits are shown. If significant digits are used in the pattern then the number of integer digits is fixed at one and there is no exponent grouping.
  • Exponential patterns may not contain grouping separators.

NEW  Significant Digits

{@code DecimalFormat} has two ways of controlling how many digits are shown: (a) significant digit counts or (b) integer and fraction digit counts. Integer and fraction digit counts are described above. When a formatter uses significant digits counts, the number of integer and fraction digits is not specified directly, and the formatter settings for these counts are ignored. Instead, the formatter uses as many integer and fraction digits as required to display the specified number of significant digits.

Examples:
Pattern Minimum significant digits Maximum significant digits Number Output of format()
{@code @@@} 3 3 12345 {@code 12300}
{@code @@@} 3 3 0.12345 {@code 0.123}
{@code @@##} 2 4 3.14159 {@code 3.142}
{@code @@##} 2 4 1.23004 {@code 1.23}
  • Significant digit counts may be expressed using patterns that specify a minimum and maximum number of significant digits. These are indicated by the {@code '@'} and {@code '#'} characters. The minimum number of significant digits is the number of {@code '@'} characters. The maximum number of significant digits is the number of {@code '@'} characters plus the number of {@code '#'} characters following on the right. For example, the pattern {@code "@@@"} indicates exactly 3 significant digits. The pattern {@code "@##"} indicates from 1 to 3 significant digits. Trailing zero digits to the right of the decimal separator are suppressed after the minimum number of significant digits have been shown. For example, the pattern {@code "@##"} formats the number 0.1203 as {@code "0.12"}.
  • If a pattern uses significant digits, it may not contain a decimal separator, nor the {@code '0'} pattern character. Patterns such as {@code "@00"} or {@code "@.###"} are disallowed.
  • Any number of {@code '#'} characters may be prepended to the left of the leftmost {@code '@'} character. These have no effect on the minimum and maximum significant digit counts, but may be used to position grouping separators. For example, {@code "#,#@#"} indicates a minimum of one significant digit, a maximum of two significant digits, and a grouping size of three.
  • In order to enable significant digits formatting, use a pattern containing the {@code '@'} pattern character.
  • In order to disable significant digits formatting, use a pattern that does not contain the {@code '@'} pattern character.
  • The number of significant digits has no effect on parsing.
  • Significant digits may be used together with exponential notation. Such patterns are equivalent to a normal exponential pattern with a minimum and maximum integer digit count of one, a minimum fraction digit count of the number of '@' characters in the pattern - 1, and a maximum fraction digit count of the number of '@' and '#' characters in the pattern - 1. For example, the pattern {@code "@@###E0"} is equivalent to {@code "0.0###E0"}.
  • If signficant digits are in use then the integer and fraction digit counts, as set via the API, are ignored.

NEW  Padding

{@code DecimalFormat} supports padding the result of {@code format} to a specific width. Padding may be specified either through the API or through the pattern syntax. In a pattern, the pad escape character followed by a single pad character causes padding to be parsed and formatted. The pad escape character is '*' in unlocalized patterns. For example, {@code "$*x#,##0.00"} formats 123 to {@code "$xx123.00"}, and 1234 to {@code "$1,234.00"}.

  • When padding is in effect, the width of the positive subpattern, including prefix and suffix, determines the format width. For example, in the pattern {@code "* #0 o''clock"}, the format width is 10.
  • The width is counted in 16-bit code units (Java {@code char}s).
  • Some parameters which usually do not matter have meaning when padding is used, because the pattern width is significant with padding. In the pattern "* ##,##,#,##0.##", the format width is 14. The initial characters "##,##," do not affect the grouping size or maximum integer digits, but they do affect the format width.
  • Padding may be inserted at one of four locations: before the prefix, after the prefix, before the suffix or after the suffix. If padding is specified in any other location, {@link #applyPattern} throws an {@link IllegalArgumentException}. If there is no prefix, before the prefix and after the prefix are equivalent, likewise for the suffix.
  • When specified in a pattern, the 16-bit {@code char} immediately following the pad escape is the pad character. This may be any character, including a special pattern character. That is, the pad escape escapes the following character. If there is no character after the pad escape, then the pattern is illegal.

Synchronization

{@code DecimalFormat} objects are not synchronized. Multiple threads should not access one formatter concurrently.

see
Format
see
NumberFormat
since
Android 1.0

Fields Summary
private static final long
serialVersionUID
private transient boolean
parseBigDecimal
private transient DecimalFormatSymbols
symbols
private transient com.ibm.icu4jni.text.DecimalFormat
dform
private transient com.ibm.icu4jni.text.DecimalFormatSymbols
icuSymbols
private static final int
CURRENT_SERIAL_VERTION
private transient int
serialVersionOnStream
private static final Double
NEGATIVE_ZERO_DOUBLE
private static final ObjectStreamField[]
serialPersistentFields
Constructors Summary
public DecimalFormat()
Constructs a new {@code DecimalFormat} for formatting and parsing numbers for the default locale.

since
Android 1.0


                           
      
        this(getPattern(Locale.getDefault(), "Number")); //$NON-NLS-1$
    
public DecimalFormat(String pattern)
Constructs a new {@code DecimalFormat} using the specified non-localized pattern and the {@code DecimalFormatSymbols} for the default Locale.

param
pattern the non-localized pattern.
exception
IllegalArgumentException if the pattern cannot be parsed.
since
Android 1.0

        this(pattern, new DecimalFormatSymbols());
    
public DecimalFormat(String pattern, DecimalFormatSymbols value)
Constructs a new {@code DecimalFormat} using the specified non-localized pattern and {@code DecimalFormatSymbols}.

param
pattern the non-localized pattern.
param
value the DecimalFormatSymbols.
exception
IllegalArgumentException if the pattern cannot be parsed.
since
Android 1.0

        symbols = (DecimalFormatSymbols) value.clone();
        Locale locale = (Locale) this.getInternalField("locale", symbols); //$NON-NLS-1$
        icuSymbols = new com.ibm.icu4jni.text.DecimalFormatSymbols(locale);
        copySymbols(icuSymbols, symbols);

        dform = new com.ibm.icu4jni.text.DecimalFormat(pattern, icuSymbols);

        super.setMaximumFractionDigits(dform.getMaximumFractionDigits());
        super.setMaximumIntegerDigits(dform.getMaximumIntegerDigits());
        super.setMinimumFractionDigits(dform.getMinimumFractionDigits());
        super.setMinimumIntegerDigits(dform.getMinimumIntegerDigits());
    
Methods Summary
public voidapplyLocalizedPattern(java.lang.String pattern)
Changes the pattern of this decimal format to the specified pattern which uses localized pattern characters.

param
pattern the localized pattern.
exception
IllegalArgumentException if the pattern cannot be parsed.
since
Android 1.0

        dform.applyLocalizedPattern(pattern);
    
public voidapplyPattern(java.lang.String pattern)
Changes the pattern of this decimal format to the specified pattern which uses non-localized pattern characters.

param
pattern the non-localized pattern.
exception
IllegalArgumentException if the pattern cannot be parsed.
since
Android 1.0


        dform.applyPattern(pattern);
    
public java.lang.Objectclone()
Returns a new instance of {@code DecimalFormat} with the same pattern and properties as this decimal format.

return
a shallow copy of this decimal format.
see
java.lang.Cloneable
since
Android 1.0

        DecimalFormat clone = (DecimalFormat) super.clone();
        clone.dform = (com.ibm.icu4jni.text.DecimalFormat) dform.clone();
        clone.symbols = (DecimalFormatSymbols) symbols.clone();
        return clone;
    
private voidcopySymbols(com.ibm.icu4jni.text.DecimalFormatSymbols icu, java.text.DecimalFormatSymbols dfs)

        // BEGIN android-changed
        icu.setCurrency(Currency.getInstance(dfs.getCurrency()
                .getCurrencyCode()));
        // END android-changed
        icu.setCurrencySymbol(dfs.getCurrencySymbol());
        icu.setDecimalSeparator(dfs.getDecimalSeparator());
        icu.setDigit(dfs.getDigit());
        icu.setGroupingSeparator(dfs.getGroupingSeparator());
        icu.setInfinity(dfs.getInfinity());
        icu
                .setInternationalCurrencySymbol(dfs
                        .getInternationalCurrencySymbol());
        icu.setMinusSign(dfs.getMinusSign());
        icu.setMonetaryDecimalSeparator(dfs.getMonetaryDecimalSeparator());
        icu.setNaN(dfs.getNaN());
        icu.setPatternSeparator(dfs.getPatternSeparator());
        icu.setPercent(dfs.getPercent());
        icu.setPerMill(dfs.getPerMill());
        icu.setZeroDigit(dfs.getZeroDigit());
    
public booleanequals(java.lang.Object object)
Compares the specified object to this decimal format and indicates if they are equal. In order to be equal, {@code object} must be an instance of {@code DecimalFormat} with the same pattern and properties.

param
object the object to compare with this object.
return
{@code true} if the specified object is equal to this decimal format; {@code false} otherwise.
see
#hashCode
since
Android 1.0

        if (this == object) {
            return true;
        }
        if (!(object instanceof DecimalFormat)) {
            return false;
        }
        DecimalFormat format = (DecimalFormat) object;
        return (this.dform == null ? format.dform == null : this.dform
                .equals(format.dform));
    
public java.lang.StringBufferformat(long value, java.lang.StringBuffer buffer, java.text.FieldPosition position)
Formats the specified long value as a string using the pattern of this decimal format and appends the string to the specified string buffer.

If the {@code field} member of {@code position} contains a value specifying a format field, then its {@code beginIndex} and {@code endIndex} members will be updated with the position of the first occurrence of this field in the formatted text.

param
value the long to format.
param
buffer the target string buffer to append the formatted long value to.
param
position on input: an optional alignment field; on output: the offsets of the alignment field in the formatted text.
return
the string buffer.
since
Android 1.0

        return dform.format(value, buffer, position);
    
public final java.lang.StringBufferformat(java.lang.Object number, java.lang.StringBuffer toAppendTo, java.text.FieldPosition pos)
Formats the specified object as a string using the pattern of this decimal format and appends the string to the specified string buffer.

If the {@code field} member of {@code position} contains a value specifying a format field, then its {@code beginIndex} and {@code endIndex} members will be updated with the position of the first occurrence of this field in the formatted text.

param
number the object to format.
param
toAppendTo the target string buffer to append the formatted number to.
param
pos on input: an optional alignment field; on output: the offsets of the alignment field in the formatted text.
return
the string buffer.
throws
IllegalArgumentException if {@code number} is not an instance of {@code Number}.
throws
NullPointerException if {@code toAppendTo} or {@code pos} is {@code null}.
since
Android 1.0

        if (!(number instanceof Number)) {
            throw new IllegalArgumentException();
        }
        if (toAppendTo == null || pos == null) {
            throw new NullPointerException();
        }
        if (number instanceof BigInteger || number instanceof BigDecimal) {
            return dform.format(number, toAppendTo, pos);
        }
        return super.format(number, toAppendTo, pos);
    
public java.lang.StringBufferformat(double value, java.lang.StringBuffer buffer, java.text.FieldPosition position)
Formats the specified double value as a string using the pattern of this decimal format and appends the string to the specified string buffer.

If the {@code field} member of {@code position} contains a value specifying a format field, then its {@code beginIndex} and {@code endIndex} members will be updated with the position of the first occurrence of this field in the formatted text.

param
value the double to format.
param
buffer the target string buffer to append the formatted double value to.
param
position on input: an optional alignment field; on output: the offsets of the alignment field in the formatted text.
return
the string buffer.
since
Android 1.0

        return dform.format(value, buffer, position);
    
public java.text.AttributedCharacterIteratorformatToCharacterIterator(java.lang.Object object)
Formats the specified object using the rules of this decimal format and returns an {@code AttributedCharacterIterator} with the formatted number and attributes.

param
object the object to format.
return
an AttributedCharacterIterator with the formatted number and attributes.
throws
IllegalArgumentException if {@code object} cannot be formatted by this format.
throws
NullPointerException if {@code object} is {@code null}.
since
Android 1.0

        if (object == null) {
            throw new NullPointerException();
        }
        return dform.formatToCharacterIterator(object);
    
public java.util.CurrencygetCurrency()
Returns the currency used by this decimal format.

return
the currency used by this decimal format.
see
DecimalFormatSymbols#getCurrency()
since
Android 1.0

        final Currency cur = dform.getCurrency();
        final String code = (cur == null) ? "XXX" : cur.getCurrencyCode(); //$NON-NLS-1$

        return Currency.getInstance(code);
    
public java.text.DecimalFormatSymbolsgetDecimalFormatSymbols()
Returns the {@code DecimalFormatSymbols} used by this decimal format.

return
a copy of the {@code DecimalFormatSymbols} used by this decimal format.
since
Android 1.0

        return (DecimalFormatSymbols) symbols.clone();
    
public intgetGroupingSize()
Returns the number of digits grouped together by the grouping separator. This only allows to get the primary grouping size. There is no API to get the secondary grouping size.

return
the number of digits grouped together.
since
Android 1.0

        return dform.getGroupingSize();
    
private java.lang.ObjectgetInternalField(java.lang.String fieldName, java.lang.Object target)

        Object value = AccessController
                .doPrivileged(new PrivilegedAction<Object>() {
                    public Object run() {
                        Object result = null;
                        java.lang.reflect.Field field = null;
                        try {
                            field = target.getClass().getDeclaredField(
                                    fieldName);
                            field.setAccessible(true);
                            result = field.get(target);
                        } catch (Exception e1) {
                            return null;
                        }
                        return result;
                    }
                });
        return value;
    
public intgetMultiplier()
Returns the multiplier which is applied to the number before formatting or after parsing.

return
the multiplier.
since
Android 1.0

        return dform.getMultiplier();
    
public java.lang.StringgetNegativePrefix()
Returns the prefix which is formatted or parsed before a negative number.

return
the negative prefix.
since
Android 1.0

        return dform.getNegativePrefix();
    
public java.lang.StringgetNegativeSuffix()
Returns the suffix which is formatted or parsed after a negative number.

return
the negative suffix.
since
Android 1.0

        return dform.getNegativeSuffix();
    
public java.lang.StringgetPositivePrefix()
Returns the prefix which is formatted or parsed before a positive number.

return
the positive prefix.
since
Android 1.0

        return dform.getPositivePrefix();
    
public java.lang.StringgetPositiveSuffix()
Returns the suffix which is formatted or parsed after a positive number.

return
the positive suffix.
since
Android 1.0

        return dform.getPositiveSuffix();
    
public inthashCode()

        return dform.hashCode();
    
public booleanisDecimalSeparatorAlwaysShown()
Indicates whether the decimal separator is shown when there are no fractional digits.

return
{@code true} if the decimal separator should always be formatted; {@code false} otherwise.
since
Android 1.0

        return dform.isDecimalSeparatorAlwaysShown();
    
public booleanisGroupingUsed()
Indicates whether grouping will be used in this format.

return
{@code true} if grouping is used; {@code false} otherwise.
since
Android 1.0

        return dform.isGroupingUsed();
    
public booleanisParseBigDecimal()
This value indicates whether the return object of the parse operation is of type {@code BigDecimal}. This value defaults to {@code false}.

return
{@code true} if parse always returns {@code BigDecimals}, {@code false} if the type of the result is {@code Long} or {@code Double}.
since
Android 1.0

        return this.parseBigDecimal;
    
public booleanisParseIntegerOnly()
Indicates whether parsing with this decimal format will only return numbers of type {@code java.lang.Integer}.

return
{@code true} if this {@code DecimalFormat}'s parse method only returns {@code java.lang.Integer}; {@code false} otherwise.
since
Android 1.0

        return dform.isParseIntegerOnly();
    
public java.lang.Numberparse(java.lang.String string, java.text.ParsePosition position)
Parses a {@code Long} or {@code Double} from the specified string starting at the index specified by {@code position}. If the string is successfully parsed then the index of the {@code ParsePosition} is updated to the index following the parsed text. On error, the index is unchanged and the error index of {@code ParsePosition} is set to the index where the error occurred.

param
string the string to parse.
param
position input/output parameter, specifies the start index in {@code string} from where to start parsing. If parsing is successful, it is updated with the index following the parsed text; on error, the index is unchanged and the error index is set to the index where the error occurred.
return
a {@code Long} or {@code Double} resulting from the parse or {@code null} if there is an error. The result will be a {@code Long} if the parsed number is an integer in the range of a long, otherwise the result is a {@code Double}. If {@code isParseBigDecimal} is {@code true} then it returns the result as a {@code BigDecimal}.
since
Android 1.0


                                                                                                                                                                                                                                                                                                          
    
          
        Number number = dform.parse(string, position);
        if (null == number) {
            return null;
        }
        // BEGIN android-removed
        // if (this.isParseBigDecimal()) {
        //     if (number instanceof Long) {
        //         return new BigDecimal(number.longValue());
        //     }
        //     if ((number instanceof Double) && !((Double) number).isInfinite()
        //             && !((Double) number).isNaN()) {
        // 
        //         return new BigDecimal(number.doubleValue());
        //     }
        //     if (number instanceof BigInteger) {
        //         return new BigDecimal(number.doubleValue());
        //     }
        //     if (number instanceof com.ibm.icu.math.BigDecimal) {
        //         return new BigDecimal(number.toString());
        //     }
        //     return number;
        // }
        // if ((number instanceof com.ibm.icu.math.BigDecimal)
        //         || (number instanceof BigInteger)) {
        //     return new Double(number.doubleValue());
        // }
        // END android-removed
        // BEGIN android-added
        if (this.isParseBigDecimal()) {
            if (number instanceof Long) {
                return new BigDecimal(number.longValue());
            }
            if ((number instanceof Double) && !((Double) number).isInfinite()
                    && !((Double) number).isNaN()) {

                return new BigDecimal(number.toString());
            }
            if (number instanceof BigInteger) {
                return new BigDecimal(number.toString());
            }
            return number;
        }
        if ((number instanceof BigDecimal) || (number instanceof BigInteger)) {
            return new Double(number.doubleValue());
        }
        // END android-added

        if (this.isParseIntegerOnly() && number.equals(NEGATIVE_ZERO_DOUBLE)) {
            return new Long(0);
        }
        return number;

    
private voidreadObject(java.io.ObjectInputStream stream)
Reads serialized fields following serialized forms specified by Java specification.

param
stream the input stream to read serialized bytes
throws
IOException if some I/O error occurs
throws
ClassNotFoundException if some class of serialized objects or fields cannot be found


        ObjectInputStream.GetField fields = stream.readFields();
        String positivePrefix = (String) fields.get("positivePrefix", ""); //$NON-NLS-1$ //$NON-NLS-2$
        String positiveSuffix = (String) fields.get("positiveSuffix", ""); //$NON-NLS-1$ //$NON-NLS-2$
        String negativePrefix = (String) fields.get("negativePrefix", "-"); //$NON-NLS-1$ //$NON-NLS-2$
        String negativeSuffix = (String) fields.get("negativeSuffix", ""); //$NON-NLS-1$ //$NON-NLS-2$

        String posPrefixPattern = (String) fields.get("posPrefixPattern", ""); //$NON-NLS-1$ //$NON-NLS-2$
        String posSuffixPattern = (String) fields.get("posSuffixPattern", ""); //$NON-NLS-1$ //$NON-NLS-2$
        String negPrefixPattern = (String) fields.get("negPrefixPattern", "-"); //$NON-NLS-1$ //$NON-NLS-2$
        String negSuffixPattern = (String) fields.get("negSuffixPattern", ""); //$NON-NLS-1$ //$NON-NLS-2$

        int multiplier = fields.get("multiplier", 1); //$NON-NLS-1$
        byte groupingSize = fields.get("groupingSize", (byte) 3); //$NON-NLS-1$
        // BEGIN android-added
        boolean groupingUsed = fields.get("groupingUsed", true); //$NON-NLS-1$
        // END android-added
        boolean decimalSeparatorAlwaysShown = fields.get(
                "decimalSeparatorAlwaysShown", false); //$NON-NLS-1$
        boolean parseBigDecimal = fields.get("parseBigDecimal", false); //$NON-NLS-1$
        symbols = (DecimalFormatSymbols) fields.get("symbols", null); //$NON-NLS-1$

        boolean useExponentialNotation = fields.get("useExponentialNotation", //$NON-NLS-1$
                false);
        byte minExponentDigits = fields.get("minExponentDigits", (byte) 0); //$NON-NLS-1$

        int maximumIntegerDigits = fields.get("maximumIntegerDigits", 309); //$NON-NLS-1$
        int minimumIntegerDigits = fields.get("minimumIntegerDigits", 309); //$NON-NLS-1$
        int maximumFractionDigits = fields.get("maximumFractionDigits", 340); //$NON-NLS-1$
        int minimumFractionDigits = fields.get("minimumFractionDigits", 340); //$NON-NLS-1$
        this.serialVersionOnStream = fields.get("serialVersionOnStream", 0); //$NON-NLS-1$

        Locale locale = (Locale) getInternalField("locale", symbols); //$NON-NLS-1$
        // BEGIN android-removed
        // dform = new com.ibm.icu4jni.text.DecimalFormat("", //$NON-NLS-1$
        //         new com.ibm.icu4jni.text.DecimalFormatSymbols(locale));
        // END android-removed
        // BEGIN android-added
        icuSymbols = new com.ibm.icu4jni.text.DecimalFormatSymbols(locale);
        copySymbols(icuSymbols, symbols);
        dform = new com.ibm.icu4jni.text.DecimalFormat("", //$NON-NLS-1$
                icuSymbols);
        // END android-added
        setInternalField("useExponentialNotation", dform, new Boolean( //$NON-NLS-1$
                useExponentialNotation));
        setInternalField("minExponentDigits", dform, //$NON-NLS-1$
                new Byte(minExponentDigits));
        dform.setPositivePrefix(positivePrefix);
        dform.setPositiveSuffix(positiveSuffix);
        dform.setNegativePrefix(negativePrefix);
        dform.setNegativeSuffix(negativeSuffix);
        setInternalField("posPrefixPattern", dform, posPrefixPattern); //$NON-NLS-1$
        setInternalField("posSuffixPattern", dform, posSuffixPattern); //$NON-NLS-1$
        setInternalField("negPrefixPattern", dform, negPrefixPattern); //$NON-NLS-1$
        setInternalField("negSuffixPattern", dform, negSuffixPattern); //$NON-NLS-1$
        dform.setMultiplier(multiplier);
        dform.setGroupingSize(groupingSize);
        // BEGIN android-added
        dform.setGroupingUsed(groupingUsed);
        // END android-added
        dform.setDecimalSeparatorAlwaysShown(decimalSeparatorAlwaysShown);
        dform.setMinimumIntegerDigits(minimumIntegerDigits);
        dform.setMaximumIntegerDigits(maximumIntegerDigits);
        dform.setMinimumFractionDigits(minimumFractionDigits);
        dform.setMaximumFractionDigits(maximumFractionDigits);
        this.setParseBigDecimal(parseBigDecimal);

        if (super.getMaximumIntegerDigits() > Integer.MAX_VALUE
                || super.getMinimumIntegerDigits() > Integer.MAX_VALUE
                || super.getMaximumFractionDigits() > Integer.MAX_VALUE
                || super.getMinimumIntegerDigits() > Integer.MAX_VALUE) {
            // text.09=The deserialized date is invalid
            throw new InvalidObjectException(Messages.getString("text.09")); //$NON-NLS-1$
        }
        if (serialVersionOnStream < 3) {
            setMaximumIntegerDigits(super.getMinimumIntegerDigits());
            setMinimumIntegerDigits(super.getMinimumIntegerDigits());
            setMaximumFractionDigits(super.getMaximumFractionDigits());
            setMinimumFractionDigits(super.getMinimumFractionDigits());
        }
        if (serialVersionOnStream < 1) {
            this.setInternalField("useExponentialNotation", dform, //$NON-NLS-1$
                    Boolean.FALSE);
        }
        serialVersionOnStream = 3;
    
public voidsetCurrency(java.util.Currency currency)
Sets the currency used by this decimal format. The min and max fraction digits remain the same.

param
currency the currency this {@code DecimalFormat} should use.
see
DecimalFormatSymbols#setCurrency(Currency)
since
Android 1.0

        // BEGIN android-changed
        dform.setCurrency(Currency.getInstance(currency
                .getCurrencyCode()));
        // END android-changed
        symbols.setCurrency(currency);
    
public voidsetDecimalFormatSymbols(java.text.DecimalFormatSymbols value)
Sets the {@code DecimalFormatSymbols} used by this decimal format.

param
value the {@code DecimalFormatSymbols} to set.
since
Android 1.0

        if (value != null) {
            symbols = (DecimalFormatSymbols) value.clone();
            icuSymbols = dform.getDecimalFormatSymbols();
            copySymbols(icuSymbols, symbols);
            dform.setDecimalFormatSymbols(icuSymbols);
        }
    
public voidsetDecimalSeparatorAlwaysShown(boolean value)
Sets whether the decimal separator is shown when there are no fractional digits.

param
value {@code true} if the decimal separator should always be formatted; {@code false} otherwise.
since
Android 1.0

        dform.setDecimalSeparatorAlwaysShown(value);
    
public voidsetGroupingSize(int value)
Sets the number of digits grouped together by the grouping separator. This only allows to set the primary grouping size; the secondary grouping size can only be set with a pattern.

param
value the number of digits grouped together.
since
Android 1.0

        dform.setGroupingSize(value);
    
public voidsetGroupingUsed(boolean value)
Sets whether or not grouping will be used in this format. Grouping affects both parsing and formatting.

param
value {@code true} if grouping is used; {@code false} otherwise.
since
Android 1.0

        dform.setGroupingUsed(value);
    
private voidsetInternalField(java.lang.String fieldName, java.lang.Object target, java.lang.Object value)

        AccessController
                .doPrivileged(new PrivilegedAction<java.lang.reflect.Field>() {
                    public java.lang.reflect.Field run() {
                        java.lang.reflect.Field field = null;
                        try {
                            field = target.getClass().getDeclaredField(
                                    fieldName);
                            field.setAccessible(true);
                            field.set(target, value);
                        } catch (Exception e) {
                            return null;
                        }
                        return field;
                    }
                });
    
public voidsetMaximumFractionDigits(int value)
Sets the maximum number of fraction digits that are printed when formatting numbers other than {@code BigDecimal} and {@code BigInteger}. If the maximum is less than the number of fraction digits, the least significant digits are truncated. If the value passed is bigger than 340 then it is replaced by 340. If the value passed is negative then it is replaced by 0.

param
value the maximum number of fraction digits.
since
Android 1.0

        super.setMaximumFractionDigits(value);
        dform.setMaximumFractionDigits(value);
    
public voidsetMaximumIntegerDigits(int value)
Sets the maximum number of integer digits that are printed when formatting numbers other than {@code BigDecimal} and {@code BigInteger}. If the maximum is less than the number of integer digits, the most significant digits are truncated. If the value passed is bigger than 309 then it is replaced by 309. If the value passed is negative then it is replaced by 0.

param
value the maximum number of integer digits.
since
Android 1.0

        super.setMaximumIntegerDigits(value);
        dform.setMaximumIntegerDigits(value);
    
public voidsetMinimumFractionDigits(int value)
Sets the minimum number of fraction digits that are printed when formatting numbers other than {@code BigDecimal} and {@code BigInteger}. If the value passed is bigger than 340 then it is replaced by 340. If the value passed is negative then it is replaced by 0.

param
value the minimum number of fraction digits.
since
Android 1.0

        super.setMinimumFractionDigits(value);
        dform.setMinimumFractionDigits(value);
    
public voidsetMinimumIntegerDigits(int value)
Sets the minimum number of integer digits that are printed when formatting numbers other than {@code BigDecimal} and {@code BigInteger}. If the value passed is bigger than 309 then it is replaced by 309. If the value passed is negative then it is replaced by 0.

param
value the minimum number of integer digits.
since
Android 1.0

        super.setMinimumIntegerDigits(value);
        dform.setMinimumIntegerDigits(value);
    
public voidsetMultiplier(int value)
Sets the multiplier which is applied to the number before formatting or after parsing.

param
value the multiplier.
since
Android 1.0

        dform.setMultiplier(value);
    
public voidsetNegativePrefix(java.lang.String value)
Sets the prefix which is formatted or parsed before a negative number.

param
value the negative prefix.
since
Android 1.0

        dform.setNegativePrefix(value);
    
public voidsetNegativeSuffix(java.lang.String value)
Sets the suffix which is formatted or parsed after a negative number.

param
value the negative suffix.
since
Android 1.0

        dform.setNegativeSuffix(value);
    
public voidsetParseBigDecimal(boolean newValue)
Sets the behaviour of the parse method. If set to {@code true} then all the returned objects will be of type {@code BigDecimal}.

param
newValue {@code true} if all the returned objects should be of type {@code BigDecimal}; {@code false} otherwise.
since
Android 1.0

        this.parseBigDecimal = newValue;
    
public voidsetParseIntegerOnly(boolean value)
Sets the flag that indicates whether numbers will be parsed as integers. When this decimal format is used for parsing and this value is set to {@code true}, then the resulting numbers will be of type {@code java.lang.Integer}. Special cases are NaN, positive and negative infinity, which are still returned as {@code java.lang.Double}.

param
value {@code true} that the resulting numbers of parse operations will be of type {@code java.lang.Integer} except for the special cases described above.
since
Android 1.0

        dform.setParseIntegerOnly(value);
    
public voidsetPositivePrefix(java.lang.String value)
Sets the prefix which is formatted or parsed before a positive number.

param
value the positive prefix.
since
Android 1.0

        dform.setPositivePrefix(value);
    
public voidsetPositiveSuffix(java.lang.String value)
Sets the suffix which is formatted or parsed after a positive number.

param
value the positive suffix.
since
Android 1.0

        dform.setPositiveSuffix(value);
    
public java.lang.StringtoLocalizedPattern()
Returns the pattern of this decimal format using localized pattern characters.

return
the localized pattern.
since
Android 1.0

        return dform.toLocalizedPattern();
    
public java.lang.StringtoPattern()
Returns the pattern of this decimal format using non-localized pattern characters.

return
the non-localized pattern.
since
Android 1.0

        return dform.toPattern();
    
private voidwriteObject(java.io.ObjectOutputStream stream)
Writes serialized fields following serialized forms specified by Java specification.

param
stream the output stream to write serialized bytes
throws
IOException if some I/O error occurs
throws
ClassNotFoundException

 //$NON-NLS-1$

                                                             
         
             
        ObjectOutputStream.PutField fields = stream.putFields();
        fields.put("positivePrefix", dform.getPositivePrefix()); //$NON-NLS-1$
        fields.put("positiveSuffix", dform.getPositiveSuffix()); //$NON-NLS-1$
        fields.put("negativePrefix", dform.getNegativePrefix()); //$NON-NLS-1$
        fields.put("negativeSuffix", dform.getNegativeSuffix()); //$NON-NLS-1$
        String posPrefixPattern = (String) this.getInternalField(
                "posPrefixPattern", dform); //$NON-NLS-1$
        fields.put("posPrefixPattern", posPrefixPattern); //$NON-NLS-1$
        String posSuffixPattern = (String) this.getInternalField(
                "posSuffixPattern", dform); //$NON-NLS-1$
        fields.put("posSuffixPattern", posSuffixPattern); //$NON-NLS-1$
        String negPrefixPattern = (String) this.getInternalField(
                "negPrefixPattern", dform); //$NON-NLS-1$
        fields.put("negPrefixPattern", negPrefixPattern); //$NON-NLS-1$
        String negSuffixPattern = (String) this.getInternalField(
                "negSuffixPattern", dform); //$NON-NLS-1$
        fields.put("negSuffixPattern", negSuffixPattern); //$NON-NLS-1$
        fields.put("multiplier", dform.getMultiplier()); //$NON-NLS-1$
        fields.put("groupingSize", (byte) dform.getGroupingSize()); //$NON-NLS-1$
        // BEGIN android-added
        fields.put("groupingUsed", dform.isGroupingUsed()); //$NON-NLS-1$
        // END android-added
        fields.put("decimalSeparatorAlwaysShown", dform //$NON-NLS-1$
                .isDecimalSeparatorAlwaysShown());
        fields.put("parseBigDecimal", parseBigDecimal); //$NON-NLS-1$
        fields.put("symbols", symbols); //$NON-NLS-1$
        boolean useExponentialNotation = ((Boolean) this.getInternalField(
                "useExponentialNotation", dform)).booleanValue(); //$NON-NLS-1$
        fields.put("useExponentialNotation", useExponentialNotation); //$NON-NLS-1$
        byte minExponentDigits = ((Byte) this.getInternalField(
                "minExponentDigits", dform)).byteValue(); //$NON-NLS-1$
        fields.put("minExponentDigits", minExponentDigits); //$NON-NLS-1$
        fields.put("maximumIntegerDigits", dform.getMaximumIntegerDigits()); //$NON-NLS-1$
        fields.put("minimumIntegerDigits", dform.getMinimumIntegerDigits()); //$NON-NLS-1$
        fields.put("maximumFractionDigits", dform.getMaximumFractionDigits()); //$NON-NLS-1$
        fields.put("minimumFractionDigits", dform.getMinimumFractionDigits()); //$NON-NLS-1$
        fields.put("serialVersionOnStream", CURRENT_SERIAL_VERTION); //$NON-NLS-1$
        stream.writeFields();