TreeMappublic class TreeMap extends AbstractMap implements SortedMap, Cloneable, SerializableRed-Black tree based implementation of the SortedMap interface.
This class guarantees that the map will be in ascending key order, sorted
according to the natural order for the key's class (see
Comparable), or by the comparator provided at creation time,
depending on which constructor is used.
This implementation provides guaranteed log(n) time cost for the
containsKey, get, put and remove
operations. Algorithms are adaptations of those in Cormen, Leiserson, and
Rivest's Introduction to Algorithms.
Note that the ordering maintained by a sorted map (whether or not an
explicit comparator is provided) must be consistent with equals if
this sorted map is to correctly implement the Map interface. (See
Comparable or Comparator for a precise definition of
consistent with equals.) This is so because the Map
interface is defined in terms of the equals operation, but a map performs
all key comparisons using its compareTo (or compare)
method, so two keys that are deemed equal by this method are, from the
standpoint of the sorted map, equal. The behavior of a sorted map
is well-defined even if its ordering is inconsistent with equals; it
just fails to obey the general contract of the Map interface.
Note that this implementation is not synchronized. If multiple
threads access a map concurrently, and at least one of the threads modifies
the map structurally, it must be synchronized externally. (A
structural modification is any operation that adds or deletes one or more
mappings; merely changing the value associated with an existing key is not
a structural modification.) This is typically accomplished by
synchronizing on some object that naturally encapsulates the map. If no
such object exists, the map should be "wrapped" using the
Collections.synchronizedMap method. This is best done at creation
time, to prevent accidental unsynchronized access to the map:
Map m = Collections.synchronizedMap(new TreeMap(...));
The iterators returned by all of this class's "collection view methods" are
fail-fast: if the map is structurally modified at any time after the
iterator is created, in any way except through the iterator's own
remove or add methods, the iterator throws a
ConcurrentModificationException. Thus, in the face of concurrent
modification, the iterator fails quickly and cleanly, rather than risking
arbitrary, non-deterministic behavior at an undetermined time in the
future.
Note that the fail-fast behavior of an iterator cannot be guaranteed
as it is, generally speaking, impossible to make any hard guarantees in the
presence of unsynchronized concurrent modification. Fail-fast iterators
throw ConcurrentModificationException on a best-effort basis.
Therefore, it would be wrong to write a program that depended on this
exception for its correctness: the fail-fast behavior of iterators
should be used only to detect bugs.
This class is a member of the
Java Collections Framework. |
Fields Summary |
---|
private Comparator | comparatorThe Comparator used to maintain order in this TreeMap, or
null if this TreeMap uses its elements natural ordering. | private transient Entry | root | private transient int | sizeThe number of entries in the tree | private transient int | modCountThe number of structural modifications to the tree. | private volatile transient Set | entrySetThis field is initialized to contain an instance of the entry set
view the first time this view is requested. The view is stateless,
so there's no reason to create more than one. | private static final boolean | RED | private static final boolean | BLACK | private static final long | serialVersionUID |
Constructors Summary |
---|
public TreeMap()Constructs a new, empty map, sorted according to the keys' natural
order. All keys inserted into the map must implement the
Comparable interface. Furthermore, all such keys must be
mutually comparable: k1.compareTo(k2) must not throw a
ClassCastException for any elements k1 and k2 in the
map. If the user attempts to put a key into the map that violates this
constraint (for example, the user attempts to put a string key into a
map whose keys are integers), the put(Object key, Object
value) call will throw a ClassCastException.
| public TreeMap(Comparator c)Constructs a new, empty map, sorted according to the given comparator.
All keys inserted into the map must be mutually comparable by
the given comparator: comparator.compare(k1, k2) must not
throw a ClassCastException for any keys k1 and
k2 in the map. If the user attempts to put a key into the
map that violates this constraint, the put(Object key, Object
value) call will throw a ClassCastException.
this.comparator = c;
| public TreeMap(Map m)Constructs a new map containing the same mappings as the given map,
sorted according to the keys' natural order. All keys inserted
into the new map must implement the Comparable interface.
Furthermore, all such keys must be mutually comparable:
k1.compareTo(k2) must not throw a ClassCastException
for any elements k1 and k2 in the map. This method
runs in n*log(n) time.
putAll(m);
| public TreeMap(SortedMap m)Constructs a new map containing the same mappings as the given
SortedMap, sorted according to the same ordering. This method
runs in linear time.
comparator = m.comparator();
try {
buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}
|
Methods Summary |
---|
void | addAllForTreeSet(java.util.SortedSet set, V defaultVal)Intended to be called only from TreeSet.addAll
try {
buildFromSorted(set.size(), set.iterator(), null, defaultVal);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}
| private void | buildFromSorted(int size, java.util.Iterator it, java.io.ObjectInputStream str, V defaultVal)Linear time tree building algorithm from sorted data. Can accept keys
and/or values from iterator or stream. This leads to too many
parameters, but seems better than alternatives. The four formats
that this method accepts are:
1) An iterator of Map.Entries. (it != null, defaultVal == null).
2) An iterator of keys. (it != null, defaultVal != null).
3) A stream of alternating serialized keys and values.
(it == null, defaultVal == null).
4) A stream of serialized keys. (it == null, defaultVal != null).
It is assumed that the comparator of the TreeMap is already set prior
to calling this method.
this.size = size;
root =
buildFromSorted(0, 0, size-1, computeRedLevel(size),
it, str, defaultVal);
| private final java.util.TreeMap$Entry | buildFromSorted(int level, int lo, int hi, int redLevel, java.util.Iterator it, java.io.ObjectInputStream str, V defaultVal)Recursive "helper method" that does the real work of the
of the previous method. Identically named parameters have
identical definitions. Additional parameters are documented below.
It is assumed that the comparator and size fields of the TreeMap are
already set prior to calling this method. (It ignores both fields.)
/*
* Strategy: The root is the middlemost element. To get to it, we
* have to first recursively construct the entire left subtree,
* so as to grab all of its elements. We can then proceed with right
* subtree.
*
* The lo and hi arguments are the minimum and maximum
* indices to pull out of the iterator or stream for current subtree.
* They are not actually indexed, we just proceed sequentially,
* ensuring that items are extracted in corresponding order.
*/
if (hi < lo) return null;
int mid = (lo + hi) / 2;
Entry<K,V> left = null;
if (lo < mid)
left = buildFromSorted(level+1, lo, mid - 1, redLevel,
it, str, defaultVal);
// extract key and/or value from iterator or stream
K key;
V value;
if (it != null) {
if (defaultVal==null) {
Map.Entry<K,V> entry = (Map.Entry<K,V>)it.next();
key = entry.getKey();
value = entry.getValue();
} else {
key = (K)it.next();
value = defaultVal;
}
} else { // use stream
key = (K) str.readObject();
value = (defaultVal != null ? defaultVal : (V) str.readObject());
}
Entry<K,V> middle = new Entry<K,V>(key, value, null);
// color nodes in non-full bottommost level red
if (level == redLevel)
middle.color = RED;
if (left != null) {
middle.left = left;
left.parent = middle;
}
if (mid < hi) {
Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
it, str, defaultVal);
middle.right = right;
right.parent = middle;
}
return middle;
| public void | clear()Removes all mappings from this TreeMap.
modCount++;
size = 0;
root = null;
| public java.lang.Object | clone()Returns a shallow copy of this TreeMap instance. (The keys and
values themselves are not cloned.)
TreeMap<K,V> clone = null;
try {
clone = (TreeMap<K,V>) super.clone();
} catch (CloneNotSupportedException e) {
throw new InternalError();
}
// Put clone into "virgin" state (except for comparator)
clone.root = null;
clone.size = 0;
clone.modCount = 0;
clone.entrySet = null;
// Initialize clone with our mappings
try {
clone.buildFromSorted(size, entrySet().iterator(), null, null);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}
return clone;
| private static boolean | colorOf(java.util.TreeMap$Entry p)Balancing operations.
Implementations of rebalancings during insertion and deletion are
slightly different than the CLR version. Rather than using dummy
nilnodes, we use a set of accessors that deal properly with null. They
are used to avoid messiness surrounding nullness checks in the main
algorithms.
return (p == null ? BLACK : p.color);
| public java.util.Comparator | comparator()Returns the comparator used to order this map, or null if this
map uses its keys' natural order.
return comparator;
| private int | compare(K k1, K k2)Compares two keys using the correct comparison method for this TreeMap.
return (comparator==null ? ((Comparable</*-*/K>)k1).compareTo(k2)
: comparator.compare((K)k1, (K)k2));
| private static int | computeRedLevel(int sz)Find the level down to which to assign all nodes BLACK. This is the
last `full' level of the complete binary tree produced by
buildTree. The remaining nodes are colored RED. (This makes a `nice'
set of color assignments wrt future insertions.) This level number is
computed by finding the number of splits needed to reach the zeroeth
node. (The answer is ~lg(N), but in any case must be computed by same
quick O(lg(N)) loop.)
int level = 0;
for (int m = sz - 1; m >= 0; m = m / 2 - 1)
level++;
return level;
| public boolean | containsKey(java.lang.Object key)Returns true if this map contains a mapping for the specified
key.
return getEntry(key) != null;
| public boolean | containsValue(java.lang.Object value)Returns true if this map maps one or more keys to the
specified value. More formally, returns true if and only if
this map contains at least one mapping to a value v such
that (value==null ? v==null : value.equals(v)). This
operation will probably require time linear in the Map size for most
implementations of Map.
return (root==null ? false :
(value==null ? valueSearchNull(root)
: valueSearchNonNull(root, value)));
| private void | decrementSize() modCount++; size--;
| private void | deleteEntry(java.util.TreeMap$Entry p)Delete node p, and then rebalance the tree.
decrementSize();
// If strictly internal, copy successor's element to p and then make p
// point to successor.
if (p.left != null && p.right != null) {
Entry<K,V> s = successor (p);
p.key = s.key;
p.value = s.value;
p = s;
} // p has 2 children
// Start fixup at replacement node, if it exists.
Entry<K,V> replacement = (p.left != null ? p.left : p.right);
if (replacement != null) {
// Link replacement to parent
replacement.parent = p.parent;
if (p.parent == null)
root = replacement;
else if (p == p.parent.left)
p.parent.left = replacement;
else
p.parent.right = replacement;
// Null out links so they are OK to use by fixAfterDeletion.
p.left = p.right = p.parent = null;
// Fix replacement
if (p.color == BLACK)
fixAfterDeletion(replacement);
} else if (p.parent == null) { // return if we are the only node.
root = null;
} else { // No children. Use self as phantom replacement and unlink.
if (p.color == BLACK)
fixAfterDeletion(p);
if (p.parent != null) {
if (p == p.parent.left)
p.parent.left = null;
else if (p == p.parent.right)
p.parent.right = null;
p.parent = null;
}
}
| public java.util.Set | entrySet()Returns a set view of the mappings contained in this map. The set's
iterator returns the mappings in ascending key order. Each element in
the returned set is a Map.Entry. The set is backed by this
map, so changes to this map are reflected in the set, and vice-versa.
The set supports element removal, which removes the corresponding
mapping from the TreeMap, through the Iterator.remove,
Set.remove, removeAll, retainAll and
clear operations. It does not support the add or
addAll operations.
if (entrySet == null) {
entrySet = new AbstractSet<Map.Entry<K,V>>() {
public Iterator<Map.Entry<K,V>> iterator() {
return new EntryIterator();
}
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
V value = entry.getValue();
Entry<K,V> p = getEntry(entry.getKey());
return p != null && valEquals(p.getValue(), value);
}
public boolean remove(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
V value = entry.getValue();
Entry<K,V> p = getEntry(entry.getKey());
if (p != null && valEquals(p.getValue(), value)) {
deleteEntry(p);
return true;
}
return false;
}
public int size() {
return TreeMap.this.size();
}
public void clear() {
TreeMap.this.clear();
}
};
}
return entrySet;
| private java.util.TreeMap$Entry | firstEntry()Returns the first Entry in the TreeMap (according to the TreeMap's
key-sort function). Returns null if the TreeMap is empty.
Entry<K,V> p = root;
if (p != null)
while (p.left != null)
p = p.left;
return p;
| public K | firstKey()Returns the first (lowest) key currently in this sorted map.
return key(firstEntry());
| private void | fixAfterDeletion(java.util.TreeMap$Entry x)From CLR
while (x != root && colorOf(x) == BLACK) {
if (x == leftOf(parentOf(x))) {
Entry<K,V> sib = rightOf(parentOf(x));
if (colorOf(sib) == RED) {
setColor(sib, BLACK);
setColor(parentOf(x), RED);
rotateLeft(parentOf(x));
sib = rightOf(parentOf(x));
}
if (colorOf(leftOf(sib)) == BLACK &&
colorOf(rightOf(sib)) == BLACK) {
setColor(sib, RED);
x = parentOf(x);
} else {
if (colorOf(rightOf(sib)) == BLACK) {
setColor(leftOf(sib), BLACK);
setColor(sib, RED);
rotateRight(sib);
sib = rightOf(parentOf(x));
}
setColor(sib, colorOf(parentOf(x)));
setColor(parentOf(x), BLACK);
setColor(rightOf(sib), BLACK);
rotateLeft(parentOf(x));
x = root;
}
} else { // symmetric
Entry<K,V> sib = leftOf(parentOf(x));
if (colorOf(sib) == RED) {
setColor(sib, BLACK);
setColor(parentOf(x), RED);
rotateRight(parentOf(x));
sib = leftOf(parentOf(x));
}
if (colorOf(rightOf(sib)) == BLACK &&
colorOf(leftOf(sib)) == BLACK) {
setColor(sib, RED);
x = parentOf(x);
} else {
if (colorOf(leftOf(sib)) == BLACK) {
setColor(rightOf(sib), BLACK);
setColor(sib, RED);
rotateLeft(sib);
sib = leftOf(parentOf(x));
}
setColor(sib, colorOf(parentOf(x)));
setColor(parentOf(x), BLACK);
setColor(leftOf(sib), BLACK);
rotateRight(parentOf(x));
x = root;
}
}
}
setColor(x, BLACK);
| private void | fixAfterInsertion(java.util.TreeMap$Entry x)From CLR
x.color = RED;
while (x != null && x != root && x.parent.color == RED) {
if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
Entry<K,V> y = rightOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {
setColor(parentOf(x), BLACK);
setColor(y, BLACK);
setColor(parentOf(parentOf(x)), RED);
x = parentOf(parentOf(x));
} else {
if (x == rightOf(parentOf(x))) {
x = parentOf(x);
rotateLeft(x);
}
setColor(parentOf(x), BLACK);
setColor(parentOf(parentOf(x)), RED);
if (parentOf(parentOf(x)) != null)
rotateRight(parentOf(parentOf(x)));
}
} else {
Entry<K,V> y = leftOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {
setColor(parentOf(x), BLACK);
setColor(y, BLACK);
setColor(parentOf(parentOf(x)), RED);
x = parentOf(parentOf(x));
} else {
if (x == leftOf(parentOf(x))) {
x = parentOf(x);
rotateRight(x);
}
setColor(parentOf(x), BLACK);
setColor(parentOf(parentOf(x)), RED);
if (parentOf(parentOf(x)) != null)
rotateLeft(parentOf(parentOf(x)));
}
}
}
root.color = BLACK;
| public V | get(java.lang.Object key)Returns the value to which this map maps the specified key. Returns
null if the map contains no mapping for this key. A return
value of null does not necessarily indicate that the
map contains no mapping for the key; it's also possible that the map
explicitly maps the key to null. The containsKey
operation may be used to distinguish these two cases.
Entry<K,V> p = getEntry(key);
return (p==null ? null : p.value);
| private java.util.TreeMap$Entry | getCeilEntry(K key)Gets the entry corresponding to the specified key; if no such entry
exists, returns the entry for the least key greater than the specified
key; if no such entry exists (i.e., the greatest key in the Tree is less
than the specified key), returns null.
Entry<K,V> p = root;
if (p==null)
return null;
while (true) {
int cmp = compare(key, p.key);
if (cmp == 0) {
return p;
} else if (cmp < 0) {
if (p.left != null)
p = p.left;
else
return p;
} else {
if (p.right != null) {
p = p.right;
} else {
Entry<K,V> parent = p.parent;
Entry<K,V> ch = p;
while (parent != null && ch == parent.right) {
ch = parent;
parent = parent.parent;
}
return parent;
}
}
}
| private java.util.TreeMap$Entry | getEntry(java.lang.Object key)Returns this map's entry for the given key, or null if the map
does not contain an entry for the key.
Entry<K,V> p = root;
K k = (K) key;
while (p != null) {
int cmp = compare(k, p.key);
if (cmp == 0)
return p;
else if (cmp < 0)
p = p.left;
else
p = p.right;
}
return null;
| private java.util.TreeMap$Entry | getPrecedingEntry(K key)Returns the entry for the greatest key less than the specified key; if
no such entry exists (i.e., the least key in the Tree is greater than
the specified key), returns null.
Entry<K,V> p = root;
if (p==null)
return null;
while (true) {
int cmp = compare(key, p.key);
if (cmp > 0) {
if (p.right != null)
p = p.right;
else
return p;
} else {
if (p.left != null) {
p = p.left;
} else {
Entry<K,V> parent = p.parent;
Entry<K,V> ch = p;
while (parent != null && ch == parent.left) {
ch = parent;
parent = parent.parent;
}
return parent;
}
}
}
| public java.util.SortedMap | headMap(K toKey)Returns a view of the portion of this map whose keys are strictly less
than toKey. The returned sorted map is backed by this map, so
changes in the returned sorted map are reflected in this map, and
vice-versa. The returned sorted map supports all optional map
operations.
The sorted map returned by this method will throw an
IllegalArgumentException if the user attempts to insert a key
greater than or equal to toKey.
Note: this method always returns a view that does not contain its
(high) endpoint. If you need a view that does contain this endpoint,
and the key type allows for calculation of the successor a given key,
merely request a headMap bounded by successor(highEndpoint).
For example, suppose that suppose that m is a sorted map whose
keys are strings. The following idiom obtains a view containing all of
the key-value mappings in m whose keys are less than or equal
to high:
SortedMap head = m.headMap(high+"\0");
return new SubMap(toKey, true);
| private void | incrementSize()
modCount++; size++;
| private static K | key(java.util.TreeMap$Entry e)Returns the key corresponding to the specified Entry. Throw
NoSuchElementException if the Entry is null.
if (e==null)
throw new NoSuchElementException();
return e.key;
| public java.util.Set | keySet()Returns a Set view of the keys contained in this map. The set's
iterator will return the keys in ascending order. The map is backed by
this TreeMap instance, so changes to this map are reflected in
the Set, and vice-versa. The Set supports element removal, which
removes the corresponding mapping from the map, via the
Iterator.remove, Set.remove, removeAll,
retainAll, and clear operations. It does not support
the add or addAll operations.
if (keySet == null) {
keySet = new AbstractSet<K>() {
public Iterator<K> iterator() {
return new KeyIterator();
}
public int size() {
return TreeMap.this.size();
}
public boolean contains(Object o) {
return containsKey(o);
}
public boolean remove(Object o) {
int oldSize = size;
TreeMap.this.remove(o);
return size != oldSize;
}
public void clear() {
TreeMap.this.clear();
}
};
}
return keySet;
| private java.util.TreeMap$Entry | lastEntry()Returns the last Entry in the TreeMap (according to the TreeMap's
key-sort function). Returns null if the TreeMap is empty.
Entry<K,V> p = root;
if (p != null)
while (p.right != null)
p = p.right;
return p;
| public K | lastKey()Returns the last (highest) key currently in this sorted map.
return key(lastEntry());
| private static java.util.TreeMap$Entry | leftOf(java.util.TreeMap$Entry p)
return (p == null) ? null: p.left;
| private static java.util.TreeMap$Entry | parentOf(java.util.TreeMap$Entry p)
return (p == null ? null: p.parent);
| public V | put(K key, V value)Associates the specified value with the specified key in this map.
If the map previously contained a mapping for this key, the old
value is replaced.
Entry<K,V> t = root;
if (t == null) {
incrementSize();
root = new Entry<K,V>(key, value, null);
return null;
}
while (true) {
int cmp = compare(key, t.key);
if (cmp == 0) {
return t.setValue(value);
} else if (cmp < 0) {
if (t.left != null) {
t = t.left;
} else {
incrementSize();
t.left = new Entry<K,V>(key, value, t);
fixAfterInsertion(t.left);
return null;
}
} else { // cmp > 0
if (t.right != null) {
t = t.right;
} else {
incrementSize();
t.right = new Entry<K,V>(key, value, t);
fixAfterInsertion(t.right);
return null;
}
}
}
| public void | putAll(java.util.Map map)Copies all of the mappings from the specified map to this map. These
mappings replace any mappings that this map had for any of the keys
currently in the specified map.
int mapSize = map.size();
if (size==0 && mapSize!=0 && map instanceof SortedMap) {
Comparator c = ((SortedMap)map).comparator();
if (c == comparator || (c != null && c.equals(comparator))) {
++modCount;
try {
buildFromSorted(mapSize, map.entrySet().iterator(),
null, null);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}
return;
}
}
super.putAll(map);
| private void | readObject(java.io.ObjectInputStream s)Reconstitute the TreeMap instance from a stream (i.e.,
deserialize it).
// Read in the Comparator and any hidden stuff
s.defaultReadObject();
// Read in size
int size = s.readInt();
buildFromSorted(size, null, s, null);
| void | readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)Intended to be called only from TreeSet.readObject
buildFromSorted(size, null, s, defaultVal);
| public V | remove(java.lang.Object key)Removes the mapping for this key from this TreeMap if present.
Entry<K,V> p = getEntry(key);
if (p == null)
return null;
V oldValue = p.value;
deleteEntry(p);
return oldValue;
| private static java.util.TreeMap$Entry | rightOf(java.util.TreeMap$Entry p)
return (p == null) ? null: p.right;
| private void | rotateLeft(java.util.TreeMap$Entry p)From CLR
Entry<K,V> r = p.right;
p.right = r.left;
if (r.left != null)
r.left.parent = p;
r.parent = p.parent;
if (p.parent == null)
root = r;
else if (p.parent.left == p)
p.parent.left = r;
else
p.parent.right = r;
r.left = p;
p.parent = r;
| private void | rotateRight(java.util.TreeMap$Entry p)From CLR
Entry<K,V> l = p.left;
p.left = l.right;
if (l.right != null) l.right.parent = p;
l.parent = p.parent;
if (p.parent == null)
root = l;
else if (p.parent.right == p)
p.parent.right = l;
else p.parent.left = l;
l.right = p;
p.parent = l;
| private static void | setColor(java.util.TreeMap$Entry p, boolean c)
if (p != null)
p.color = c;
| public int | size()Returns the number of key-value mappings in this map.
return size;
| public java.util.SortedMap | subMap(K fromKey, K toKey)Returns a view of the portion of this map whose keys range from
fromKey, inclusive, to toKey, exclusive. (If
fromKey and toKey are equal, the returned sorted map
is empty.) The returned sorted map is backed by this map, so changes
in the returned sorted map are reflected in this map, and vice-versa.
The returned sorted map supports all optional map operations.
The sorted map returned by this method will throw an
IllegalArgumentException if the user attempts to insert a key
less than fromKey or greater than or equal to
toKey.
Note: this method always returns a half-open range (which
includes its low endpoint but not its high endpoint). If you need a
closed range (which includes both endpoints), and the key type
allows for calculation of the successor a given key, merely request the
subrange from lowEndpoint to successor(highEndpoint).
For example, suppose that m is a sorted map whose keys are
strings. The following idiom obtains a view containing all of the
key-value mappings in m whose keys are between low
and high, inclusive:
SortedMap sub = m.submap(low, high+"\0");
A similar technique can be used to generate an open range (which
contains neither endpoint). The following idiom obtains a view
containing all of the key-value mappings in m whose keys are
between low and high, exclusive:
SortedMap sub = m.subMap(low+"\0", high);
return new SubMap(fromKey, toKey);
| private java.util.TreeMap$Entry | successor(java.util.TreeMap$Entry t)Returns the successor of the specified Entry, or null if no such.
if (t == null)
return null;
else if (t.right != null) {
Entry<K,V> p = t.right;
while (p.left != null)
p = p.left;
return p;
} else {
Entry<K,V> p = t.parent;
Entry<K,V> ch = t;
while (p != null && ch == p.right) {
ch = p;
p = p.parent;
}
return p;
}
| public java.util.SortedMap | tailMap(K fromKey)Returns a view of the portion of this map whose keys are greater than
or equal to fromKey. The returned sorted map is backed by
this map, so changes in the returned sorted map are reflected in this
map, and vice-versa. The returned sorted map supports all optional map
operations.
The sorted map returned by this method will throw an
IllegalArgumentException if the user attempts to insert a key
less than fromKey.
Note: this method always returns a view that contains its (low)
endpoint. If you need a view that does not contain this endpoint, and
the element type allows for calculation of the successor a given value,
merely request a tailMap bounded by successor(lowEndpoint).
For example, suppose that m is a sorted map whose keys
are strings. The following idiom obtains a view containing
all of the key-value mappings in m whose keys are strictly
greater than low:
SortedMap tail = m.tailMap(low+"\0");
return new SubMap(fromKey, false);
| private static boolean | valEquals(java.lang.Object o1, java.lang.Object o2)Test two values for equality. Differs from o1.equals(o2) only in
that it copes with null o1 properly.
return (o1==null ? o2==null : o1.equals(o2));
| private boolean | valueSearchNonNull(java.util.TreeMap$Entry n, java.lang.Object value)
// Check this node for the value
if (value.equals(n.value))
return true;
// Check left and right subtrees for value
return (n.left != null && valueSearchNonNull(n.left, value)) ||
(n.right != null && valueSearchNonNull(n.right, value));
| private boolean | valueSearchNull(java.util.TreeMap$Entry n)
if (n.value == null)
return true;
// Check left and right subtrees for value
return (n.left != null && valueSearchNull(n.left)) ||
(n.right != null && valueSearchNull(n.right));
| public java.util.Collection | values()Returns a collection view of the values contained in this map. The
collection's iterator will return the values in the order that their
corresponding keys appear in the tree. The collection is backed by
this TreeMap instance, so changes to this map are reflected in
the collection, and vice-versa. The collection supports element
removal, which removes the corresponding mapping from the map through
the Iterator.remove, Collection.remove,
removeAll, retainAll, and clear operations.
It does not support the add or addAll operations.
if (values == null) {
values = new AbstractCollection<V>() {
public Iterator<V> iterator() {
return new ValueIterator();
}
public int size() {
return TreeMap.this.size();
}
public boolean contains(Object o) {
for (Entry<K,V> e = firstEntry(); e != null; e = successor(e))
if (valEquals(e.getValue(), o))
return true;
return false;
}
public boolean remove(Object o) {
for (Entry<K,V> e = firstEntry(); e != null; e = successor(e)) {
if (valEquals(e.getValue(), o)) {
deleteEntry(e);
return true;
}
}
return false;
}
public void clear() {
TreeMap.this.clear();
}
};
}
return values;
| private void | writeObject(java.io.ObjectOutputStream s)Save the state of the TreeMap instance to a stream (i.e.,
serialize it).
// Write out the Comparator and any hidden stuff
s.defaultWriteObject();
// Write out size (number of Mappings)
s.writeInt(size);
// Write out keys and values (alternating)
for (Iterator<Map.Entry<K,V>> i = entrySet().iterator(); i.hasNext(); ) {
Map.Entry<K,V> e = i.next();
s.writeObject(e.getKey());
s.writeObject(e.getValue());
}
|
|