RSAEnginepublic class RSAEngine extends Object implements org.bouncycastle.crypto.AsymmetricBlockCipherthis does your basic RSA algorithm. |
Fields Summary |
---|
private org.bouncycastle.crypto.params.RSAKeyParameters | key | private boolean | forEncryption |
Methods Summary |
---|
public int | getInputBlockSize()Return the maximum size for an input block to this engine.
For RSA this is always one byte less than the key size on
encryption, and the same length as the key size on decryption.
int bitSize = key.getModulus().bitLength();
if (forEncryption)
{
return (bitSize + 7) / 8 - 1;
}
else
{
return (bitSize + 7) / 8;
}
| public int | getOutputBlockSize()Return the maximum size for an output block to this engine.
For RSA this is always one byte less than the key size on
decryption, and the same length as the key size on encryption.
int bitSize = key.getModulus().bitLength();
if (forEncryption)
{
return (bitSize + 7) / 8;
}
else
{
return (bitSize + 7) / 8 - 1;
}
| public void | init(boolean forEncryption, org.bouncycastle.crypto.CipherParameters param)initialise the RSA engine.
this.key = (RSAKeyParameters)param;
this.forEncryption = forEncryption;
| public byte[] | processBlock(byte[] in, int inOff, int inLen)Process a single block using the basic RSA algorithm.
if (inLen > (getInputBlockSize() + 1))
{
throw new DataLengthException("input too large for RSA cipher.\n");
}
else if (inLen == (getInputBlockSize() + 1) && (in[inOff] & 0x80) != 0)
{
throw new DataLengthException("input too large for RSA cipher.\n");
}
byte[] block;
if (inOff != 0 || inLen != in.length)
{
block = new byte[inLen];
System.arraycopy(in, inOff, block, 0, inLen);
}
else
{
block = in;
}
BigInteger input = new BigInteger(1, block);
byte[] output;
if (key instanceof RSAPrivateCrtKeyParameters)
{
//
// we have the extra factors, use the Chinese Remainder Theorem - the author
// wishes to express his thanks to Dirk Bonekaemper at rtsffm.com for
// advice regarding the expression of this.
//
RSAPrivateCrtKeyParameters crtKey = (RSAPrivateCrtKeyParameters)key;
BigInteger p = crtKey.getP();
BigInteger q = crtKey.getQ();
BigInteger dP = crtKey.getDP();
BigInteger dQ = crtKey.getDQ();
BigInteger qInv = crtKey.getQInv();
BigInteger mP, mQ, h, m;
// mP = ((input mod p) ^ dP)) mod p
mP = (input.remainder(p)).modPow(dP, p);
// mQ = ((input mod q) ^ dQ)) mod q
mQ = (input.remainder(q)).modPow(dQ, q);
// h = qInv * (mP - mQ) mod p
h = mP.subtract(mQ);
h = h.multiply(qInv);
h = h.mod(p); // mod (in Java) returns the positive residual
// m = h * q + mQ
m = h.multiply(q);
m = m.add(mQ);
output = m.toByteArray();
}
else
{
output = input.modPow(
key.getExponent(), key.getModulus()).toByteArray();
}
if (forEncryption)
{
if (output[0] == 0 && output.length > getOutputBlockSize()) // have ended up with an extra zero byte, copy down.
{
byte[] tmp = new byte[output.length - 1];
System.arraycopy(output, 1, tmp, 0, tmp.length);
return tmp;
}
if (output.length < getOutputBlockSize()) // have ended up with less bytes than normal, lengthen
{
byte[] tmp = new byte[getOutputBlockSize()];
System.arraycopy(output, 0, tmp, tmp.length - output.length, output.length);
return tmp;
}
}
else
{
if (output[0] == 0) // have ended up with an extra zero byte, copy down.
{
byte[] tmp = new byte[output.length - 1];
System.arraycopy(output, 1, tmp, 0, tmp.length);
return tmp;
}
}
return output;
|
|