SHA1Digestpublic class SHA1Digest extends GeneralDigest implementation of SHA-1 as outlined in "Handbook of Applied Cryptography", pages 346 - 349.
It is interesting to ponder why the, apart from the extra IV, the other difference here from MD5
is the "endienness" of the word processing! |
Fields Summary |
---|
private static final int | DIGEST_LENGTH | private int | H1 | private int | H2 | private int | H3 | private int | H4 | private int | H5 | private int[] | X | private int | xOff | private static final int | Y1 | private static final int | Y2 | private static final int | Y3 | private static final int | Y4 |
Constructors Summary |
---|
public SHA1Digest()Standard constructor
reset();
| public SHA1Digest(SHA1Digest t)Copy constructor. This will copy the state of the provided
message digest.
super(t);
H1 = t.H1;
H2 = t.H2;
H3 = t.H3;
H4 = t.H4;
H5 = t.H5;
System.arraycopy(t.X, 0, X, 0, t.X.length);
xOff = t.xOff;
|
Methods Summary |
---|
public int | doFinal(byte[] out, int outOff)
finish();
unpackWord(H1, out, outOff);
unpackWord(H2, out, outOff + 4);
unpackWord(H3, out, outOff + 8);
unpackWord(H4, out, outOff + 12);
unpackWord(H5, out, outOff + 16);
reset();
return DIGEST_LENGTH;
| private int | f(int u, int v, int w)
return ((u & v) | ((~u) & w));
| private int | g(int u, int v, int w)
return ((u & v) | (u & w) | (v & w));
| public java.lang.String | getAlgorithmName()
return "SHA-1";
| public int | getDigestSize()
return DIGEST_LENGTH;
| private int | h(int u, int v, int w)
return (u ^ v ^ w);
| protected void | processBlock()
//
// expand 16 word block into 80 word block.
//
for (int i = 16; i <= 79; i++)
{
X[i] = rotateLeft((X[i - 3] ^ X[i - 8] ^ X[i - 14] ^ X[i - 16]), 1);
}
//
// set up working variables.
//
int A = H1;
int B = H2;
int C = H3;
int D = H4;
int E = H5;
//
// round 1
//
for (int j = 0; j <= 19; j++)
{
int t = rotateLeft(A, 5) + f(B, C, D) + E + X[j] + Y1;
E = D;
D = C;
C = rotateLeft(B, 30);
B = A;
A = t;
}
//
// round 2
//
for (int j = 20; j <= 39; j++)
{
int t = rotateLeft(A, 5) + h(B, C, D) + E + X[j] + Y2;
E = D;
D = C;
C = rotateLeft(B, 30);
B = A;
A = t;
}
//
// round 3
//
for (int j = 40; j <= 59; j++)
{
int t = rotateLeft(A, 5) + g(B, C, D) + E + X[j] + Y3;
E = D;
D = C;
C = rotateLeft(B, 30);
B = A;
A = t;
}
//
// round 4
//
for (int j = 60; j <= 79; j++)
{
int t = rotateLeft(A, 5) + h(B, C, D) + E + X[j] + Y4;
E = D;
D = C;
C = rotateLeft(B, 30);
B = A;
A = t;
}
H1 += A;
H2 += B;
H3 += C;
H4 += D;
H5 += E;
//
// reset the offset and clean out the word buffer.
//
xOff = 0;
for (int i = 0; i != X.length; i++)
{
X[i] = 0;
}
| protected void | processLength(long bitLength)
if (xOff > 14)
{
processBlock();
}
X[14] = (int)(bitLength >>> 32);
X[15] = (int)(bitLength & 0xffffffff);
| protected void | processWord(byte[] in, int inOff)
X[xOff++] = ((in[inOff] & 0xff) << 24) | ((in[inOff + 1] & 0xff) << 16)
| ((in[inOff + 2] & 0xff) << 8) | ((in[inOff + 3] & 0xff));
if (xOff == 16)
{
processBlock();
}
| public void | reset()reset the chaining variables
super.reset();
H1 = 0x67452301;
H2 = 0xefcdab89;
H3 = 0x98badcfe;
H4 = 0x10325476;
H5 = 0xc3d2e1f0;
xOff = 0;
for (int i = 0; i != X.length; i++)
{
X[i] = 0;
}
| private int | rotateLeft(int x, int n)
return (x << n) | (x >>> (32 - n));
| private void | unpackWord(int word, byte[] out, int outOff)
out[outOff] = (byte)(word >>> 24);
out[outOff + 1] = (byte)(word >>> 16);
out[outOff + 2] = (byte)(word >>> 8);
out[outOff + 3] = (byte)word;
|
|