Methods Summary |
---|
void | add(java.math.MutableBigInteger addend)Adds the contents of two MutableBigInteger objects.The result
is placed within this MutableBigInteger.
The contents of the addend are not changed.
int x = intLen;
int y = addend.intLen;
int resultLen = (intLen > addend.intLen ? intLen : addend.intLen);
int[] result = (value.length < resultLen ? new int[resultLen] : value);
int rstart = result.length-1;
long sum = 0;
// Add common parts of both numbers
while(x>0 && y>0) {
x--; y--;
sum = (value[x+offset] & LONG_MASK) +
(addend.value[y+addend.offset] & LONG_MASK) + (sum >>> 32);
result[rstart--] = (int)sum;
}
// Add remainder of the longer number
while(x>0) {
x--;
sum = (value[x+offset] & LONG_MASK) + (sum >>> 32);
result[rstart--] = (int)sum;
}
while(y>0) {
y--;
sum = (addend.value[y+addend.offset] & LONG_MASK) + (sum >>> 32);
result[rstart--] = (int)sum;
}
if ((sum >>> 32) > 0) { // Result must grow in length
resultLen++;
if (result.length < resultLen) {
int temp[] = new int[resultLen];
for (int i=resultLen-1; i>0; i--)
temp[i] = result[i-1];
temp[0] = 1;
result = temp;
} else {
result[rstart--] = 1;
}
}
value = result;
intLen = resultLen;
offset = result.length - resultLen;
|
private java.math.MutableBigInteger | binaryGCD(java.math.MutableBigInteger v)Calculate GCD of this and v.
Assumes that this and v are not zero.
// Algorithm B from Knuth section 4.5.2
MutableBigInteger u = this;
MutableBigInteger q = new MutableBigInteger(),
r = new MutableBigInteger();
// step B1
int s1 = u.getLowestSetBit();
int s2 = v.getLowestSetBit();
int k = (s1 < s2) ? s1 : s2;
if (k != 0) {
u.rightShift(k);
v.rightShift(k);
}
// step B2
boolean uOdd = (k==s1);
MutableBigInteger t = uOdd ? v: u;
int tsign = uOdd ? -1 : 1;
int lb;
while ((lb = t.getLowestSetBit()) >= 0) {
// steps B3 and B4
t.rightShift(lb);
// step B5
if (tsign > 0)
u = t;
else
v = t;
// Special case one word numbers
if (u.intLen < 2 && v.intLen < 2) {
int x = u.value[u.offset];
int y = v.value[v.offset];
x = binaryGcd(x, y);
r.value[0] = x;
r.intLen = 1;
r.offset = 0;
if (k > 0)
r.leftShift(k);
return r;
}
// step B6
if ((tsign = u.difference(v)) == 0)
break;
t = (tsign >= 0) ? u : v;
}
if (k > 0)
u.leftShift(k);
return u;
|
static int | binaryGcd(int a, int b)Calculate GCD of a and b interpreted as unsigned integers.
if (b==0)
return a;
if (a==0)
return b;
int x;
int aZeros = 0;
while ((x = (int)a & 0xff) == 0) {
a >>>= 8;
aZeros += 8;
}
int y = BigInteger.trailingZeroTable[x];
aZeros += y;
a >>>= y;
int bZeros = 0;
while ((x = (int)b & 0xff) == 0) {
b >>>= 8;
bZeros += 8;
}
y = BigInteger.trailingZeroTable[x];
bZeros += y;
b >>>= y;
int t = (aZeros < bZeros ? aZeros : bZeros);
while (a != b) {
if ((a+0x80000000) > (b+0x80000000)) { // a > b as unsigned
a -= b;
while ((x = (int)a & 0xff) == 0)
a >>>= 8;
a >>>= BigInteger.trailingZeroTable[x];
} else {
b -= a;
while ((x = (int)b & 0xff) == 0)
b >>>= 8;
b >>>= BigInteger.trailingZeroTable[x];
}
}
return a<<t;
|
void | clear()Clear out a MutableBigInteger for reuse.
offset = intLen = 0;
for (int index=0, n=value.length; index < n; index++)
value[index] = 0;
|
final int | compare(java.math.MutableBigInteger b)Compare the magnitude of two MutableBigIntegers. Returns -1, 0 or 1
as this MutableBigInteger is numerically less than, equal to, or
greater than b.
if (intLen < b.intLen)
return -1;
if (intLen > b.intLen)
return 1;
for (int i=0; i<intLen; i++) {
int b1 = value[offset+i] + 0x80000000;
int b2 = b.value[b.offset+i] + 0x80000000;
if (b1 < b2)
return -1;
if (b1 > b2)
return 1;
}
return 0;
|
void | copyValue(java.math.MutableBigInteger val)Sets this MutableBigInteger's value array to a copy of the specified
array. The intLen is set to the length of the new array.
int len = val.intLen;
if (value.length < len)
value = new int[len];
for(int i=0; i<len; i++)
value[i] = val.value[val.offset+i];
intLen = len;
offset = 0;
|
void | copyValue(int[] val)Sets this MutableBigInteger's value array to a copy of the specified
array. The intLen is set to the length of the specified array.
int len = val.length;
if (value.length < len)
value = new int[len];
for(int i=0; i<len; i++)
value[i] = val[i];
intLen = len;
offset = 0;
|
private int | difference(java.math.MutableBigInteger b)Subtracts the smaller of a and b from the larger and places the result
into the larger. Returns 1 if the answer is in a, -1 if in b, 0 if no
operation was performed.
MutableBigInteger a = this;
int sign = a.compare(b);
if (sign ==0)
return 0;
if (sign < 0) {
MutableBigInteger tmp = a;
a = b;
b = tmp;
}
long diff = 0;
int x = a.intLen;
int y = b.intLen;
// Subtract common parts of both numbers
while (y>0) {
x--; y--;
diff = (a.value[a.offset+ x] & LONG_MASK) -
(b.value[b.offset+ y] & LONG_MASK) - ((int)-(diff>>32));
a.value[a.offset+x] = (int)diff;
}
// Subtract remainder of longer number
while (x>0) {
x--;
diff = (a.value[a.offset+ x] & LONG_MASK) - ((int)-(diff>>32));
a.value[a.offset+x] = (int)diff;
}
a.normalize();
return sign;
|
private void | divWord(int[] result, long n, int d)This method divides a long quantity by an int to estimate
qhat for two multi precision numbers. It is used when
the signed value of n is less than zero.
long dLong = d & LONG_MASK;
if (dLong == 1) {
result[0] = (int)n;
result[1] = 0;
return;
}
// Approximate the quotient and remainder
long q = (n >>> 1) / (dLong >>> 1);
long r = n - q*dLong;
// Correct the approximation
while (r < 0) {
r += dLong;
q--;
}
while (r >= dLong) {
r -= dLong;
q++;
}
// n - q*dlong == r && 0 <= r <dLong, hence we're done.
result[0] = (int)q;
result[1] = (int)r;
|
private int | divadd(int[] a, int[] result, int offset)A primitive used for division. This method adds in one multiple of the
divisor a back to the dividend result at a specified offset. It is used
when qhat was estimated too large, and must be adjusted.
long carry = 0;
for (int j=a.length-1; j >= 0; j--) {
long sum = (a[j] & LONG_MASK) +
(result[j+offset] & LONG_MASK) + carry;
result[j+offset] = (int)sum;
carry = sum >>> 32;
}
return (int)carry;
|
void | divide(java.math.MutableBigInteger b, java.math.MutableBigInteger quotient, java.math.MutableBigInteger rem)Calculates the quotient and remainder of this div b and places them
in the MutableBigInteger objects provided.
Uses Algorithm D in Knuth section 4.3.1.
Many optimizations to that algorithm have been adapted from the Colin
Plumb C library.
It special cases one word divisors for speed.
The contents of a and b are not changed.
if (b.intLen == 0)
throw new ArithmeticException("BigInteger divide by zero");
// Dividend is zero
if (intLen == 0) {
quotient.intLen = quotient.offset = rem.intLen = rem.offset = 0;
return;
}
int cmp = compare(b);
// Dividend less than divisor
if (cmp < 0) {
quotient.intLen = quotient.offset = 0;
rem.copyValue(this);
return;
}
// Dividend equal to divisor
if (cmp == 0) {
quotient.value[0] = quotient.intLen = 1;
quotient.offset = rem.intLen = rem.offset = 0;
return;
}
quotient.clear();
// Special case one word divisor
if (b.intLen == 1) {
rem.copyValue(this);
rem.divideOneWord(b.value[b.offset], quotient);
return;
}
// Copy divisor value to protect divisor
int[] d = new int[b.intLen];
for(int i=0; i<b.intLen; i++)
d[i] = b.value[b.offset+i];
int dlen = b.intLen;
// Remainder starts as dividend with space for a leading zero
if (rem.value.length < intLen +1)
rem.value = new int[intLen+1];
for (int i=0; i<intLen; i++)
rem.value[i+1] = value[i+offset];
rem.intLen = intLen;
rem.offset = 1;
int nlen = rem.intLen;
// Set the quotient size
int limit = nlen - dlen + 1;
if (quotient.value.length < limit) {
quotient.value = new int[limit];
quotient.offset = 0;
}
quotient.intLen = limit;
int[] q = quotient.value;
// D1 normalize the divisor
int shift = 32 - BigInteger.bitLen(d[0]);
if (shift > 0) {
// First shift will not grow array
BigInteger.primitiveLeftShift(d, dlen, shift);
// But this one might
rem.leftShift(shift);
}
// Must insert leading 0 in rem if its length did not change
if (rem.intLen == nlen) {
rem.offset = 0;
rem.value[0] = 0;
rem.intLen++;
}
int dh = d[0];
long dhLong = dh & LONG_MASK;
int dl = d[1];
int[] qWord = new int[2];
// D2 Initialize j
for(int j=0; j<limit; j++) {
// D3 Calculate qhat
// estimate qhat
int qhat = 0;
int qrem = 0;
boolean skipCorrection = false;
int nh = rem.value[j+rem.offset];
int nh2 = nh + 0x80000000;
int nm = rem.value[j+1+rem.offset];
if (nh == dh) {
qhat = ~0;
qrem = nh + nm;
skipCorrection = qrem + 0x80000000 < nh2;
} else {
long nChunk = (((long)nh) << 32) | (nm & LONG_MASK);
if (nChunk >= 0) {
qhat = (int) (nChunk / dhLong);
qrem = (int) (nChunk - (qhat * dhLong));
} else {
divWord(qWord, nChunk, dh);
qhat = qWord[0];
qrem = qWord[1];
}
}
if (qhat == 0)
continue;
if (!skipCorrection) { // Correct qhat
long nl = rem.value[j+2+rem.offset] & LONG_MASK;
long rs = ((qrem & LONG_MASK) << 32) | nl;
long estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK);
if (unsignedLongCompare(estProduct, rs)) {
qhat--;
qrem = (int)((qrem & LONG_MASK) + dhLong);
if ((qrem & LONG_MASK) >= dhLong) {
estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK);
rs = ((qrem & LONG_MASK) << 32) | nl;
if (unsignedLongCompare(estProduct, rs))
qhat--;
}
}
}
// D4 Multiply and subtract
rem.value[j+rem.offset] = 0;
int borrow = mulsub(rem.value, d, qhat, dlen, j+rem.offset);
// D5 Test remainder
if (borrow + 0x80000000 > nh2) {
// D6 Add back
divadd(d, rem.value, j+1+rem.offset);
qhat--;
}
// Store the quotient digit
q[j] = qhat;
} // D7 loop on j
// D8 Unnormalize
if (shift > 0)
rem.rightShift(shift);
rem.normalize();
quotient.normalize();
|
void | divideOneWord(int divisor, java.math.MutableBigInteger quotient)This method is used for division of an n word dividend by a one word
divisor. The quotient is placed into quotient. The one word divisor is
specified by divisor. The value of this MutableBigInteger is the
dividend at invocation but is replaced by the remainder.
NOTE: The value of this MutableBigInteger is modified by this method.
long divLong = divisor & LONG_MASK;
// Special case of one word dividend
if (intLen == 1) {
long remValue = value[offset] & LONG_MASK;
quotient.value[0] = (int) (remValue / divLong);
quotient.intLen = (quotient.value[0] == 0) ? 0 : 1;
quotient.offset = 0;
value[0] = (int) (remValue - (quotient.value[0] * divLong));
offset = 0;
intLen = (value[0] == 0) ? 0 : 1;
return;
}
if (quotient.value.length < intLen)
quotient.value = new int[intLen];
quotient.offset = 0;
quotient.intLen = intLen;
// Normalize the divisor
int shift = 32 - BigInteger.bitLen(divisor);
int rem = value[offset];
long remLong = rem & LONG_MASK;
if (remLong < divLong) {
quotient.value[0] = 0;
} else {
quotient.value[0] = (int)(remLong/divLong);
rem = (int) (remLong - (quotient.value[0] * divLong));
remLong = rem & LONG_MASK;
}
int xlen = intLen;
int[] qWord = new int[2];
while (--xlen > 0) {
long dividendEstimate = (remLong<<32) |
(value[offset + intLen - xlen] & LONG_MASK);
if (dividendEstimate >= 0) {
qWord[0] = (int) (dividendEstimate/divLong);
qWord[1] = (int) (dividendEstimate - (qWord[0] * divLong));
} else {
divWord(qWord, dividendEstimate, divisor);
}
quotient.value[intLen - xlen] = (int)qWord[0];
rem = (int)qWord[1];
remLong = rem & LONG_MASK;
}
// Unnormalize
if (shift > 0)
value[0] = rem %= divisor;
else
value[0] = rem;
intLen = (value[0] == 0) ? 0 : 1;
quotient.normalize();
|
private final void | ensureCapacity(int len)If this MutableBigInteger cannot hold len words, increase the size
of the value array to len words.
if (value.length < len) {
value = new int[len];
offset = 0;
intLen = len;
}
|
java.math.MutableBigInteger | euclidModInverse(int k)Uses the extended Euclidean algorithm to compute the modInverse of base
mod a modulus that is a power of 2. The modulus is 2^k.
MutableBigInteger b = new MutableBigInteger(1);
b.leftShift(k);
MutableBigInteger mod = new MutableBigInteger(b);
MutableBigInteger a = new MutableBigInteger(this);
MutableBigInteger q = new MutableBigInteger();
MutableBigInteger r = new MutableBigInteger();
b.divide(a, q, r);
MutableBigInteger swapper = b; b = r; r = swapper;
MutableBigInteger t1 = new MutableBigInteger(q);
MutableBigInteger t0 = new MutableBigInteger(1);
MutableBigInteger temp = new MutableBigInteger();
while (!b.isOne()) {
a.divide(b, q, r);
if (r.intLen == 0)
throw new ArithmeticException("BigInteger not invertible.");
swapper = r; r = a; a = swapper;
if (q.intLen == 1)
t1.mul(q.value[q.offset], temp);
else
q.multiply(t1, temp);
swapper = q; q = temp; temp = swapper;
t0.add(q);
if (a.isOne())
return t0;
b.divide(a, q, r);
if (r.intLen == 0)
throw new ArithmeticException("BigInteger not invertible.");
swapper = b; b = r; r = swapper;
if (q.intLen == 1)
t0.mul(q.value[q.offset], temp);
else
q.multiply(t0, temp);
swapper = q; q = temp; temp = swapper;
t1.add(q);
}
mod.subtract(t1);
return mod;
|
static java.math.MutableBigInteger | fixup(java.math.MutableBigInteger c, java.math.MutableBigInteger p, int k)
MutableBigInteger temp = new MutableBigInteger();
// Set r to the multiplicative inverse of p mod 2^32
int r = -inverseMod32(p.value[p.offset+p.intLen-1]);
for(int i=0, numWords = k >> 5; i<numWords; i++) {
// V = R * c (mod 2^j)
int v = r * c.value[c.offset + c.intLen-1];
// c = c + (v * p)
p.mul(v, temp);
c.add(temp);
// c = c / 2^j
c.intLen--;
}
int numBits = k & 0x1f;
if (numBits != 0) {
// V = R * c (mod 2^j)
int v = r * c.value[c.offset + c.intLen-1];
v &= ((1<<numBits) - 1);
// c = c + (v * p)
p.mul(v, temp);
c.add(temp);
// c = c / 2^j
c.rightShift(numBits);
}
// In theory, c may be greater than p at this point (Very rare!)
while (c.compare(p) >= 0)
c.subtract(p);
return c;
|
private final int | getInt(int index)Return the int in use in this MutableBigInteger at the specified
index. This method is not used because it is not inlined on all
platforms.
return value[offset+index];
|
private final long | getLong(int index)Return a long which is equal to the unsigned value of the int in
use in this MutableBigInteger at the specified index. This method is
not used because it is not inlined on all platforms.
return value[offset+index] & LONG_MASK;
|
private final int | getLowestSetBit()Return the index of the lowest set bit in this MutableBigInteger. If the
magnitude of this MutableBigInteger is zero, -1 is returned.
if (intLen == 0)
return -1;
int j, b;
for (j=intLen-1; (j>0) && (value[j+offset]==0); j--)
;
b = value[j+offset];
if (b==0)
return -1;
return ((intLen-1-j)<<5) + BigInteger.trailingZeroCnt(b);
|
java.math.MutableBigInteger | hybridGCD(java.math.MutableBigInteger b)Calculate GCD of this and b. This and b are changed by the computation.
// Use Euclid's algorithm until the numbers are approximately the
// same length, then use the binary GCD algorithm to find the GCD.
MutableBigInteger a = this;
MutableBigInteger q = new MutableBigInteger(),
r = new MutableBigInteger();
while (b.intLen != 0) {
if (Math.abs(a.intLen - b.intLen) < 2)
return a.binaryGCD(b);
a.divide(b, q, r);
MutableBigInteger swapper = a;
a = b; b = r; r = swapper;
}
return a;
|
static int | inverseMod32(int val)
// Newton's iteration!
int t = val;
t *= 2 - val*t;
t *= 2 - val*t;
t *= 2 - val*t;
t *= 2 - val*t;
return t;
|
boolean | isEven()Returns true iff this MutableBigInteger is even.
return (intLen == 0) || ((value[offset + intLen - 1] & 1) == 0);
|
boolean | isNormal()Returns true iff this MutableBigInteger is in normal form. A
MutableBigInteger is in normal form if it has no leading zeros
after the offset, and intLen + offset <= value.length.
if (intLen + offset > value.length)
return false;
if (intLen ==0)
return true;
return (value[offset] != 0);
|
boolean | isOdd()Returns true iff this MutableBigInteger is odd.
return ((value[offset + intLen - 1] & 1) == 1);
|
boolean | isOne()Returns true iff this MutableBigInteger has a value of one.
return (intLen == 1) && (value[offset] == 1);
|
boolean | isZero()Returns true iff this MutableBigInteger has a value of zero.
return (intLen == 0);
|
void | leftShift(int n)Left shift this MutableBigInteger n bits.
/*
* If there is enough storage space in this MutableBigInteger already
* the available space will be used. Space to the right of the used
* ints in the value array is faster to utilize, so the extra space
* will be taken from the right if possible.
*/
if (intLen == 0)
return;
int nInts = n >>> 5;
int nBits = n&0x1F;
int bitsInHighWord = BigInteger.bitLen(value[offset]);
// If shift can be done without moving words, do so
if (n <= (32-bitsInHighWord)) {
primitiveLeftShift(nBits);
return;
}
int newLen = intLen + nInts +1;
if (nBits <= (32-bitsInHighWord))
newLen--;
if (value.length < newLen) {
// The array must grow
int[] result = new int[newLen];
for (int i=0; i<intLen; i++)
result[i] = value[offset+i];
setValue(result, newLen);
} else if (value.length - offset >= newLen) {
// Use space on right
for(int i=0; i<newLen - intLen; i++)
value[offset+intLen+i] = 0;
} else {
// Must use space on left
for (int i=0; i<intLen; i++)
value[i] = value[offset+i];
for (int i=intLen; i<newLen; i++)
value[i] = 0;
offset = 0;
}
intLen = newLen;
if (nBits == 0)
return;
if (nBits <= (32-bitsInHighWord))
primitiveLeftShift(nBits);
else
primitiveRightShift(32 -nBits);
|
private java.math.MutableBigInteger | modInverse(java.math.MutableBigInteger mod)Calculate the multiplicative inverse of this mod mod, where mod is odd.
This and mod are not changed by the calculation.
This method implements an algorithm due to Richard Schroeppel, that uses
the same intermediate representation as Montgomery Reduction
("Montgomery Form"). The algorithm is described in an unpublished
manuscript entitled "Fast Modular Reciprocals."
MutableBigInteger p = new MutableBigInteger(mod);
MutableBigInteger f = new MutableBigInteger(this);
MutableBigInteger g = new MutableBigInteger(p);
SignedMutableBigInteger c = new SignedMutableBigInteger(1);
SignedMutableBigInteger d = new SignedMutableBigInteger();
MutableBigInteger temp = null;
SignedMutableBigInteger sTemp = null;
int k = 0;
// Right shift f k times until odd, left shift d k times
if (f.isEven()) {
int trailingZeros = f.getLowestSetBit();
f.rightShift(trailingZeros);
d.leftShift(trailingZeros);
k = trailingZeros;
}
// The Almost Inverse Algorithm
while(!f.isOne()) {
// If gcd(f, g) != 1, number is not invertible modulo mod
if (f.isZero())
throw new ArithmeticException("BigInteger not invertible.");
// If f < g exchange f, g and c, d
if (f.compare(g) < 0) {
temp = f; f = g; g = temp;
sTemp = d; d = c; c = sTemp;
}
// If f == g (mod 4)
if (((f.value[f.offset + f.intLen - 1] ^
g.value[g.offset + g.intLen - 1]) & 3) == 0) {
f.subtract(g);
c.signedSubtract(d);
} else { // If f != g (mod 4)
f.add(g);
c.signedAdd(d);
}
// Right shift f k times until odd, left shift d k times
int trailingZeros = f.getLowestSetBit();
f.rightShift(trailingZeros);
d.leftShift(trailingZeros);
k += trailingZeros;
}
while (c.sign < 0)
c.signedAdd(p);
return fixup(c, p, k);
|
static java.math.MutableBigInteger | modInverseBP2(java.math.MutableBigInteger mod, int k)
// Copy the mod to protect original
return fixup(new MutableBigInteger(1), new MutableBigInteger(mod), k);
|
java.math.MutableBigInteger | modInverseMP2(int k)
if (isEven())
throw new ArithmeticException("Non-invertible. (GCD != 1)");
if (k > 64)
return euclidModInverse(k);
int t = inverseMod32(value[offset+intLen-1]);
if (k < 33) {
t = (k == 32 ? t : t & ((1 << k) - 1));
return new MutableBigInteger(t);
}
long pLong = (value[offset+intLen-1] & LONG_MASK);
if (intLen > 1)
pLong |= ((long)value[offset+intLen-2] << 32);
long tLong = t & LONG_MASK;
tLong = tLong * (2 - pLong * tLong); // 1 more Newton iter step
tLong = (k == 64 ? tLong : tLong & ((1L << k) - 1));
MutableBigInteger result = new MutableBigInteger(new int[2]);
result.value[0] = (int)(tLong >>> 32);
result.value[1] = (int)tLong;
result.intLen = 2;
result.normalize();
return result;
|
void | mul(int y, java.math.MutableBigInteger z)Multiply the contents of this MutableBigInteger by the word y. The
result is placed into z.
if (y == 1) {
z.copyValue(this);
return;
}
if (y == 0) {
z.clear();
return;
}
// Perform the multiplication word by word
long ylong = y & LONG_MASK;
int[] zval = (z.value.length<intLen+1 ? new int[intLen + 1]
: z.value);
long carry = 0;
for (int i = intLen-1; i >= 0; i--) {
long product = ylong * (value[i+offset] & LONG_MASK) + carry;
zval[i+1] = (int)product;
carry = product >>> 32;
}
if (carry == 0) {
z.offset = 1;
z.intLen = intLen;
} else {
z.offset = 0;
z.intLen = intLen + 1;
zval[0] = (int)carry;
}
z.value = zval;
|
private int | mulsub(int[] q, int[] a, int x, int len, int offset)This method is used for division. It multiplies an n word input a by one
word input x, and subtracts the n word product from q. This is needed
when subtracting qhat*divisor from dividend.
long xLong = x & LONG_MASK;
long carry = 0;
offset += len;
for (int j=len-1; j >= 0; j--) {
long product = (a[j] & LONG_MASK) * xLong + carry;
long difference = q[offset] - product;
q[offset--] = (int)difference;
carry = (product >>> 32)
+ (((difference & LONG_MASK) >
(((~(int)product) & LONG_MASK))) ? 1:0);
}
return (int)carry;
|
void | multiply(java.math.MutableBigInteger y, java.math.MutableBigInteger z)Multiply the contents of two MutableBigInteger objects. The result is
placed into MutableBigInteger z. The contents of y are not changed.
int xLen = intLen;
int yLen = y.intLen;
int newLen = xLen + yLen;
// Put z into an appropriate state to receive product
if (z.value.length < newLen)
z.value = new int[newLen];
z.offset = 0;
z.intLen = newLen;
// The first iteration is hoisted out of the loop to avoid extra add
long carry = 0;
for (int j=yLen-1, k=yLen+xLen-1; j >= 0; j--, k--) {
long product = (y.value[j+y.offset] & LONG_MASK) *
(value[xLen-1+offset] & LONG_MASK) + carry;
z.value[k] = (int)product;
carry = product >>> 32;
}
z.value[xLen-1] = (int)carry;
// Perform the multiplication word by word
for (int i = xLen-2; i >= 0; i--) {
carry = 0;
for (int j=yLen-1, k=yLen+i; j >= 0; j--, k--) {
long product = (y.value[j+y.offset] & LONG_MASK) *
(value[i+offset] & LONG_MASK) +
(z.value[k] & LONG_MASK) + carry;
z.value[k] = (int)product;
carry = product >>> 32;
}
z.value[i] = (int)carry;
}
// Remove leading zeros from product
z.normalize();
|
java.math.MutableBigInteger | mutableModInverse(java.math.MutableBigInteger p)Returns the modInverse of this mod p. This and p are not affected by
the operation.
// Modulus is odd, use Schroeppel's algorithm
if (p.isOdd())
return modInverse(p);
// Base and modulus are even, throw exception
if (isEven())
throw new ArithmeticException("BigInteger not invertible.");
// Get even part of modulus expressed as a power of 2
int powersOf2 = p.getLowestSetBit();
// Construct odd part of modulus
MutableBigInteger oddMod = new MutableBigInteger(p);
oddMod.rightShift(powersOf2);
if (oddMod.isOne())
return modInverseMP2(powersOf2);
// Calculate 1/a mod oddMod
MutableBigInteger oddPart = modInverse(oddMod);
// Calculate 1/a mod evenMod
MutableBigInteger evenPart = modInverseMP2(powersOf2);
// Combine the results using Chinese Remainder Theorem
MutableBigInteger y1 = modInverseBP2(oddMod, powersOf2);
MutableBigInteger y2 = oddMod.modInverseMP2(powersOf2);
MutableBigInteger temp1 = new MutableBigInteger();
MutableBigInteger temp2 = new MutableBigInteger();
MutableBigInteger result = new MutableBigInteger();
oddPart.leftShift(powersOf2);
oddPart.multiply(y1, result);
evenPart.multiply(oddMod, temp1);
temp1.multiply(y2, temp2);
result.add(temp2);
result.divide(p, temp1, temp2);
return temp2;
|
final void | normalize()Ensure that the MutableBigInteger is in normal form, specifically
making sure that there are no leading zeros, and that if the
magnitude is zero, then intLen is zero.
if (intLen == 0) {
offset = 0;
return;
}
int index = offset;
if (value[index] != 0)
return;
int indexBound = index+intLen;
do {
index++;
} while(index < indexBound && value[index]==0);
int numZeros = index - offset;
intLen -= numZeros;
offset = (intLen==0 ? 0 : offset+numZeros);
|
private final void | primitiveLeftShift(int n)Left shift this MutableBigInteger n bits, where n is
less than 32.
Assumes that intLen > 0, n > 0 for speed
int[] val = value;
int n2 = 32 - n;
for (int i=offset, c=val[i], m=i+intLen-1; i<m; i++) {
int b = c;
c = val[i+1];
val[i] = (b << n) | (c >>> n2);
}
val[offset+intLen-1] <<= n;
|
private final void | primitiveRightShift(int n)Right shift this MutableBigInteger n bits, where n is
less than 32.
Assumes that intLen > 0, n > 0 for speed
int[] val = value;
int n2 = 32 - n;
for (int i=offset+intLen-1, c=val[i]; i>offset; i--) {
int b = c;
c = val[i-1];
val[i] = (c << n2) | (b >>> n);
}
val[offset] >>>= n;
|
void | reset()Set a MutableBigInteger to zero, removing its offset.
offset = intLen = 0;
|
void | rightShift(int n)Right shift this MutableBigInteger n bits. The MutableBigInteger is left
in normal form.
if (intLen == 0)
return;
int nInts = n >>> 5;
int nBits = n & 0x1F;
this.intLen -= nInts;
if (nBits == 0)
return;
int bitsInHighWord = BigInteger.bitLen(value[offset]);
if (nBits >= bitsInHighWord) {
this.primitiveLeftShift(32 - nBits);
this.intLen--;
} else {
primitiveRightShift(nBits);
}
|
void | setInt(int index, int val)Sets the int at index+offset in this MutableBigInteger to val.
This does not get inlined on all platforms so it is not used
as often as originally intended.
value[offset + index] = val;
|
void | setValue(int[] val, int length)Sets this MutableBigInteger's value array to the specified array.
The intLen is set to the specified length.
value = val;
intLen = length;
offset = 0;
|
int | subtract(java.math.MutableBigInteger b)Subtracts the smaller of this and b from the larger and places the
result into this MutableBigInteger.
MutableBigInteger a = this;
int[] result = value;
int sign = a.compare(b);
if (sign == 0) {
reset();
return 0;
}
if (sign < 0) {
MutableBigInteger tmp = a;
a = b;
b = tmp;
}
int resultLen = a.intLen;
if (result.length < resultLen)
result = new int[resultLen];
long diff = 0;
int x = a.intLen;
int y = b.intLen;
int rstart = result.length - 1;
// Subtract common parts of both numbers
while (y>0) {
x--; y--;
diff = (a.value[x+a.offset] & LONG_MASK) -
(b.value[y+b.offset] & LONG_MASK) - ((int)-(diff>>32));
result[rstart--] = (int)diff;
}
// Subtract remainder of longer number
while (x>0) {
x--;
diff = (a.value[x+a.offset] & LONG_MASK) - ((int)-(diff>>32));
result[rstart--] = (int)diff;
}
value = result;
intLen = resultLen;
offset = value.length - resultLen;
normalize();
return sign;
|
int[] | toIntArray()Convert this MutableBigInteger into an int array with no leading
zeros, of a length that is equal to this MutableBigInteger's intLen.
int[] result = new int[intLen];
for(int i=0; i<intLen; i++)
result[i] = value[offset+i];
return result;
|
public java.lang.String | toString()Returns a String representation of this MutableBigInteger in radix 10.
BigInteger b = new BigInteger(this, 1);
return b.toString();
|
private boolean | unsignedLongCompare(long one, long two)Compare two longs as if they were unsigned.
Returns true iff one is bigger than two.
return (one+Long.MIN_VALUE) > (two+Long.MIN_VALUE);
|