ParentNodepublic abstract class ParentNode extends ChildNode ParentNode inherits from ChildNode and adds the capability of having child
nodes. Not every node in the DOM can have children, so only nodes that can
should inherit from this class and pay the price for it.
ParentNode, just like NodeImpl, also implements NodeList, so it can
return itself in response to the getChildNodes() query. This eliminiates
the need for a separate ChildNodeList object. Note that this is an
IMPLEMENTATION DETAIL; applications should _never_ assume that
this identity exists. On the other hand, subclasses may need to override
this, in case of conflicting names. This is the case for the classes
HTMLSelectElementImpl and HTMLFormElementImpl of the HTML DOM.
While we have a direct reference to the first child, the last child is
stored as the previous sibling of the first child. First child nodes are
marked as being so, and getNextSibling hides this fact.
Note: Not all parent nodes actually need to also be a child. At some
point we used to have ParentNode inheriting from NodeImpl and another class
called ChildAndParentNode that inherited from ChildNode. But due to the lack
of multiple inheritance a lot of code had to be duplicated which led to a
maintenance nightmare. At the same time only a few nodes (Document,
DocumentFragment, Entity, and Attribute) cannot be a child so the gain in
memory wasn't really worth it. The only type for which this would be the
case is Attribute, but we deal with there in another special way, so this is
not applicable.
This class doesn't directly support mutation events, however, it notifies
the document when mutations are performed so that the document class do so.
WARNING: Some of the code here is partially duplicated in
AttrImpl, be careful to keep these two classes in sync! |
Fields Summary |
---|
static final long | serialVersionUIDSerialization version. | protected CoreDocumentImpl | ownerDocumentOwner document. | protected ChildNode | firstChildFirst child. | protected transient NodeListCache | fNodeListCacheNodeList cache |
Constructors Summary |
---|
protected ParentNode(CoreDocumentImpl ownerDocument)No public constructor; only subclasses of ParentNode should be
instantiated, and those normally via a Document's factory methods
//
// Constructors
//
super(ownerDocument);
this.ownerDocument = ownerDocument;
| public ParentNode()Constructor for serialization.
|
Methods Summary |
---|
void | checkNormalizationAfterInsert(ChildNode insertedChild)Checks the normalized state of this node after inserting a child.
If the inserted child causes this node to be unnormalized, then this
node is flagged accordingly.
The conditions for changing the normalized state are:
- The inserted child is a text node and one of its adjacent siblings
is also a text node.
- The inserted child is is itself unnormalized.
// See if insertion caused this node to be unnormalized.
if (insertedChild.getNodeType() == Node.TEXT_NODE) {
ChildNode prev = insertedChild.previousSibling();
ChildNode next = insertedChild.nextSibling;
// If an adjacent sibling of the new child is a text node,
// flag this node as unnormalized.
if ((prev != null && prev.getNodeType() == Node.TEXT_NODE) ||
(next != null && next.getNodeType() == Node.TEXT_NODE)) {
isNormalized(false);
}
}
else {
// If the new child is not normalized,
// then this node is inherently not normalized.
if (!insertedChild.isNormalized()) {
isNormalized(false);
}
}
| void | checkNormalizationAfterRemove(ChildNode previousSibling)Checks the normalized of this node after removing a child.
If the removed child causes this node to be unnormalized, then this
node is flagged accordingly.
The conditions for changing the normalized state are:
- The removed child had two adjacent siblings that were text nodes.
// See if removal caused this node to be unnormalized.
// If the adjacent siblings of the removed child were both text nodes,
// flag this node as unnormalized.
if (previousSibling != null &&
previousSibling.getNodeType() == Node.TEXT_NODE) {
ChildNode next = previousSibling.nextSibling;
if (next != null && next.getNodeType() == Node.TEXT_NODE) {
isNormalized(false);
}
}
| public org.w3c.dom.Node | cloneNode(boolean deep)Returns a duplicate of a given node. You can consider this a
generic "copy constructor" for nodes. The newly returned object should
be completely independent of the source object's subtree, so changes
in one after the clone has been made will not affect the other.
Example: Cloning a Text node will copy both the node and the text it
contains.
Example: Cloning something that has children -- Element or Attr, for
example -- will _not_ clone those children unless a "deep clone"
has been requested. A shallow clone of an Attr node will yield an
empty Attr of the same name.
NOTE: Clones will always be read/write, even if the node being cloned
is read-only, to permit applications using only the DOM API to obtain
editable copies of locked portions of the tree.
if (needsSyncChildren()) {
synchronizeChildren();
}
ParentNode newnode = (ParentNode) super.cloneNode(deep);
// set owner document
newnode.ownerDocument = ownerDocument;
// Need to break the association w/ original kids
newnode.firstChild = null;
// invalidate cache for children NodeList
newnode.fNodeListCache = null;
// Then, if deep, clone the kids too.
if (deep) {
for (ChildNode child = firstChild;
child != null;
child = child.nextSibling) {
newnode.appendChild(child.cloneNode(true));
}
}
return newnode;
| public org.w3c.dom.NodeList | getChildNodes()Obtain a NodeList enumerating all children of this node. If there
are none, an (initially) empty NodeList is returned.
NodeLists are "live"; as children are added/removed the NodeList
will immediately reflect those changes. Also, the NodeList refers
to the actual nodes, so changes to those nodes made via the DOM tree
will be reflected in the NodeList and vice versa.
In this implementation, Nodes implement the NodeList interface and
provide their own getChildNodes() support. Other DOMs may solve this
differently.
if (needsSyncChildren()) {
synchronizeChildren();
}
return this;
| protected final org.w3c.dom.NodeList | getChildNodesUnoptimized()Create a NodeList to access children that is use by subclass elements
that have methods named getLength() or item(int). ChildAndParentNode
optimizes getChildNodes() by implementing NodeList itself. However if
a subclass Element implements methods with the same name as the NodeList
methods, they will override the actually methods in this class.
To use this method, the subclass should implement getChildNodes() and
have it call this method. The resulting NodeList instance maybe
shared and cached in a transient field, but the cached value must be
cleared if the node is cloned.
if (needsSyncChildren()) {
synchronizeChildren();
}
return new NodeList() {
/**
* @see NodeList.getLength()
*/
public int getLength() {
return nodeListGetLength();
} // getLength():int
/**
* @see NodeList.item(int)
*/
public Node item(int index) {
return nodeListItem(index);
} // item(int):Node
};
| public org.w3c.dom.Node | getFirstChild()The first child of this Node, or null if none.
if (needsSyncChildren()) {
synchronizeChildren();
}
return firstChild;
| public org.w3c.dom.Node | getLastChild()The last child of this Node, or null if none.
if (needsSyncChildren()) {
synchronizeChildren();
}
return lastChild();
| public int | getLength()NodeList method: Count the immediate children of this node
return nodeListGetLength();
| public org.w3c.dom.Document | getOwnerDocument()Find the Document that this Node belongs to (the document in
whose context the Node was created). The Node may or may not
currently be part of that Document's actual contents.
return ownerDocument;
| public java.lang.String | getTextContent()
Node child = getFirstChild();
if (child != null) {
Node next = child.getNextSibling();
if (next == null) {
return hasTextContent(child) ? ((NodeImpl) child).getTextContent() : "";
}
StringBuffer buf = new StringBuffer();
getTextContent(buf);
return buf.toString();
}
return "";
| void | getTextContent(java.lang.StringBuffer buf)
Node child = getFirstChild();
while (child != null) {
if (hasTextContent(child)) {
((NodeImpl) child).getTextContent(buf);
}
child = child.getNextSibling();
}
| public boolean | hasChildNodes()Test whether this node has any children. Convenience shorthand
for (Node.getFirstChild()!=null)
if (needsSyncChildren()) {
synchronizeChildren();
}
return firstChild != null;
| final boolean | hasTextContent(org.w3c.dom.Node child)
return child.getNodeType() != Node.COMMENT_NODE &&
child.getNodeType() != Node.PROCESSING_INSTRUCTION_NODE &&
(child.getNodeType() != Node.TEXT_NODE ||
((TextImpl) child).isIgnorableWhitespace() == false);
| public org.w3c.dom.Node | insertBefore(org.w3c.dom.Node newChild, org.w3c.dom.Node refChild)Move one or more node(s) to our list of children. Note that this
implicitly removes them from their previous parent.
// Tail-call; optimizer should be able to do good things with.
return internalInsertBefore(newChild, refChild, false);
| org.w3c.dom.Node | internalInsertBefore(org.w3c.dom.Node newChild, org.w3c.dom.Node refChild, boolean replace)NON-DOM INTERNAL: Within DOM actions,we sometimes need to be able
to control which mutation events are spawned. This version of the
insertBefore operation allows us to do so. It is not intended
for use by application programs.
boolean errorChecking = ownerDocument.errorChecking;
if (newChild.getNodeType() == Node.DOCUMENT_FRAGMENT_NODE) {
// SLOW BUT SAFE: We could insert the whole subtree without
// juggling so many next/previous pointers. (Wipe out the
// parent's child-list, patch the parent pointers, set the
// ends of the list.) But we know some subclasses have special-
// case behavior they add to insertBefore(), so we don't risk it.
// This approch also takes fewer bytecodes.
// NOTE: If one of the children is not a legal child of this
// node, throw HIERARCHY_REQUEST_ERR before _any_ of the children
// have been transferred. (Alternative behaviors would be to
// reparent up to the first failure point or reparent all those
// which are acceptable to the target node, neither of which is
// as robust. PR-DOM-0818 isn't entirely clear on which it
// recommends?????
// No need to check kids for right-document; if they weren't,
// they wouldn't be kids of that DocFrag.
if (errorChecking) {
for (Node kid = newChild.getFirstChild(); // Prescan
kid != null; kid = kid.getNextSibling()) {
if (!ownerDocument.isKidOK(this, kid)) {
throw new DOMException(
DOMException.HIERARCHY_REQUEST_ERR,
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "HIERARCHY_REQUEST_ERR", null));
}
}
}
while (newChild.hasChildNodes()) {
insertBefore(newChild.getFirstChild(), refChild);
}
return newChild;
}
if (newChild == refChild) {
// stupid case that must be handled as a no-op triggering events...
refChild = refChild.getNextSibling();
removeChild(newChild);
insertBefore(newChild, refChild);
return newChild;
}
if (needsSyncChildren()) {
synchronizeChildren();
}
if (errorChecking) {
if (isReadOnly()) {
throw new DOMException(
DOMException.NO_MODIFICATION_ALLOWED_ERR,
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "NO_MODIFICATION_ALLOWED_ERR", null));
}
if (newChild.getOwnerDocument() != ownerDocument && newChild != ownerDocument) {
throw new DOMException(DOMException.WRONG_DOCUMENT_ERR,
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "WRONG_DOCUMENT_ERR", null));
}
if (!ownerDocument.isKidOK(this, newChild)) {
throw new DOMException(DOMException.HIERARCHY_REQUEST_ERR,
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "HIERARCHY_REQUEST_ERR", null));
}
// refChild must be a child of this node (or null)
if (refChild != null && refChild.getParentNode() != this) {
throw new DOMException(DOMException.NOT_FOUND_ERR,
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "NOT_FOUND_ERR", null));
}
// Prevent cycles in the tree
// newChild cannot be ancestor of this Node,
// and actually cannot be this
boolean treeSafe = true;
for (NodeImpl a = this; treeSafe && a != null; a = a.parentNode())
{
treeSafe = newChild != a;
}
if(!treeSafe) {
throw new DOMException(DOMException.HIERARCHY_REQUEST_ERR,
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "HIERARCHY_REQUEST_ERR", null));
}
}
// notify document
ownerDocument.insertingNode(this, replace);
// Convert to internal type, to avoid repeated casting
ChildNode newInternal = (ChildNode)newChild;
Node oldparent = newInternal.parentNode();
if (oldparent != null) {
oldparent.removeChild(newInternal);
}
// Convert to internal type, to avoid repeated casting
ChildNode refInternal = (ChildNode)refChild;
// Attach up
newInternal.ownerNode = this;
newInternal.isOwned(true);
// Attach before and after
// Note: firstChild.previousSibling == lastChild!!
if (firstChild == null) {
// this our first and only child
firstChild = newInternal;
newInternal.isFirstChild(true);
newInternal.previousSibling = newInternal;
}
else {
if (refInternal == null) {
// this is an append
ChildNode lastChild = firstChild.previousSibling;
lastChild.nextSibling = newInternal;
newInternal.previousSibling = lastChild;
firstChild.previousSibling = newInternal;
}
else {
// this is an insert
if (refChild == firstChild) {
// at the head of the list
firstChild.isFirstChild(false);
newInternal.nextSibling = firstChild;
newInternal.previousSibling = firstChild.previousSibling;
firstChild.previousSibling = newInternal;
firstChild = newInternal;
newInternal.isFirstChild(true);
}
else {
// somewhere in the middle
ChildNode prev = refInternal.previousSibling;
newInternal.nextSibling = refInternal;
prev.nextSibling = newInternal;
refInternal.previousSibling = newInternal;
newInternal.previousSibling = prev;
}
}
}
changed();
// update cached length if we have any
if (fNodeListCache != null) {
if (fNodeListCache.fLength != -1) {
fNodeListCache.fLength++;
}
if (fNodeListCache.fChildIndex != -1) {
// if we happen to insert just before the cached node, update
// the cache to the new node to match the cached index
if (fNodeListCache.fChild == refInternal) {
fNodeListCache.fChild = newInternal;
} else {
// otherwise just invalidate the cache
fNodeListCache.fChildIndex = -1;
}
}
}
// notify document
ownerDocument.insertedNode(this, newInternal, replace);
checkNormalizationAfterInsert(newInternal);
return newChild;
| org.w3c.dom.Node | internalRemoveChild(org.w3c.dom.Node oldChild, boolean replace)NON-DOM INTERNAL: Within DOM actions,we sometimes need to be able
to control which mutation events are spawned. This version of the
removeChild operation allows us to do so. It is not intended
for use by application programs.
CoreDocumentImpl ownerDocument = ownerDocument();
if (ownerDocument.errorChecking) {
if (isReadOnly()) {
throw new DOMException(
DOMException.NO_MODIFICATION_ALLOWED_ERR,
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "NO_MODIFICATION_ALLOWED_ERR", null));
}
if (oldChild != null && oldChild.getParentNode() != this) {
throw new DOMException(DOMException.NOT_FOUND_ERR,
DOMMessageFormatter.formatMessage(DOMMessageFormatter.DOM_DOMAIN, "NOT_FOUND_ERR", null));
}
}
ChildNode oldInternal = (ChildNode) oldChild;
// notify document
ownerDocument.removingNode(this, oldInternal, replace);
// update cached length if we have any
if (fNodeListCache != null) {
if (fNodeListCache.fLength != -1) {
fNodeListCache.fLength--;
}
if (fNodeListCache.fChildIndex != -1) {
// if the removed node is the cached node
// move the cache to its (soon former) previous sibling
if (fNodeListCache.fChild == oldInternal) {
fNodeListCache.fChildIndex--;
fNodeListCache.fChild = oldInternal.previousSibling();
} else {
// otherwise just invalidate the cache
fNodeListCache.fChildIndex = -1;
}
}
}
// Patch linked list around oldChild
// Note: lastChild == firstChild.previousSibling
if (oldInternal == firstChild) {
// removing first child
oldInternal.isFirstChild(false);
firstChild = oldInternal.nextSibling;
if (firstChild != null) {
firstChild.isFirstChild(true);
firstChild.previousSibling = oldInternal.previousSibling;
}
} else {
ChildNode prev = oldInternal.previousSibling;
ChildNode next = oldInternal.nextSibling;
prev.nextSibling = next;
if (next == null) {
// removing last child
firstChild.previousSibling = prev;
} else {
// removing some other child in the middle
next.previousSibling = prev;
}
}
// Save previous sibling for normalization checking.
ChildNode oldPreviousSibling = oldInternal.previousSibling();
// Remove oldInternal's references to tree
oldInternal.ownerNode = ownerDocument;
oldInternal.isOwned(false);
oldInternal.nextSibling = null;
oldInternal.previousSibling = null;
changed();
// notify document
ownerDocument.removedNode(this, replace);
checkNormalizationAfterRemove(oldPreviousSibling);
return oldInternal;
| public boolean | isEqualNode(org.w3c.dom.Node arg)DOM Level 3 WD- Experimental.
Override inherited behavior from NodeImpl to support deep equal.
if (!super.isEqualNode(arg)) {
return false;
}
// there are many ways to do this test, and there isn't any way
// better than another. Performance may vary greatly depending on
// the implementations involved. This one should work fine for us.
Node child1 = getFirstChild();
Node child2 = arg.getFirstChild();
while (child1 != null && child2 != null) {
if (!((NodeImpl) child1).isEqualNode(child2)) {
return false;
}
child1 = child1.getNextSibling();
child2 = child2.getNextSibling();
}
if (child1 != child2) {
return false;
}
return true;
| public org.w3c.dom.Node | item(int index)NodeList method: Return the Nth immediate child of this node, or
null if the index is out of bounds.
return nodeListItem(index);
| final ChildNode | lastChild()
// last child is stored as the previous sibling of first child
return firstChild != null ? firstChild.previousSibling : null;
| final void | lastChild(ChildNode node)
// store lastChild as previous sibling of first child
if (firstChild != null) {
firstChild.previousSibling = node;
}
| private int | nodeListGetLength()Count the immediate children of this node. Use to implement
NodeList.getLength().
if (fNodeListCache == null) {
if (needsSyncChildren()) {
synchronizeChildren();
}
// get rid of trivial cases
if (firstChild == null) {
return 0;
}
if (firstChild == lastChild()) {
return 1;
}
// otherwise request a cache object
fNodeListCache = ownerDocument.getNodeListCache(this);
}
if (fNodeListCache.fLength == -1) { // is the cached length invalid ?
int l;
ChildNode n;
// start from the cached node if we have one
if (fNodeListCache.fChildIndex != -1 &&
fNodeListCache.fChild != null) {
l = fNodeListCache.fChildIndex;
n = fNodeListCache.fChild;
} else {
n = firstChild;
l = 0;
}
while (n != null) {
l++;
n = n.nextSibling;
}
fNodeListCache.fLength = l;
}
return fNodeListCache.fLength;
| private org.w3c.dom.Node | nodeListItem(int index)Return the Nth immediate child of this node, or null if the index is
out of bounds. Use to implement NodeList.item().
if (fNodeListCache == null) {
if (needsSyncChildren()) {
synchronizeChildren();
}
// get rid of trivial case
if (firstChild == lastChild()) {
return index == 0 ? firstChild : null;
}
// otherwise request a cache object
fNodeListCache = ownerDocument.getNodeListCache(this);
}
int i = fNodeListCache.fChildIndex;
ChildNode n = fNodeListCache.fChild;
boolean firstAccess = true;
// short way
if (i != -1 && n != null) {
firstAccess = false;
if (i < index) {
while (i < index && n != null) {
i++;
n = n.nextSibling;
}
}
else if (i > index) {
while (i > index && n != null) {
i--;
n = n.previousSibling();
}
}
}
else {
// long way
if (index < 0) {
return null;
}
n = firstChild;
for (i = 0; i < index && n != null; i++) {
n = n.nextSibling;
}
}
// release cache if reaching last child or first child
if (!firstAccess && (n == firstChild || n == lastChild())) {
fNodeListCache.fChildIndex = -1;
fNodeListCache.fChild = null;
ownerDocument.freeNodeListCache(fNodeListCache);
// we can keep using the cache until it is actually reused
// fNodeListCache will be nulled by the pool (document) if that
// happens.
// fNodeListCache = null;
}
else {
// otherwise update it
fNodeListCache.fChildIndex = i;
fNodeListCache.fChild = n;
}
return n;
| public void | normalize()Override default behavior to call normalize() on this Node's
children. It is up to implementors or Node to override normalize()
to take action.
// No need to normalize if already normalized.
if (isNormalized()) {
return;
}
if (needsSyncChildren()) {
synchronizeChildren();
}
ChildNode kid;
for (kid = firstChild; kid != null; kid = kid.nextSibling) {
kid.normalize();
}
isNormalized(true);
| CoreDocumentImpl | ownerDocument()same as above but returns internal type and this one is not overridden
by CoreDocumentImpl to return null
return ownerDocument;
| private void | readObject(java.io.ObjectInputStream ois)Deserialize object.
// perform default deseralization
ois.defaultReadObject();
// hardset synchildren - so we don't try to sync - it does not make any
// sense to try to synchildren when we just deserialize object.
needsSyncChildren(false);
| public org.w3c.dom.Node | removeChild(org.w3c.dom.Node oldChild)Remove a child from this Node. The removed child's subtree
remains intact so it may be re-inserted elsewhere.
// Tail-call, should be optimizable
return internalRemoveChild(oldChild, false);
| public org.w3c.dom.Node | replaceChild(org.w3c.dom.Node newChild, org.w3c.dom.Node oldChild)Make newChild occupy the location that oldChild used to
have. Note that newChild will first be removed from its previous
parent, if any. Equivalent to inserting newChild before oldChild,
then removing oldChild.
// If Mutation Events are being generated, this operation might
// throw aggregate events twice when modifying an Attr -- once
// on insertion and once on removal. DOM Level 2 does not specify
// this as either desirable or undesirable, but hints that
// aggregations should be issued only once per user request.
// notify document
ownerDocument.replacingNode(this);
internalInsertBefore(newChild, oldChild, true);
if (newChild != oldChild) {
internalRemoveChild(oldChild, true);
}
// notify document
ownerDocument.replacedNode(this);
return oldChild;
| protected void | setOwnerDocument(CoreDocumentImpl doc)NON-DOM
set the ownerDocument of this node and its children
if (needsSyncChildren()) {
synchronizeChildren();
}
super.setOwnerDocument(doc);
ownerDocument = doc;
for (ChildNode child = firstChild;
child != null; child = child.nextSibling) {
child.setOwnerDocument(doc);
}
| public void | setReadOnly(boolean readOnly, boolean deep)Override default behavior so that if deep is true, children are also
toggled.
super.setReadOnly(readOnly, deep);
if (deep) {
if (needsSyncChildren()) {
synchronizeChildren();
}
// Recursively set kids
for (ChildNode mykid = firstChild;
mykid != null;
mykid = mykid.nextSibling) {
if (mykid.getNodeType() != Node.ENTITY_REFERENCE_NODE) {
mykid.setReadOnly(readOnly,true);
}
}
}
| public void | setTextContent(java.lang.String textContent)
// get rid of any existing children
Node child;
while ((child = getFirstChild()) != null) {
removeChild(child);
}
// create a Text node to hold the given content
if (textContent != null && textContent.length() != 0){
appendChild(ownerDocument().createTextNode(textContent));
}
| protected void | synchronizeChildren()Override this method in subclass to hook in efficient
internal data structure.
// By default just change the flag to avoid calling this method again
needsSyncChildren(false);
| private void | writeObject(java.io.ObjectOutputStream out)Serialize object.
// synchronize chilren
if (needsSyncChildren()) {
synchronizeChildren();
}
// write object
out.defaultWriteObject();
|
|