Fields Summary |
---|
private static final long | serialVersionUIDSerialization ID. This class relies on default serialization
even for the items array, which is default-serialized, even if
it is empty. Otherwise it could not be declared final, which is
necessary here. |
private final E[] | itemsThe queued items |
private int | takeIndexitems index for next take, poll or remove |
private int | putIndexitems index for next put, offer, or add. |
private int | countNumber of items in the queue |
private final ReentrantLock | lockMain lock guarding all access |
private final Condition | notEmptyCondition for waiting takes |
private final Condition | notFullCondition for waiting puts |
Methods Summary |
---|
public boolean | add(E e)Inserts the specified element at the tail of this queue if it is
possible to do so immediately without exceeding the queue's capacity,
returning true upon success and throwing an
IllegalStateException if this queue is full.
return super.add(e);
|
public void | clear()Atomically removes all of the elements from this queue.
The queue will be empty after this call returns.
final E[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
int i = takeIndex;
int k = count;
while (k-- > 0) {
items[i] = null;
i = inc(i);
}
count = 0;
putIndex = 0;
takeIndex = 0;
notFull.signalAll();
} finally {
lock.unlock();
}
|
public boolean | contains(java.lang.Object o)Returns true if this queue contains the specified element.
More formally, returns true if and only if this queue contains
at least one element e such that o.equals(e).
if (o == null) return false;
final E[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
int i = takeIndex;
int k = 0;
while (k++ < count) {
if (o.equals(items[i]))
return true;
i = inc(i);
}
return false;
} finally {
lock.unlock();
}
|
public int | drainTo(java.util.Collection c)
if (c == null)
throw new NullPointerException();
if (c == this)
throw new IllegalArgumentException();
final E[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
int i = takeIndex;
int n = 0;
int max = count;
while (n < max) {
c.add(items[i]);
items[i] = null;
i = inc(i);
++n;
}
if (n > 0) {
count = 0;
putIndex = 0;
takeIndex = 0;
notFull.signalAll();
}
return n;
} finally {
lock.unlock();
}
|
public int | drainTo(java.util.Collection c, int maxElements)
if (c == null)
throw new NullPointerException();
if (c == this)
throw new IllegalArgumentException();
if (maxElements <= 0)
return 0;
final E[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
int i = takeIndex;
int n = 0;
int sz = count;
int max = (maxElements < count)? maxElements : count;
while (n < max) {
c.add(items[i]);
items[i] = null;
i = inc(i);
++n;
}
if (n > 0) {
count -= n;
takeIndex = i;
notFull.signalAll();
}
return n;
} finally {
lock.unlock();
}
|
private E | extract()Extracts element at current take position, advances, and signals.
Call only when holding lock.
final E[] items = this.items;
E x = items[takeIndex];
items[takeIndex] = null;
takeIndex = inc(takeIndex);
--count;
notFull.signal();
return x;
|
final int | inc(int i)Circularly increment i.
// Internal helper methods
return (++i == items.length)? 0 : i;
|
private void | insert(E x)Inserts element at current put position, advances, and signals.
Call only when holding lock.
items[putIndex] = x;
putIndex = inc(putIndex);
++count;
notEmpty.signal();
|
public java.util.Iterator | iterator()Returns an iterator over the elements in this queue in proper sequence.
The returned Iterator is a "weakly consistent" iterator that
will never throw {@link ConcurrentModificationException},
and guarantees to traverse elements as they existed upon
construction of the iterator, and may (but is not guaranteed to)
reflect any modifications subsequent to construction.
final ReentrantLock lock = this.lock;
lock.lock();
try {
return new Itr();
} finally {
lock.unlock();
}
|
public boolean | offer(E e, long timeout, java.util.concurrent.TimeUnit unit)Inserts the specified element at the tail of this queue, waiting
up to the specified wait time for space to become available if
the queue is full.
if (e == null) throw new NullPointerException();
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
for (;;) {
if (count != items.length) {
insert(e);
return true;
}
if (nanos <= 0)
return false;
try {
nanos = notFull.awaitNanos(nanos);
} catch (InterruptedException ie) {
notFull.signal(); // propagate to non-interrupted thread
throw ie;
}
}
} finally {
lock.unlock();
}
|
public boolean | offer(E e)Inserts the specified element at the tail of this queue if it is
possible to do so immediately without exceeding the queue's capacity,
returning true upon success and false if this queue
is full. This method is generally preferable to method {@link #add},
which can fail to insert an element only by throwing an exception.
if (e == null) throw new NullPointerException();
final ReentrantLock lock = this.lock;
lock.lock();
try {
if (count == items.length)
return false;
else {
insert(e);
return true;
}
} finally {
lock.unlock();
}
|
public E | peek()
final ReentrantLock lock = this.lock;
lock.lock();
try {
return (count == 0) ? null : items[takeIndex];
} finally {
lock.unlock();
}
|
public E | poll()
final ReentrantLock lock = this.lock;
lock.lock();
try {
if (count == 0)
return null;
E x = extract();
return x;
} finally {
lock.unlock();
}
|
public E | poll(long timeout, java.util.concurrent.TimeUnit unit)
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
for (;;) {
if (count != 0) {
E x = extract();
return x;
}
if (nanos <= 0)
return null;
try {
nanos = notEmpty.awaitNanos(nanos);
} catch (InterruptedException ie) {
notEmpty.signal(); // propagate to non-interrupted thread
throw ie;
}
}
} finally {
lock.unlock();
}
|
public void | put(E e)Inserts the specified element at the tail of this queue, waiting
for space to become available if the queue is full.
if (e == null) throw new NullPointerException();
final E[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
try {
while (count == items.length)
notFull.await();
} catch (InterruptedException ie) {
notFull.signal(); // propagate to non-interrupted thread
throw ie;
}
insert(e);
} finally {
lock.unlock();
}
|
public int | remainingCapacity()Returns the number of additional elements that this queue can ideally
(in the absence of memory or resource constraints) accept without
blocking. This is always equal to the initial capacity of this queue
less the current size of this queue.
Note that you cannot always tell if an attempt to insert
an element will succeed by inspecting remainingCapacity
because it may be the case that another thread is about to
insert or remove an element.
final ReentrantLock lock = this.lock;
lock.lock();
try {
return items.length - count;
} finally {
lock.unlock();
}
|
public boolean | remove(java.lang.Object o)Removes a single instance of the specified element from this queue,
if it is present. More formally, removes an element e such
that o.equals(e), if this queue contains one or more such
elements.
Returns true if this queue contained the specified element
(or equivalently, if this queue changed as a result of the call).
if (o == null) return false;
final E[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
int i = takeIndex;
int k = 0;
for (;;) {
if (k++ >= count)
return false;
if (o.equals(items[i])) {
removeAt(i);
return true;
}
i = inc(i);
}
} finally {
lock.unlock();
}
|
void | removeAt(int i)Utility for remove and iterator.remove: Delete item at position i.
Call only when holding lock.
final E[] items = this.items;
// if removing front item, just advance
if (i == takeIndex) {
items[takeIndex] = null;
takeIndex = inc(takeIndex);
} else {
// slide over all others up through putIndex.
for (;;) {
int nexti = inc(i);
if (nexti != putIndex) {
items[i] = items[nexti];
i = nexti;
} else {
items[i] = null;
putIndex = i;
break;
}
}
}
--count;
notFull.signal();
|
public int | size()Returns the number of elements in this queue.
final ReentrantLock lock = this.lock;
lock.lock();
try {
return count;
} finally {
lock.unlock();
}
|
public E | take()
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
try {
while (count == 0)
notEmpty.await();
} catch (InterruptedException ie) {
notEmpty.signal(); // propagate to non-interrupted thread
throw ie;
}
E x = extract();
return x;
} finally {
lock.unlock();
}
|
public java.lang.Object[] | toArray()Returns an array containing all of the elements in this queue, in
proper sequence.
The returned array will be "safe" in that no references to it are
maintained by this queue. (In other words, this method must allocate
a new array). The caller is thus free to modify the returned array.
This method acts as bridge between array-based and collection-based
APIs.
final E[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
Object[] a = new Object[count];
int k = 0;
int i = takeIndex;
while (k < count) {
a[k++] = items[i];
i = inc(i);
}
return a;
} finally {
lock.unlock();
}
|
public T[] | toArray(T[] a)Returns an array containing all of the elements in this queue, in
proper sequence; the runtime type of the returned array is that of
the specified array. If the queue fits in the specified array, it
is returned therein. Otherwise, a new array is allocated with the
runtime type of the specified array and the size of this queue.
If this queue fits in the specified array with room to spare
(i.e., the array has more elements than this queue), the element in
the array immediately following the end of the queue is set to
null.
Like the {@link #toArray()} method, this method acts as bridge between
array-based and collection-based APIs. Further, this method allows
precise control over the runtime type of the output array, and may,
under certain circumstances, be used to save allocation costs.
Suppose x is a queue known to contain only strings.
The following code can be used to dump the queue into a newly
allocated array of String:
String[] y = x.toArray(new String[0]);
Note that toArray(new Object[0]) is identical in function to
toArray().
final E[] items = this.items;
final ReentrantLock lock = this.lock;
lock.lock();
try {
if (a.length < count)
a = (T[])java.lang.reflect.Array.newInstance(
a.getClass().getComponentType(),
count
);
int k = 0;
int i = takeIndex;
while (k < count) {
a[k++] = (T)items[i];
i = inc(i);
}
if (a.length > count)
a[count] = null;
return a;
} finally {
lock.unlock();
}
|
public java.lang.String | toString()
final ReentrantLock lock = this.lock;
lock.lock();
try {
return super.toString();
} finally {
lock.unlock();
}
|