DigitListpublic final class DigitList extends Object implements CloneableDigit List. Private to DecimalFormat.
Handles the transcoding
between numeric values and strings of characters. Only handles
non-negative numbers. The division of labor between DigitList and
DecimalFormat is that DigitList handles the radix 10 representation
issues; DecimalFormat handles the locale-specific issues such as
positive/negative, grouping, decimal point, currency, and so on.
A DigitList is really a representation of a floating point value.
It may be an integer value; we assume that a double has sufficient
precision to represent all digits of a long.
The DigitList representation consists of a string of characters,
which are the digits radix 10, from '0' to '9'. It also has a radix
10 exponent associated with it. The value represented by a DigitList
object can be computed by mulitplying the fraction f, where 0 <= f < 1,
derived by placing all the digits of the list to the right of the
decimal point, by 10^exponent. |
Fields Summary |
---|
public static final int | MAX_COUNTThe maximum number of significant digits in an IEEE 754 double, that
is, in a Java double. This must not be increased, or garbage digits
will be generated, and should not be decreased, or accuracy will be lost. | public int | decimalAtThese data members are intentionally public and can be set directly.
The value represented is given by placing the decimal point before
digits[decimalAt]. If decimalAt is < 0, then leading zeros between
the decimal point and the first nonzero digit are implied. If decimalAt
is > count, then trailing zeros between the digits[count-1] and the
decimal point are implied.
Equivalently, the represented value is given by f * 10^decimalAt. Here
f is a value 0.1 <= f < 1 arrived at by placing the digits in Digits to
the right of the decimal.
DigitList is normalized, so if it is non-zero, figits[0] is non-zero. We
don't allow denormalized numbers because our exponent is effectively of
unlimited magnitude. The count value contains the number of significant
digits present in digits[].
Zero is represented by any DigitList with count == 0 or with each digits[i]
for all i <= count == '0'. | public int | count | public char[] | digits | private char[] | data | private RoundingMode | roundingMode | private boolean | isNegative | private static final char[] | LONG_MIN_REP | private StringBuffer | tempBuffer |
Methods Summary |
---|
public void | append(char digit)Appends a digit to the list, extending the list when necessary.
if (count == digits.length) {
char[] data = new char[count + 100];
System.arraycopy(digits, 0, data, 0, count);
digits = data;
}
digits[count++] = digit;
| public void | clear()Clears out the digits.
Use before appending them.
Typically, you set a series of digits with append, then at the point
you hit the decimal point, you set myDigitList.decimalAt = myDigitList.count;
then go on appending digits.
decimalAt = 0;
count = 0;
| public java.lang.Object | clone()Creates a copy of this object.
try {
DigitList other = (DigitList) super.clone();
char[] newDigits = new char[digits.length];
System.arraycopy(digits, 0, newDigits, 0, digits.length);
other.digits = newDigits;
other.tempBuffer = null;
return other;
} catch (CloneNotSupportedException e) {
throw new InternalError();
}
| public boolean | equals(java.lang.Object obj)equality test between two digit lists.
if (this == obj) // quick check
return true;
if (!(obj instanceof DigitList)) // (1) same object?
return false;
DigitList other = (DigitList) obj;
if (count != other.count ||
decimalAt != other.decimalAt)
return false;
for (int i = 0; i < count; i++)
if (digits[i] != other.digits[i])
return false;
return true;
| private void | extendDigits(int len)
if (len > digits.length) {
digits = new char[len];
}
| boolean | fitsIntoLong(boolean isPositive, boolean ignoreNegativeZero)Return true if the number represented by this object can fit into
a long.
// Figure out if the result will fit in a long. We have to
// first look for nonzero digits after the decimal point;
// then check the size. If the digit count is 18 or less, then
// the value can definitely be represented as a long. If it is 19
// then it may be too large.
// Trim trailing zeros. This does not change the represented value.
while (count > 0 && digits[count - 1] == '0") {
--count;
}
if (count == 0) {
// Positive zero fits into a long, but negative zero can only
// be represented as a double. - bug 4162852
return isPositive || ignoreNegativeZero;
}
if (decimalAt < count || decimalAt > MAX_COUNT) {
return false;
}
if (decimalAt < MAX_COUNT) return true;
// At this point we have decimalAt == count, and count == MAX_COUNT.
// The number will overflow if it is larger than 9223372036854775807
// or smaller than -9223372036854775808.
for (int i=0; i<count; ++i) {
char dig = digits[i], max = LONG_MIN_REP[i];
if (dig > max) return false;
if (dig < max) return true;
}
// At this point the first count digits match. If decimalAt is less
// than count, then the remaining digits are zero, and we return true.
if (count < decimalAt) return true;
// Now we have a representation of Long.MIN_VALUE, without the leading
// negative sign. If this represents a positive value, then it does
// not fit; otherwise it fits.
return !isPositive;
| public final java.math.BigDecimal | getBigDecimal()
if (count == 0) {
if (decimalAt == 0) {
return BigDecimal.ZERO;
} else {
return new BigDecimal("0E" + decimalAt);
}
}
if (decimalAt == count) {
return new BigDecimal(digits, 0, count);
} else {
return new BigDecimal(digits, 0, count).scaleByPowerOfTen(decimalAt - count);
}
| private final char[] | getDataChars(int length)
if (data == null || data.length < length) {
data = new char[length];
}
return data;
| public final double | getDouble()Utility routine to get the value of the digit list
If (count == 0) this throws a NumberFormatException, which
mimics Long.parseLong().
if (count == 0) {
return 0.0;
}
StringBuffer temp = getStringBuffer();
temp.append('.");
temp.append(digits, 0, count);
temp.append('E");
temp.append(decimalAt);
return Double.parseDouble(temp.toString());
| public final long | getLong()Utility routine to get the value of the digit list.
If (count == 0) this returns 0, unlike Long.parseLong().
// for now, simple implementation; later, do proper IEEE native stuff
if (count == 0) {
return 0;
}
// We have to check for this, because this is the one NEGATIVE value
// we represent. If we tried to just pass the digits off to parseLong,
// we'd get a parse failure.
if (isLongMIN_VALUE()) {
return Long.MIN_VALUE;
}
StringBuffer temp = getStringBuffer();
temp.append(digits, 0, count);
for (int i = count; i < decimalAt; ++i) {
temp.append('0");
}
return Long.parseLong(temp.toString());
| private java.lang.StringBuffer | getStringBuffer()
if (tempBuffer == null) {
tempBuffer = new StringBuffer(MAX_COUNT);
} else {
tempBuffer.setLength(0);
}
return tempBuffer;
| public int | hashCode()Generates the hash code for the digit list.
int hashcode = decimalAt;
for (int i = 0; i < count; i++) {
hashcode = hashcode * 37 + digits[i];
}
return hashcode;
| private boolean | isLongMIN_VALUE()Returns true if this DigitList represents Long.MIN_VALUE;
false, otherwise. This is required so that getLong() works.
if (decimalAt != count || count != MAX_COUNT) {
return false;
}
for (int i = 0; i < count; ++i) {
if (digits[i] != LONG_MIN_REP[i]) return false;
}
return true;
| boolean | isZero()Return true if the represented number is zero.
for (int i=0; i < count; ++i) {
if (digits[i] != '0") {
return false;
}
}
return true;
| private static final int | parseInt(char[] str, int offset, int strLen)
char c;
boolean positive = true;
if ((c = str[offset]) == '-") {
positive = false;
offset++;
} else if (c == '+") {
offset++;
}
int value = 0;
while (offset < strLen) {
c = str[offset++];
if (c >= '0" && c <= '9") {
value = value * 10 + (c - '0");
} else {
break;
}
}
return positive ? value : -value;
| private final void | round(int maximumDigits)Round the representation to the given number of digits.
// Eliminate digits beyond maximum digits to be displayed.
// Round up if appropriate.
if (maximumDigits >= 0 && maximumDigits < count) {
if (shouldRoundUp(maximumDigits)) {
// Rounding up involved incrementing digits from LSD to MSD.
// In most cases this is simple, but in a worst case situation
// (9999..99) we have to adjust the decimalAt value.
for (;;) {
--maximumDigits;
if (maximumDigits < 0) {
// We have all 9's, so we increment to a single digit
// of one and adjust the exponent.
digits[0] = '1";
++decimalAt;
maximumDigits = 0; // Adjust the count
break;
}
++digits[maximumDigits];
if (digits[maximumDigits] <= '9") break;
// digits[maximumDigits] = '0'; // Unnecessary since we'll truncate this
}
++maximumDigits; // Increment for use as count
}
count = maximumDigits;
// Eliminate trailing zeros.
while (count > 1 && digits[count-1] == '0") {
--count;
}
}
| final void | set(boolean isNegative, double source, int maximumDigits, boolean fixedPoint)Set the digit list to a representation of the given double value.
This method supports both fixed-point and exponential notation.
set(isNegative, Double.toString(source), maximumDigits, fixedPoint);
| final void | set(boolean isNegative, java.lang.String s, int maximumDigits, boolean fixedPoint)Generate a representation of the form DDDDD, DDDDD.DDDDD, or
DDDDDE+/-DDDDD.
this.isNegative = isNegative;
int len = s.length();
char[] source = getDataChars(len);
s.getChars(0, len, source, 0);
decimalAt = -1;
count = 0;
int exponent = 0;
// Number of zeros between decimal point and first non-zero digit after
// decimal point, for numbers < 1.
int leadingZerosAfterDecimal = 0;
boolean nonZeroDigitSeen = false;
for (int i = 0; i < len; ) {
char c = source[i++];
if (c == '.") {
decimalAt = count;
} else if (c == 'e" || c == 'E") {
exponent = parseInt(source, i, len);
break;
} else {
if (!nonZeroDigitSeen) {
nonZeroDigitSeen = (c != '0");
if (!nonZeroDigitSeen && decimalAt != -1)
++leadingZerosAfterDecimal;
}
if (nonZeroDigitSeen) {
digits[count++] = c;
}
}
}
if (decimalAt == -1) {
decimalAt = count;
}
if (nonZeroDigitSeen) {
decimalAt += exponent - leadingZerosAfterDecimal;
}
if (fixedPoint) {
// The negative of the exponent represents the number of leading
// zeros between the decimal and the first non-zero digit, for
// a value < 0.1 (e.g., for 0.00123, -decimalAt == 2). If this
// is more than the maximum fraction digits, then we have an underflow
// for the printed representation.
if (-decimalAt > maximumDigits) {
// Handle an underflow to zero when we round something like
// 0.0009 to 2 fractional digits.
count = 0;
return;
} else if (-decimalAt == maximumDigits) {
// If we round 0.0009 to 3 fractional digits, then we have to
// create a new one digit in the least significant location.
if (shouldRoundUp(0)) {
count = 1;
++decimalAt;
digits[0] = '1";
} else {
count = 0;
}
return;
}
// else fall through
}
// Eliminate trailing zeros.
while (count > 1 && digits[count - 1] == '0") {
--count;
}
// Eliminate digits beyond maximum digits to be displayed.
// Round up if appropriate.
round(fixedPoint ? (maximumDigits + decimalAt) : maximumDigits);
| public final void | set(boolean isNegative, long source)Utility routine to set the value of the digit list from a long
set(isNegative, source, 0);
| public final void | set(boolean isNegative, long source, int maximumDigits)Set the digit list to a representation of the given long value.
this.isNegative = isNegative;
// This method does not expect a negative number. However,
// "source" can be a Long.MIN_VALUE (-9223372036854775808),
// if the number being formatted is a Long.MIN_VALUE. In that
// case, it will be formatted as -Long.MIN_VALUE, a number
// which is outside the legal range of a long, but which can
// be represented by DigitList.
if (source <= 0) {
if (source == Long.MIN_VALUE) {
decimalAt = count = MAX_COUNT;
System.arraycopy(LONG_MIN_REP, 0, digits, 0, count);
} else {
decimalAt = count = 0; // Values <= 0 format as zero
}
} else {
// Rewritten to improve performance. I used to call
// Long.toString(), which was about 4x slower than this code.
int left = MAX_COUNT;
int right;
while (source > 0) {
digits[--left] = (char)('0" + (source % 10));
source /= 10;
}
decimalAt = MAX_COUNT - left;
// Don't copy trailing zeros. We are guaranteed that there is at
// least one non-zero digit, so we don't have to check lower bounds.
for (right = MAX_COUNT - 1; digits[right] == '0"; --right)
;
count = right - left + 1;
System.arraycopy(digits, left, digits, 0, count);
}
if (maximumDigits > 0) round(maximumDigits);
| final void | set(boolean isNegative, java.math.BigDecimal source, int maximumDigits, boolean fixedPoint)Set the digit list to a representation of the given BigDecimal value.
This method supports both fixed-point and exponential notation.
String s = source.toString();
extendDigits(s.length());
set(isNegative, s, maximumDigits, fixedPoint);
| final void | set(boolean isNegative, java.math.BigInteger source, int maximumDigits)Set the digit list to a representation of the given BigInteger value.
this.isNegative = isNegative;
String s = source.toString();
int len = s.length();
extendDigits(len);
s.getChars(0, len, digits, 0);
decimalAt = len;
int right;
for (right = len - 1; right >= 0 && digits[right] == '0"; --right)
;
count = right + 1;
if (maximumDigits > 0) {
round(maximumDigits);
}
| public final void | set(boolean isNegative, double source, int maximumFractionDigits)Set the digit list to a representation of the given double value.
This method supports fixed-point notation.
set(isNegative, source, maximumFractionDigits, true);
| void | setRoundingMode(java.math.RoundingMode r)Set the rounding mode
roundingMode = r;
| private boolean | shouldRoundUp(int maximumDigits)Return true if truncating the representation to the given number
of digits will result in an increment to the last digit. This
method implements the rounding modes defined in the
java.math.RoundingMode class.
[bnf]
if (maximumDigits < count) {
switch(roundingMode) {
case UP:
for (int i=maximumDigits; i<count; ++i) {
if (digits[i] != '0") {
return true;
}
}
break;
case DOWN:
break;
case CEILING:
for (int i=maximumDigits; i<count; ++i) {
if (digits[i] != '0") {
return !isNegative;
}
}
break;
case FLOOR:
for (int i=maximumDigits; i<count; ++i) {
if (digits[i] != '0") {
return isNegative;
}
}
break;
case HALF_UP:
if (digits[maximumDigits] >= '5") {
return true;
}
break;
case HALF_DOWN:
if (digits[maximumDigits] > '5") {
return true;
} else if (digits[maximumDigits] == '5" ) {
for (int i=maximumDigits+1; i<count; ++i) {
if (digits[i] != '0") {
return true;
}
}
}
break;
case HALF_EVEN:
// Implement IEEE half-even rounding
if (digits[maximumDigits] > '5") {
return true;
} else if (digits[maximumDigits] == '5" ) {
for (int i=maximumDigits+1; i<count; ++i) {
if (digits[i] != '0") {
return true;
}
}
return maximumDigits > 0 && (digits[maximumDigits-1] % 2 != 0);
}
break;
case UNNECESSARY:
for (int i=maximumDigits; i<count; ++i) {
if (digits[i] != '0") {
throw new ArithmeticException(
"Rounding needed with the rounding mode being set to RoundingMode.UNNECESSARY");
}
}
break;
default:
assert false;
}
}
return false;
| public java.lang.String | toString()
if (isZero()) {
return "0";
}
StringBuffer buf = getStringBuffer();
buf.append("0.");
buf.append(digits, 0, count);
buf.append("x10^");
buf.append(decimalAt);
return buf.toString();
|
|