RescaleOppublic class RescaleOp extends Object implements BufferedImageOp, RasterOpThis class performs a pixel-by-pixel rescaling of the data in the
source image by multiplying the sample values for each pixel by a scale
factor and then adding an offset. The scaled sample values are clipped
to the minimum/maximum representable in the destination image.
The pseudo code for the rescaling operation is as follows:
for each pixel from Source object {
for each band/component of the pixel {
dstElement = (srcElement*scaleFactor) + offset
}
}
For Rasters, rescaling operates on bands. The number of
sets of scaling constants may be one, in which case the same constants
are applied to all bands, or it must equal the number of Source
Raster bands.
For BufferedImages, rescaling operates on color and alpha components.
The number of sets of scaling constants may be one, in which case the
same constants are applied to all color (but not alpha) components.
Otherwise, the number of sets of scaling constants may
equal the number of Source color components, in which case no
rescaling of the alpha component (if present) is performed.
If neither of these cases apply, the number of sets of scaling constants
must equal the number of Source color components plus alpha components,
in which case all color and alpha components are rescaled.
BufferedImage sources with premultiplied alpha data are treated in the same
manner as non-premultiplied images for purposes of rescaling. That is,
the rescaling is done per band on the raw data of the BufferedImage source
without regard to whether the data is premultiplied. If a color conversion
is required to the destination ColorModel, the premultiplied state of
both source and destination will be taken into account for this step.
Images with an IndexColorModel cannot be rescaled.
If a RenderingHints object is specified in the constructor, the
color rendering hint and the dithering hint may be used when color
conversion is required.
Note that in-place operation is allowed (i.e. the source and destination can
be the same object). |
Fields Summary |
---|
float[] | scaleFactors | float[] | offsets | int | length | RenderingHints | hints | private int | srcNbits | private int | dstNbits |
Constructors Summary |
---|
public RescaleOp(float[] scaleFactors, float[] offsets, RenderingHints hints)Constructs a new RescaleOp with the desired scale factors
and offsets. The length of the scaleFactor and offset arrays
must meet the restrictions stated in the class comments above.
The RenderingHints argument may be null.
length = scaleFactors.length;
if (length > offsets.length) length = offsets.length;
this.scaleFactors = new float[length];
this.offsets = new float[length];
for (int i=0; i < length; i++) {
this.scaleFactors[i] = scaleFactors[i];
this.offsets[i] = offsets[i];
}
this.hints = hints;
| public RescaleOp(float scaleFactor, float offset, RenderingHints hints)Constructs a new RescaleOp with the desired scale factor
and offset. The scaleFactor and offset will be applied to
all bands in a source Raster and to all color (but not alpha)
components in a BufferedImage.
The RenderingHints argument may be null.
length = 1;
this.scaleFactors = new float[1];
this.offsets = new float[1];
this.scaleFactors[0] = scaleFactor;
this.offsets[0] = offset;
this.hints = hints;
|
Methods Summary |
---|
private boolean | canUseLookup(java.awt.image.Raster src, java.awt.image.Raster dst)Determines if the rescale can be performed as a lookup.
The dst must be a byte or short type.
The src must be less than 16 bits.
All source band sizes must be the same and all dst band sizes
must be the same.
//
// Check that the src datatype is either a BYTE or SHORT
//
int datatype = src.getDataBuffer().getDataType();
if(datatype != DataBuffer.TYPE_BYTE &&
datatype != DataBuffer.TYPE_USHORT) {
return false;
}
//
// Check dst sample sizes. All must be 8 or 16 bits.
//
SampleModel dstSM = dst.getSampleModel();
dstNbits = dstSM.getSampleSize(0);
if (!(dstNbits == 8 || dstNbits == 16)) {
return false;
}
for (int i=1; i<src.getNumBands(); i++) {
int bandSize = dstSM.getSampleSize(i);
if (bandSize != dstNbits) {
return false;
}
}
//
// Check src sample sizes. All must be the same size
//
SampleModel srcSM = src.getSampleModel();
srcNbits = srcSM.getSampleSize(0);
if (srcNbits > 16) {
return false;
}
for (int i=1; i<src.getNumBands(); i++) {
int bandSize = srcSM.getSampleSize(i);
if (bandSize != srcNbits) {
return false;
}
}
return true;
| private java.awt.image.ByteLookupTable | createByteLut(float[] scale, float[] off, int nBands, int nElems)Creates a ByteLookupTable to implement the rescale.
The table may have either a SHORT or BYTE input.
byte[][] lutData = new byte[scale.length][nElems];
for (int band=0; band<scale.length; band++) {
float bandScale = scale[band];
float bandOff = off[band];
byte[] bandLutData = lutData[band];
for (int i=0; i<nElems; i++) {
int val = (int)(i*bandScale + bandOff);
if ((val & 0xffffff00) != 0) {
if (val < 0) {
val = 0;
} else {
val = 255;
}
}
bandLutData[i] = (byte)val;
}
}
return new ByteLookupTable(0, lutData);
| public java.awt.image.BufferedImage | createCompatibleDestImage(java.awt.image.BufferedImage src, java.awt.image.ColorModel destCM)Creates a zeroed destination image with the correct size and number of
bands.
BufferedImage image;
if (destCM == null) {
ColorModel cm = src.getColorModel();
image = new BufferedImage(cm,
src.getRaster().createCompatibleWritableRaster(),
cm.isAlphaPremultiplied(),
null);
}
else {
int w = src.getWidth();
int h = src.getHeight();
image = new BufferedImage (destCM,
destCM.createCompatibleWritableRaster(w, h),
destCM.isAlphaPremultiplied(), null);
}
return image;
| public java.awt.image.WritableRaster | createCompatibleDestRaster(java.awt.image.Raster src)Creates a zeroed-destination Raster with the correct
size and number of bands, given this source.
return src.createCompatibleWritableRaster(src.getWidth(), src.getHeight());
| private java.awt.image.ShortLookupTable | createShortLut(float[] scale, float[] off, int nBands, int nElems)Creates a ShortLookupTable to implement the rescale.
The table may have either a SHORT or BYTE input.
short[][] lutData = new short[scale.length][nElems];
for (int band=0; band<scale.length; band++) {
float bandScale = scale[band];
float bandOff = off[band];
short[] bandLutData = lutData[band];
for (int i=0; i<nElems; i++) {
int val = (int)(i*bandScale + bandOff);
if ((val & 0xffff0000) != 0) {
if (val < 0) {
val = 0;
} else {
val = 65535;
}
}
bandLutData[i] = (short)val;
}
}
return new ShortLookupTable(0, lutData);
| public final java.awt.image.WritableRaster | filter(java.awt.image.Raster src, java.awt.image.WritableRaster dst)Rescales the pixel data in the source Raster.
If the destination Raster is null, a new Raster will be created.
The source and destination must have the same number of bands.
Otherwise, an IllegalArgumentException is thrown.
Note that the number of scaling factors/offsets in this object must
meet the restrictions stated in the class comments above.
Otherwise, an IllegalArgumentException is thrown.
int numBands = src.getNumBands();
int width = src.getWidth();
int height = src.getHeight();
int[] srcPix = null;
int step = 0;
int tidx = 0;
// Create a new destination Raster, if needed
if (dst == null) {
dst = createCompatibleDestRaster(src);
}
else if (height != dst.getHeight() || width != dst.getWidth()) {
throw new
IllegalArgumentException("Width or height of Rasters do not "+
"match");
}
else if (numBands != dst.getNumBands()) {
// Make sure that the number of bands are equal
throw new IllegalArgumentException("Number of bands in src "
+ numBands
+ " does not equal number of bands in dest "
+ dst.getNumBands());
}
// Make sure that the arrays match
// Make sure that the low/high/constant arrays match
if (length != 1 && length != src.getNumBands()) {
throw new IllegalArgumentException("Number of scaling constants "+
"does not equal the number of"+
" of bands in the src raster");
}
//
// Try for a native raster rescale first
//
if (ImagingLib.filter(this, src, dst) != null) {
return dst;
}
//
// Native raster rescale failed.
// Try to see if a lookup operation can be used
//
if (canUseLookup(src, dst)) {
int srcNgray = (1 << srcNbits);
int dstNgray = (1 << dstNbits);
if (dstNgray == 256) {
ByteLookupTable lut = createByteLut(scaleFactors, offsets,
numBands, srcNgray);
LookupOp op = new LookupOp(lut, hints);
op.filter(src, dst);
} else {
ShortLookupTable lut = createShortLut(scaleFactors, offsets,
numBands, srcNgray);
LookupOp op = new LookupOp(lut, hints);
op.filter(src, dst);
}
} else {
//
// Fall back to the slow code
//
if (length > 1) {
step = 1;
}
int sminX = src.getMinX();
int sY = src.getMinY();
int dminX = dst.getMinX();
int dY = dst.getMinY();
int sX;
int dX;
//
// Determine bits per band to determine maxval for clamps.
// The min is assumed to be zero.
// REMIND: This must change if we ever support signed data types.
//
int nbits;
int dstMax[] = new int[numBands];
int dstMask[] = new int[numBands];
SampleModel dstSM = dst.getSampleModel();
for (int z=0; z<numBands; z++) {
nbits = dstSM.getSampleSize(z);
dstMax[z] = (1 << nbits) - 1;
dstMask[z] = ~(dstMax[z]);
}
int val;
for (int y=0; y < height; y++, sY++, dY++) {
dX = dminX;
sX = sminX;
for (int x = 0; x < width; x++, sX++, dX++) {
// Get data for all bands at this x,y position
srcPix = src.getPixel(sX, sY, srcPix);
tidx = 0;
for (int z=0; z<numBands; z++, tidx += step) {
val = (int)(srcPix[z]*scaleFactors[tidx]
+ offsets[tidx]);
// Clamp
if ((val & dstMask[z]) != 0) {
if (val < 0) {
val = 0;
} else {
val = dstMax[z];
}
}
srcPix[z] = val;
}
// Put it back for all bands
dst.setPixel(dX, dY, srcPix);
}
}
}
return dst;
| public final java.awt.image.BufferedImage | filter(java.awt.image.BufferedImage src, java.awt.image.BufferedImage dst)Rescales the source BufferedImage.
If the color model in the source image is not the same as that
in the destination image, the pixels will be converted
in the destination. If the destination image is null,
a BufferedImage will be created with the source ColorModel.
An IllegalArgumentException may be thrown if the number of
scaling factors/offsets in this object does not meet the
restrictions stated in the class comments above, or if the
source image has an IndexColorModel.
ColorModel srcCM = src.getColorModel();
ColorModel dstCM;
int numBands = srcCM.getNumColorComponents();
if (srcCM instanceof IndexColorModel) {
throw new
IllegalArgumentException("Rescaling cannot be "+
"performed on an indexed image");
}
if (length != 1 && length != numBands &&
length != srcCM.getNumComponents())
{
throw new IllegalArgumentException("Number of scaling constants "+
"does not equal the number of"+
" of color or color/alpha "+
" components");
}
boolean needToConvert = false;
// Include alpha
if (length > numBands && srcCM.hasAlpha()) {
length = numBands+1;
}
int width = src.getWidth();
int height = src.getHeight();
if (dst == null) {
dst = createCompatibleDestImage(src, null);
dstCM = srcCM;
}
else {
if (width != dst.getWidth()) {
throw new
IllegalArgumentException("Src width ("+width+
") not equal to dst width ("+
dst.getWidth()+")");
}
if (height != dst.getHeight()) {
throw new
IllegalArgumentException("Src height ("+height+
") not equal to dst height ("+
dst.getHeight()+")");
}
dstCM = dst.getColorModel();
if(srcCM.getColorSpace().getType() !=
dstCM.getColorSpace().getType()) {
needToConvert = true;
dst = createCompatibleDestImage(src, null);
}
}
BufferedImage origDst = dst;
//
// Try to use a native BI rescale operation first
//
if (ImagingLib.filter(this, src, dst) == null) {
//
// Native BI rescale failed - convert to rasters
//
WritableRaster srcRaster = src.getRaster();
WritableRaster dstRaster = dst.getRaster();
if (srcCM.hasAlpha()) {
if (numBands-1 == length || length == 1) {
int minx = srcRaster.getMinX();
int miny = srcRaster.getMinY();
int[] bands = new int[numBands-1];
for (int i=0; i < numBands-1; i++) {
bands[i] = i;
}
srcRaster =
srcRaster.createWritableChild(minx, miny,
srcRaster.getWidth(),
srcRaster.getHeight(),
minx, miny,
bands);
}
}
if (dstCM.hasAlpha()) {
int dstNumBands = dstRaster.getNumBands();
if (dstNumBands-1 == length || length == 1) {
int minx = dstRaster.getMinX();
int miny = dstRaster.getMinY();
int[] bands = new int[numBands-1];
for (int i=0; i < numBands-1; i++) {
bands[i] = i;
}
dstRaster =
dstRaster.createWritableChild(minx, miny,
dstRaster.getWidth(),
dstRaster.getHeight(),
minx, miny,
bands);
}
}
//
// Call the raster filter method
//
filter(srcRaster, dstRaster);
}
if (needToConvert) {
// ColorModels are not the same
ColorConvertOp ccop = new ColorConvertOp(hints);
ccop.filter(dst, origDst);
}
return origDst;
| public final java.awt.geom.Rectangle2D | getBounds2D(java.awt.image.BufferedImage src)Returns the bounding box of the rescaled destination image. Since
this is not a geometric operation, the bounding box does not
change.
return getBounds2D(src.getRaster());
| public final java.awt.geom.Rectangle2D | getBounds2D(java.awt.image.Raster src)Returns the bounding box of the rescaled destination Raster. Since
this is not a geometric operation, the bounding box does not
change.
return src.getBounds();
| public final int | getNumFactors()Returns the number of scaling factors and offsets used in this
RescaleOp.
return length;
| public final float[] | getOffsets(float[] offsets)Returns the offsets in the given array. The array is also returned
for convenience. If offsets is null, a new array
will be allocated.
if (offsets == null) {
return (float[]) this.offsets.clone();
}
System.arraycopy (this.offsets, 0, offsets, 0,
Math.min(this.offsets.length, offsets.length));
return offsets;
| public final java.awt.geom.Point2D | getPoint2D(java.awt.geom.Point2D srcPt, java.awt.geom.Point2D dstPt)Returns the location of the destination point given a
point in the source. If dstPt is non-null, it will
be used to hold the return value. Since this is not a geometric
operation, the srcPt will equal the dstPt.
if (dstPt == null) {
dstPt = new Point2D.Float();
}
dstPt.setLocation(srcPt.getX(), srcPt.getY());
return dstPt;
| public final java.awt.RenderingHints | getRenderingHints()Returns the rendering hints for this op.
return hints;
| public final float[] | getScaleFactors(float[] scaleFactors)Returns the scale factors in the given array. The array is also
returned for convenience. If scaleFactors is null, a new array
will be allocated.
if (scaleFactors == null) {
return (float[]) this.scaleFactors.clone();
}
System.arraycopy (this.scaleFactors, 0, scaleFactors, 0,
Math.min(this.scaleFactors.length,
scaleFactors.length));
return scaleFactors;
|
|