The length and contents of the {@link #values values} array depends on
which {@link android.hardware.Sensor sensor} type is being monitored (see
also {@link SensorEvent} for a definition of the coordinate system used).
{@link android.hardware.Sensor#TYPE_ACCELEROMETER
Sensor.TYPE_ACCELEROMETER}:
All values are in SI units (m/s^2)
- values[0]: Acceleration minus Gx on the x-axis
- values[1]: Acceleration minus Gy on the y-axis
- values[2]: Acceleration minus Gz on the z-axis
A sensor of this type measures the acceleration applied to the device
(Ad). Conceptually, it does so by measuring forces applied to the
sensor itself (Fs) using the relation:
Ad = - ∑Fs / mass
In particular, the force of gravity is always influencing the measured
acceleration:
Ad = -g - ∑F / mass
For this reason, when the device is sitting on a table (and obviously not
accelerating), the accelerometer reads a magnitude of g = 9.81
m/s^2
Similarly, when the device is in free-fall and therefore dangerously
accelerating towards to ground at 9.81 m/s^2, its accelerometer reads a
magnitude of 0 m/s^2.
It should be apparent that in order to measure the real acceleration of
the device, the contribution of the force of gravity must be eliminated.
This can be achieved by applying a high-pass filter. Conversely, a
low-pass filter can be used to isolate the force of gravity.
public void onSensorChanged(SensorEvent event)
{
// alpha is calculated as t / (t + dT)
// with t, the low-pass filter's time-constant
// and dT, the event delivery rate
final float alpha = 0.8;
gravity[0] = alpha * gravity[0] + (1 - alpha) * event.values[0];
gravity[1] = alpha * gravity[1] + (1 - alpha) * event.values[1];
gravity[2] = alpha * gravity[2] + (1 - alpha) * event.values[2];
linear_acceleration[0] = event.values[0] - gravity[0];
linear_acceleration[1] = event.values[1] - gravity[1];
linear_acceleration[2] = event.values[2] - gravity[2];
}
Examples:
- When the device lies flat on a table and is pushed on its left side
toward the right, the x acceleration value is positive.
- When the device lies flat on a table, the acceleration value is
+9.81, which correspond to the acceleration of the device (0 m/s^2) minus
the force of gravity (-9.81 m/s^2).
- When the device lies flat on a table and is pushed toward the sky
with an acceleration of A m/s^2, the acceleration value is equal to
A+9.81 which correspond to the acceleration of the device (+A m/s^2)
minus the force of gravity (-9.81 m/s^2).
{@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD
Sensor.TYPE_MAGNETIC_FIELD}:
All values are in micro-Tesla (uT) and measure the ambient magnetic field
in the X, Y and Z axis.
{@link android.hardware.Sensor#TYPE_GYROSCOPE Sensor.TYPE_GYROSCOPE}:
All values are in radians/second and measure the rate of rotation
around the device's local X, Y and Z axis. The coordinate system is the
same as is used for the acceleration sensor. Rotation is positive in the
counter-clockwise direction. That is, an observer looking from some
positive location on the x, y or z axis at a device positioned on the
origin would report positive rotation if the device appeared to be
rotating counter clockwise. Note that this is the standard mathematical
definition of positive rotation and does not agree with the definition of
roll given earlier.
- values[0]: Angular speed around the x-axis
- values[1]: Angular speed around the y-axis
- values[2]: Angular speed around the z-axis
Typically the output of the gyroscope is integrated over time to
calculate a rotation describing the change of angles over the timestep,
for example:
private static final float NS2S = 1.0f / 1000000000.0f;
private final float[] deltaRotationVector = new float[4]();
private float timestamp;
public void onSensorChanged(SensorEvent event) {
// This timestep's delta rotation to be multiplied by the current rotation
// after computing it from the gyro sample data.
if (timestamp != 0) {
final float dT = (event.timestamp - timestamp) * NS2S;
// Axis of the rotation sample, not normalized yet.
float axisX = event.values[0];
float axisY = event.values[1];
float axisZ = event.values[2];
// Calculate the angular speed of the sample
float omegaMagnitude = sqrt(axisX*axisX + axisY*axisY + axisZ*axisZ);
// Normalize the rotation vector if it's big enough to get the axis
if (omegaMagnitude > EPSILON) {
axisX /= omegaMagnitude;
axisY /= omegaMagnitude;
axisZ /= omegaMagnitude;
}
// Integrate around this axis with the angular speed by the timestep
// in order to get a delta rotation from this sample over the timestep
// We will convert this axis-angle representation of the delta rotation
// into a quaternion before turning it into the rotation matrix.
float thetaOverTwo = omegaMagnitude * dT / 2.0f;
float sinThetaOverTwo = sin(thetaOverTwo);
float cosThetaOverTwo = cos(thetaOverTwo);
deltaRotationVector[0] = sinThetaOverTwo * axisX;
deltaRotationVector[1] = sinThetaOverTwo * axisY;
deltaRotationVector[2] = sinThetaOverTwo * axisZ;
deltaRotationVector[3] = cosThetaOverTwo;
}
timestamp = event.timestamp;
float[] deltaRotationMatrix = new float[9];
SensorManager.getRotationMatrixFromVector(deltaRotationMatrix, deltaRotationVector);
// User code should concatenate the delta rotation we computed with the current rotation
// in order to get the updated rotation.
// rotationCurrent = rotationCurrent * deltaRotationMatrix;
}
In practice, the gyroscope noise and offset will introduce some errors
which need to be compensated for. This is usually done using the
information from other sensors, but is beyond the scope of this document.
{@link android.hardware.Sensor#TYPE_LIGHT Sensor.TYPE_LIGHT}:
- values[0]: Ambient light level in SI lux units
{@link android.hardware.Sensor#TYPE_PRESSURE Sensor.TYPE_PRESSURE}:
- values[0]: Atmospheric pressure in hPa (millibar)
{@link android.hardware.Sensor#TYPE_PROXIMITY Sensor.TYPE_PROXIMITY}:
- values[0]: Proximity sensor distance measured in centimeters
Note: Some proximity sensors only support a binary near or
far measurement. In this case, the sensor should report its
{@link android.hardware.Sensor#getMaximumRange() maximum range} value in
the far state and a lesser value in the near state.
{@link android.hardware.Sensor#TYPE_GRAVITY Sensor.TYPE_GRAVITY}:
A three dimensional vector indicating the direction and magnitude of gravity. Units
are m/s^2. The coordinate system is the same as is used by the acceleration sensor.
Note: When the device is at rest, the output of the gravity sensor should be identical
to that of the accelerometer.
{@link android.hardware.Sensor#TYPE_LINEAR_ACCELERATION Sensor.TYPE_LINEAR_ACCELERATION}:
A three dimensional vector indicating acceleration along each device axis, not including
gravity. All values have units of m/s^2. The coordinate system is the same as is used by the
acceleration sensor.
The output of the accelerometer, gravity and linear-acceleration sensors must obey the
following relation:
acceleration = gravity + linear-acceleration
{@link android.hardware.Sensor#TYPE_ROTATION_VECTOR Sensor.TYPE_ROTATION_VECTOR}:
The rotation vector represents the orientation of the device as a combination of an angle
and an axis, in which the device has rotated through an angle θ around an axis
<x, y, z>.
The three elements of the rotation vector are
<x*sin(θ/2), y*sin(θ/2), z*sin(θ/2)>, such that the magnitude of the rotation
vector is equal to sin(θ/2), and the direction of the rotation vector is equal to the
direction of the axis of rotation.
The three elements of the rotation vector are equal to
the last three components of a unit quaternion
<cos(θ/2), x*sin(θ/2), y*sin(θ/2), z*sin(θ/2)>.
Elements of the rotation vector are unitless.
The x,y, and z axis are defined in the same way as the acceleration
sensor.
The reference coordinate system is defined as a direct orthonormal basis,
where:
- X is defined as the vector product Y.Z (It is tangential to
the ground at the device's current location and roughly points East).
- Y is tangential to the ground at the device's current location and
points towards magnetic north.
- Z points towards the sky and is perpendicular to the ground.
- values[0]: x*sin(θ/2)
- values[1]: y*sin(θ/2)
- values[2]: z*sin(θ/2)
- values[3]: cos(θ/2)
- values[4]: estimated heading Accuracy (in radians) (-1 if unavailable)
values[3], originally optional, will always be present from SDK Level 18 onwards.
values[4] is a new value that has been added in SDK Level 18.
{@link android.hardware.Sensor#TYPE_ORIENTATION
Sensor.TYPE_ORIENTATION}:
All values are angles in degrees.
- values[0]: Azimuth, angle between the magnetic north direction and the
y-axis, around the z-axis (0 to 359). 0=North, 90=East, 180=South,
270=West
values[1]: Pitch, rotation around x-axis (-180 to 180), with positive
values when the z-axis moves toward the y-axis.
values[2]: Roll, rotation around the x-axis (-90 to 90)
increasing as the device moves clockwise.
Note: This definition is different from yaw, pitch and roll
used in aviation where the X axis is along the long side of the plane
(tail to nose).
Note: This sensor type exists for legacy reasons, please use
{@link android.hardware.SensorManager#getRotationMatrix
getRotationMatrix()} in conjunction with
{@link android.hardware.SensorManager#remapCoordinateSystem
remapCoordinateSystem()} and
{@link android.hardware.SensorManager#getOrientation getOrientation()} to
compute these values instead.
Important note: For historical reasons the roll angle is positive
in the clockwise direction (mathematically speaking, it should be
positive in the counter-clockwise direction).
{@link android.hardware.Sensor#TYPE_RELATIVE_HUMIDITY
Sensor.TYPE_RELATIVE_HUMIDITY}:
- values[0]: Relative ambient air humidity in percent
When relative ambient air humidity and ambient temperature are
measured, the dew point and absolute humidity can be calculated.
Dew Point
The dew point is the temperature to which a given parcel of air must be
cooled, at constant barometric pressure, for water vapor to condense
into water.
ln(RH/100%) + m·t/(Tn+t)
td(t,RH) = Tn · ------------------------------
m - [ln(RH/100%) + m·t/(Tn+t)]
- td
- dew point temperature in °C
- t
- actual temperature in °C
- RH
- actual relative humidity in %
- m
- 17.62
- Tn
- 243.12 °C
for example:
h = Math.log(rh / 100.0) + (17.62 * t) / (243.12 + t);
td = 243.12 * h / (17.62 - h);
Absolute Humidity
The absolute humidity is the mass of water vapor in a particular volume
of dry air. The unit is g/m3.
RH/100%·A·exp(m·t/(Tn+t))
dv(t,RH) = 216.7 · -------------------------
273.15 + t
- dv
- absolute humidity in g/m3
- t
- actual temperature in °C
- RH
- actual relative humidity in %
- m
- 17.62
- Tn
- 243.12 °C
- A
- 6.112 hPa
for example:
dv = 216.7 *
(rh / 100.0 * 6.112 * Math.exp(17.62 * t / (243.12 + t)) / (273.15 + t));
{@link android.hardware.Sensor#TYPE_AMBIENT_TEMPERATURE Sensor.TYPE_AMBIENT_TEMPERATURE}:
- values[0]: ambient (room) temperature in degree Celsius.
{@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD_UNCALIBRATED
Sensor.TYPE_MAGNETIC_FIELD_UNCALIBRATED}:
Similar to {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD},
but the hard iron calibration is reported separately instead of being included
in the measurement. Factory calibration and temperature compensation will still
be applied to the "uncalibrated" measurement. Assumptions that the magnetic field
is due to the Earth's poles is avoided.
The values array is shown below:
- values[0] = x_uncalib
- values[1] = y_uncalib
- values[2] = z_uncalib
- values[3] = x_bias
- values[4] = y_bias
- values[5] = z_bias
x_uncalib, y_uncalib, z_uncalib are the measured magnetic field in X, Y, Z axes.
Soft iron and temperature calibrations are applied. But the hard iron
calibration is not applied. The values are in micro-Tesla (uT).
x_bias, y_bias, z_bias give the iron bias estimated in X, Y, Z axes.
Each field is a component of the estimated hard iron calibration.
The values are in micro-Tesla (uT).
Hard iron - These distortions arise due to the magnetized iron, steel or permanenet
magnets on the device.
Soft iron - These distortions arise due to the interaction with the earth's magentic
field.
{@link android.hardware.Sensor#TYPE_GAME_ROTATION_VECTOR}:
Identical to {@link android.hardware.Sensor#TYPE_ROTATION_VECTOR} except that it
doesn't use the geomagnetic field. Therefore the Y axis doesn't
point north, but instead to some other reference, that reference is
allowed to drift by the same order of magnitude as the gyroscope
drift around the Z axis.
In the ideal case, a phone rotated and returning to the same real-world
orientation will report the same game rotation vector
(without using the earth's geomagnetic field). However, the orientation
may drift somewhat over time. See {@link android.hardware.Sensor#TYPE_ROTATION_VECTOR}
for a detailed description of the values. This sensor will not have
the estimated heading accuracy value.
{@link android.hardware.Sensor#TYPE_GYROSCOPE_UNCALIBRATED
Sensor.TYPE_GYROSCOPE_UNCALIBRATED}:
All values are in radians/second and measure the rate of rotation
around the X, Y and Z axis. An estimation of the drift on each axis is
reported as well.
No gyro-drift compensation is performed. Factory calibration and temperature
compensation is still applied to the rate of rotation (angular speeds).
The coordinate system is the same as is used for the
{@link android.hardware.Sensor#TYPE_ACCELEROMETER}
Rotation is positive in the counter-clockwise direction (right-hand rule).
That is, an observer looking from some positive location on the x, y or z axis
at a device positioned on the origin would report positive rotation if the device
appeared to be rotating counter clockwise.
The range would at least be 17.45 rad/s (ie: ~1000 deg/s).
- values[0] : angular speed (w/o drift compensation) around the X axis in rad/s
- values[1] : angular speed (w/o drift compensation) around the Y axis in rad/s
- values[2] : angular speed (w/o drift compensation) around the Z axis in rad/s
- values[3] : estimated drift around X axis in rad/s
- values[4] : estimated drift around Y axis in rad/s
- values[5] : estimated drift around Z axis in rad/s
Pro Tip: Always use the length of the values array while performing operations
on it. In earlier versions, this used to be always 3 which has changed now.