DigitListpublic final class DigitList extends Object implements CloneableDigit List. Private to DecimalFormat.
Handles the transcoding
between numeric values and strings of characters. Only handles
non-negative numbers. The division of labor between DigitList and
DecimalFormat is that DigitList handles the radix 10 representation
issues; DecimalFormat handles the locale-specific issues such as
positive/negative, grouping, decimal point, currency, and so on.
A DigitList is really a representation of a floating point value.
It may be an integer value; we assume that a double has sufficient
precision to represent all digits of a long.
The DigitList representation consists of a string of characters,
which are the digits radix 10, from '0' to '9'. It also has a radix
10 exponent associated with it. The value represented by a DigitList
object can be computed by mulitplying the fraction f, where 0 <= f < 1,
derived by placing all the digits of the list to the right of the
decimal point, by 10^exponent. |
Fields Summary |
---|
public static final int | MAX_COUNTThe maximum number of significant digits in an IEEE 754 double, that
is, in a Java double. This must not be increased, or garbage digits
will be generated, and should not be decreased, or accuracy will be lost. | public int | decimalAtThese data members are intentionally public and can be set directly.
The value represented is given by placing the decimal point before
digits[decimalAt]. If decimalAt is < 0, then leading zeros between
the decimal point and the first nonzero digit are implied. If decimalAt
is > count, then trailing zeros between the digits[count-1] and the
decimal point are implied.
Equivalently, the represented value is given by f * 10^decimalAt. Here
f is a value 0.1 <= f < 1 arrived at by placing the digits in Digits to
the right of the decimal.
DigitList is normalized, so if it is non-zero, figits[0] is non-zero. We
don't allow denormalized numbers because our exponent is effectively of
unlimited magnitude. The count value contains the number of significant
digits present in digits[].
Zero is represented by any DigitList with count == 0 or with each digits[i]
for all i <= count == '0'. | public int | count | public char[] | digits | private char[] | data | private static final char[] | LONG_MIN_REP | private StringBuffer | tempBuffer |
Methods Summary |
---|
public void | append(char digit)Appends a digit to the list, extending the list when necessary.
if (count == digits.length) {
char[] data = new char[count + 100];
System.arraycopy(digits, 0, data, 0, count);
digits = data;
}
digits[count++] = digit;
| public void | clear()Clears out the digits.
Use before appending them.
Typically, you set a series of digits with append, then at the point
you hit the decimal point, you set myDigitList.decimalAt = myDigitList.count;
then go on appending digits.
decimalAt = 0;
count = 0;
| public java.lang.Object | clone()Creates a copy of this object.
try {
DigitList other = (DigitList) super.clone();
char[] newDigits = new char[digits.length];
System.arraycopy(digits, 0, newDigits, 0, digits.length);
other.digits = newDigits;
return other;
} catch (CloneNotSupportedException e) {
throw new InternalError();
}
| public boolean | equals(java.lang.Object obj)equality test between two digit lists.
if (this == obj) // quick check
return true;
if (!(obj instanceof DigitList)) // (1) same object?
return false;
DigitList other = (DigitList) obj;
if (count != other.count ||
decimalAt != other.decimalAt)
return false;
for (int i = 0; i < count; i++)
if (digits[i] != other.digits[i])
return false;
return true;
| private void | extendDigits(int len)
if (len > digits.length) {
digits = new char[len];
}
| boolean | fitsIntoLong(boolean isPositive, boolean ignoreNegativeZero)Return true if the number represented by this object can fit into
a long.
// Figure out if the result will fit in a long. We have to
// first look for nonzero digits after the decimal point;
// then check the size. If the digit count is 18 or less, then
// the value can definitely be represented as a long. If it is 19
// then it may be too large.
// Trim trailing zeros. This does not change the represented value.
while (count > 0 && digits[count - 1] == '0") {
--count;
}
if (count == 0) {
// Positive zero fits into a long, but negative zero can only
// be represented as a double. - bug 4162852
return isPositive || ignoreNegativeZero;
}
if (decimalAt < count || decimalAt > MAX_COUNT) {
return false;
}
if (decimalAt < MAX_COUNT) return true;
// At this point we have decimalAt == count, and count == MAX_COUNT.
// The number will overflow if it is larger than 9223372036854775807
// or smaller than -9223372036854775808.
for (int i=0; i<count; ++i) {
char dig = digits[i], max = LONG_MIN_REP[i];
if (dig > max) return false;
if (dig < max) return true;
}
// At this point the first count digits match. If decimalAt is less
// than count, then the remaining digits are zero, and we return true.
if (count < decimalAt) return true;
// Now we have a representation of Long.MIN_VALUE, without the leading
// negative sign. If this represents a positive value, then it does
// not fit; otherwise it fits.
return !isPositive;
| public final java.math.BigDecimal | getBigDecimal()
if (count == 0) {
if (decimalAt == 0) {
return BigDecimal.ZERO;
} else {
return new BigDecimal("0E" + decimalAt);
}
}
StringBuffer temp = new StringBuffer(count + 12);
temp.append('.");
temp.append(digits, 0, count);
temp.append('E");
temp.append(decimalAt);
return new BigDecimal(temp.toString());
| private final char[] | getDataChars(int length)
if (data == null || data.length < length) {
data = new char[length];
}
return data;
| public final double | getDouble()Utility routine to get the value of the digit list
If (count == 0) this throws a NumberFormatException, which
mimics Long.parseLong().
if (count == 0) {
return 0.0;
}
StringBuffer temp = getStringBuffer();
temp.append('.");
temp.append(digits, 0, count);
temp.append('E");
temp.append(decimalAt);
return Double.parseDouble(temp.toString());
| public final long | getLong()Utility routine to get the value of the digit list.
If (count == 0) this returns 0, unlike Long.parseLong().
// for now, simple implementation; later, do proper IEEE native stuff
if (count == 0) {
return 0;
}
// We have to check for this, because this is the one NEGATIVE value
// we represent. If we tried to just pass the digits off to parseLong,
// we'd get a parse failure.
if (isLongMIN_VALUE()) {
return Long.MIN_VALUE;
}
StringBuffer temp = getStringBuffer();
temp.append(digits, 0, count);
for (int i = count; i < decimalAt; ++i) {
temp.append('0");
}
return Long.parseLong(temp.toString());
| private java.lang.StringBuffer | getStringBuffer()
if (tempBuffer == null) {
tempBuffer = new StringBuffer(MAX_COUNT);
} else {
tempBuffer.setLength(0);
}
return tempBuffer;
| public int | hashCode()Generates the hash code for the digit list.
int hashcode = decimalAt;
for (int i = 0; i < count; i++) {
hashcode = hashcode * 37 + digits[i];
}
return hashcode;
| private boolean | isLongMIN_VALUE()Returns true if this DigitList represents Long.MIN_VALUE;
false, otherwise. This is required so that getLong() works.
if (decimalAt != count || count != MAX_COUNT) {
return false;
}
for (int i = 0; i < count; ++i) {
if (digits[i] != LONG_MIN_REP[i]) return false;
}
return true;
| boolean | isZero()Return true if the represented number is zero.
for (int i=0; i < count; ++i) {
if (digits[i] != '0") {
return false;
}
}
return true;
| private static final int | parseInt(char[] str, int offset, int strLen)
char c;
boolean positive = true;
if ((c = str[offset]) == '-") {
positive = false;
offset++;
} else if (c == '+") {
offset++;
}
int value = 0;
while (offset < strLen) {
c = str[offset++];
if (c >= '0" && c <= '9") {
value = value * 10 + (c - '0");
} else {
break;
}
}
return positive ? value : -value;
| private final void | round(int maximumDigits)Round the representation to the given number of digits.
// Eliminate digits beyond maximum digits to be displayed.
// Round up if appropriate.
if (maximumDigits >= 0 && maximumDigits < count) {
if (shouldRoundUp(maximumDigits)) {
// Rounding up involved incrementing digits from LSD to MSD.
// In most cases this is simple, but in a worst case situation
// (9999..99) we have to adjust the decimalAt value.
for (;;) {
--maximumDigits;
if (maximumDigits < 0) {
// We have all 9's, so we increment to a single digit
// of one and adjust the exponent.
digits[0] = '1";
++decimalAt;
maximumDigits = 0; // Adjust the count
break;
}
++digits[maximumDigits];
if (digits[maximumDigits] <= '9") break;
// digits[maximumDigits] = '0'; // Unnecessary since we'll truncate this
}
++maximumDigits; // Increment for use as count
}
count = maximumDigits;
// Eliminate trailing zeros.
while (count > 1 && digits[count-1] == '0") {
--count;
}
}
| final void | set(java.lang.String s, int maximumDigits, boolean fixedPoint)Generate a representation of the form DDDDD, DDDDD.DDDDD, or
DDDDDE+/-DDDDD.
int len = s.length();
char[] source = getDataChars(len);
s.getChars(0, len, source, 0);
decimalAt = -1;
count = 0;
int exponent = 0;
// Number of zeros between decimal point and first non-zero digit after
// decimal point, for numbers < 1.
int leadingZerosAfterDecimal = 0;
boolean nonZeroDigitSeen = false;
for (int i = 0; i < len; ) {
char c = source[i++];
if (c == '.") {
decimalAt = count;
} else if (c == 'e" || c == 'E") {
exponent = parseInt(source, i, len);
break;
} else {
if (!nonZeroDigitSeen) {
nonZeroDigitSeen = (c != '0");
if (!nonZeroDigitSeen && decimalAt != -1)
++leadingZerosAfterDecimal;
}
if (nonZeroDigitSeen) {
digits[count++] = c;
}
}
}
if (decimalAt == -1) {
decimalAt = count;
}
if (nonZeroDigitSeen) {
decimalAt += exponent - leadingZerosAfterDecimal;
}
if (fixedPoint) {
// The negative of the exponent represents the number of leading
// zeros between the decimal and the first non-zero digit, for
// a value < 0.1 (e.g., for 0.00123, -decimalAt == 2). If this
// is more than the maximum fraction digits, then we have an underflow
// for the printed representation.
if (-decimalAt > maximumDigits) {
// Handle an underflow to zero when we round something like
// 0.0009 to 2 fractional digits.
count = 0;
return;
} else if (-decimalAt == maximumDigits) {
// If we round 0.0009 to 3 fractional digits, then we have to
// create a new one digit in the least significant location.
if (shouldRoundUp(0)) {
count = 1;
++decimalAt;
digits[0] = '1";
} else {
count = 0;
}
return;
}
// else fall through
}
// Eliminate trailing zeros.
while (count > 1 && digits[count - 1] == '0") {
--count;
}
// Eliminate digits beyond maximum digits to be displayed.
// Round up if appropriate.
round(fixedPoint ? (maximumDigits + decimalAt) : maximumDigits);
| public final void | set(long source)Utility routine to set the value of the digit list from a long
set(source, 0);
| public final void | set(long source, int maximumDigits)Set the digit list to a representation of the given long value.
// This method does not expect a negative number. However,
// "source" can be a Long.MIN_VALUE (-9223372036854775808),
// if the number being formatted is a Long.MIN_VALUE. In that
// case, it will be formatted as -Long.MIN_VALUE, a number
// which is outside the legal range of a long, but which can
// be represented by DigitList.
if (source <= 0) {
if (source == Long.MIN_VALUE) {
decimalAt = count = MAX_COUNT;
System.arraycopy(LONG_MIN_REP, 0, digits, 0, count);
} else {
decimalAt = count = 0; // Values <= 0 format as zero
}
} else {
// Rewritten to improve performance. I used to call
// Long.toString(), which was about 4x slower than this code.
int left = MAX_COUNT;
int right;
while (source > 0) {
digits[--left] = (char)('0" + (source % 10));
source /= 10;
}
decimalAt = MAX_COUNT - left;
// Don't copy trailing zeros. We are guaranteed that there is at
// least one non-zero digit, so we don't have to check lower bounds.
for (right = MAX_COUNT - 1; digits[right] == '0"; --right)
;
count = right - left + 1;
System.arraycopy(digits, left, digits, 0, count);
}
if (maximumDigits > 0) round(maximumDigits);
| final void | set(java.math.BigDecimal source, int maximumDigits, boolean fixedPoint)Set the digit list to a representation of the given BigDecimal value.
This method supports both fixed-point and exponential notation.
String s = source.toString();
extendDigits(s.length());
set(s, maximumDigits, fixedPoint);
| final void | set(java.math.BigInteger source, int maximumDigits)Set the digit list to a representation of the given BigInteger value.
String s = source.toString();
int len = s.length();
extendDigits(len);
s.getChars(0, len, digits, 0);
decimalAt = len;
int right;
for (right = len - 1; right >= 0 && digits[right] == '0"; --right)
;
count = right + 1;
if (maximumDigits > 0) {
round(maximumDigits);
}
| public final void | set(double source, int maximumFractionDigits)Set the digit list to a representation of the given double value.
This method supports fixed-point notation.
set(source, maximumFractionDigits, true);
| final void | set(double source, int maximumDigits, boolean fixedPoint)Set the digit list to a representation of the given double value.
This method supports both fixed-point and exponential notation.
set(Double.toString(source), maximumDigits, fixedPoint);
| private boolean | shouldRoundUp(int maximumDigits)Return true if truncating the representation to the given number
of digits will result in an increment to the last digit. This
method implements half-even rounding, the default rounding mode.
[bnf]
boolean increment = false;
// Implement IEEE half-even rounding
if (maximumDigits < count) {
if (digits[maximumDigits] > '5") {
return true;
} else if (digits[maximumDigits] == '5" ) {
for (int i=maximumDigits+1; i<count; ++i) {
if (digits[i] != '0") {
return true;
}
}
return maximumDigits > 0 && (digits[maximumDigits-1] % 2 != 0);
}
}
return false;
| public java.lang.String | toString()
if (isZero()) {
return "0";
}
StringBuffer buf = getStringBuffer();
buf.append("0.");
buf.append(digits, 0, count);
buf.append("x10^");
buf.append(decimalAt);
return buf.toString();
|
|