AffineTransformOppublic class AffineTransformOp extends Object implements BufferedImageOp, RasterOpThis class uses an affine transform to perform a linear mapping from
2D coordinates in the source image or Raster to 2D coordinates
in the destination image or Raster .
The type of interpolation that is used is specified through a constructor,
either by a RenderingHints object or by one of the integer
interpolation types defined in this class.
If a RenderingHints object is specified in the constructor, the
interpolation hint and the rendering quality hint are used to set
the interpolation type for this operation. The color rendering hint
and the dithering hint can be used when color conversion is required.
Note that the following constraints have to be met:
- The source and destination must be different.
- For
Raster objects, the number of bands in the source must
be equal to the number of bands in the destination.
|
Fields Summary |
---|
private AffineTransform | xform | RenderingHints | hints | public static final int | TYPE_NEAREST_NEIGHBORNearest-neighbor interpolation type. | public static final int | TYPE_BILINEARBilinear interpolation type. | public static final int | TYPE_BICUBICBicubic interpolation type. | int | interpolationType |
Constructors Summary |
---|
public AffineTransformOp(AffineTransform xform, RenderingHints hints)Constructs an AffineTransformOp given an affine transform.
The interpolation type is determined from the
RenderingHints object. If the interpolation hint is
defined, it will be used. Otherwise, if the rendering quality hint is
defined, the interpolation type is determined from its value. If no
hints are specified (hints is null),
the interpolation type is {@link #TYPE_NEAREST_NEIGHBOR
TYPE_NEAREST_NEIGHBOR}.
validateTransform(xform);
this.xform = (AffineTransform) xform.clone();
this.hints = hints;
if (hints != null) {
Object value = hints.get(hints.KEY_INTERPOLATION);
if (value == null) {
value = hints.get(hints.KEY_RENDERING);
if (value == hints.VALUE_RENDER_SPEED) {
interpolationType = TYPE_NEAREST_NEIGHBOR;
}
else if (value == hints.VALUE_RENDER_QUALITY) {
interpolationType = TYPE_BILINEAR;
}
}
else if (value == hints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR) {
interpolationType = TYPE_NEAREST_NEIGHBOR;
}
else if (value == hints.VALUE_INTERPOLATION_BILINEAR) {
interpolationType = TYPE_BILINEAR;
}
else if (value == hints.VALUE_INTERPOLATION_BICUBIC) {
interpolationType = TYPE_BICUBIC;
}
}
else {
interpolationType = TYPE_NEAREST_NEIGHBOR;
}
| public AffineTransformOp(AffineTransform xform, int interpolationType)Constructs an AffineTransformOp given an affine transform
and the interpolation type.
validateTransform(xform);
this.xform = (AffineTransform)xform.clone();
switch(interpolationType) {
case TYPE_NEAREST_NEIGHBOR:
case TYPE_BILINEAR:
case TYPE_BICUBIC:
break;
default:
throw new IllegalArgumentException("Unknown interpolation type: "+
interpolationType);
}
this.interpolationType = interpolationType;
|
Methods Summary |
---|
public java.awt.image.BufferedImage | createCompatibleDestImage(java.awt.image.BufferedImage src, java.awt.image.ColorModel destCM)Creates a zeroed destination image with the correct size and number of
bands. A RasterFormatException may be thrown if the
transformed width or height is equal to 0.
If destCM is null,
an appropriate ColorModel is used; this
ColorModel may have
an alpha channel even if the source ColorModel is opaque.
BufferedImage image;
Rectangle r = getBounds2D(src).getBounds();
// If r.x (or r.y) is < 0, then we want to only create an image
// that is in the positive range.
// If r.x (or r.y) is > 0, then we need to create an image that
// includes the translation.
int w = r.x + r.width;
int h = r.y + r.height;
if (w <= 0) {
throw new RasterFormatException("Transformed width ("+w+
") is less than or equal to 0.");
}
if (h <= 0) {
throw new RasterFormatException("Transformed height ("+h+
") is less than or equal to 0.");
}
if (destCM == null) {
ColorModel cm = src.getColorModel();
if (interpolationType != TYPE_NEAREST_NEIGHBOR &&
(cm instanceof IndexColorModel ||
cm.getTransparency() == Transparency.OPAQUE))
{
image = new BufferedImage(w, h,
BufferedImage.TYPE_INT_ARGB);
}
else {
image = new BufferedImage(cm,
src.getRaster().createCompatibleWritableRaster(w,h),
cm.isAlphaPremultiplied(), null);
}
}
else {
image = new BufferedImage(destCM,
destCM.createCompatibleWritableRaster(w,h),
destCM.isAlphaPremultiplied(), null);
}
return image;
| public java.awt.image.WritableRaster | createCompatibleDestRaster(java.awt.image.Raster src)Creates a zeroed destination Raster with the correct size
and number of bands. A RasterFormatException may be thrown
if the transformed width or height is equal to 0.
Rectangle2D r = getBounds2D(src);
return src.createCompatibleWritableRaster((int)r.getX(),
(int)r.getY(),
(int)r.getWidth(),
(int)r.getHeight());
| public final java.awt.image.BufferedImage | filter(java.awt.image.BufferedImage src, java.awt.image.BufferedImage dst)Transforms the source BufferedImage and stores the results
in the destination BufferedImage .
If the color models for the two images do not match, a color
conversion into the destination color model is performed.
If the destination image is null,
a BufferedImage is created with the source
ColorModel .
The coordinates of the rectangle returned by
getBounds2D(BufferedImage)
are not necessarily the same as the coordinates of the
BufferedImage returned by this method. If the
upper-left corner coordinates of the rectangle are
negative then this part of the rectangle is not drawn. If the
upper-left corner coordinates of the rectangle are positive
then the filtered image is drawn at that position in the
destination BufferedImage .
An IllegalArgumentException is thrown if the source is
the same as the destination.
if (src == null) {
throw new NullPointerException("src image is null");
}
if (src == dst) {
throw new IllegalArgumentException("src image cannot be the "+
"same as the dst image");
}
boolean needToConvert = false;
ColorModel srcCM = src.getColorModel();
ColorModel dstCM;
BufferedImage origDst = dst;
if (dst == null) {
dst = createCompatibleDestImage(src, null);
dstCM = srcCM;
origDst = dst;
}
else {
dstCM = dst.getColorModel();
if (srcCM.getColorSpace().getType() !=
dstCM.getColorSpace().getType())
{
int type = xform.getType();
boolean needTrans = ((type&
(xform.TYPE_MASK_ROTATION|
xform.TYPE_GENERAL_TRANSFORM))
!= 0);
if (! needTrans && type != xform.TYPE_TRANSLATION && type != xform.TYPE_IDENTITY)
{
double[] mtx = new double[4];
xform.getMatrix(mtx);
// Check out the matrix. A non-integral scale will force ARGB
// since the edge conditions can't be guaranteed.
needTrans = (mtx[0] != (int)mtx[0] || mtx[3] != (int)mtx[3]);
}
if (needTrans &&
srcCM.getTransparency() == Transparency.OPAQUE)
{
// Need to convert first
ColorConvertOp ccop = new ColorConvertOp(hints);
BufferedImage tmpSrc = null;
int sw = src.getWidth();
int sh = src.getHeight();
if (dstCM.getTransparency() == Transparency.OPAQUE) {
tmpSrc = new BufferedImage(sw, sh,
BufferedImage.TYPE_INT_ARGB);
}
else {
WritableRaster r =
dstCM.createCompatibleWritableRaster(sw, sh);
tmpSrc = new BufferedImage(dstCM, r,
dstCM.isAlphaPremultiplied(),
null);
}
src = ccop.filter(src, tmpSrc);
}
else {
needToConvert = true;
dst = createCompatibleDestImage(src, null);
}
}
}
if (interpolationType != TYPE_NEAREST_NEIGHBOR &&
dst.getColorModel() instanceof IndexColorModel) {
dst = new BufferedImage(dst.getWidth(), dst.getHeight(),
BufferedImage.TYPE_INT_ARGB);
}
if (ImagingLib.filter(this, src, dst) == null) {
throw new ImagingOpException ("Unable to transform src image");
}
if (needToConvert) {
ColorConvertOp ccop = new ColorConvertOp(hints);
ccop.filter(dst, origDst);
}
else if (origDst != dst) {
java.awt.Graphics2D g = origDst.createGraphics();
try {
g.setComposite(AlphaComposite.Src);
g.drawImage(dst, 0, 0, null);
} finally {
g.dispose();
}
}
return origDst;
| public final java.awt.image.WritableRaster | filter(java.awt.image.Raster src, java.awt.image.WritableRaster dst)Transforms the source Raster and stores the results in
the destination Raster . This operation performs the
transform band by band.
If the destination Raster is null, a new
Raster is created.
An IllegalArgumentException may be thrown if the source is
the same as the destination or if the number of bands in
the source is not equal to the number of bands in the
destination.
The coordinates of the rectangle returned by
getBounds2D(Raster)
are not necessarily the same as the coordinates of the
WritableRaster returned by this method. If the
upper-left corner coordinates of rectangle are negative then
this part of the rectangle is not drawn. If the coordinates
of the rectangle are positive then the filtered image is drawn at
that position in the destination Raster .
if (src == null) {
throw new NullPointerException("src image is null");
}
if (dst == null) {
dst = createCompatibleDestRaster(src);
}
if (src == dst) {
throw new IllegalArgumentException("src image cannot be the "+
"same as the dst image");
}
if (src.getNumBands() != dst.getNumBands()) {
throw new IllegalArgumentException("Number of src bands ("+
src.getNumBands()+
") does not match number of "+
" dst bands ("+
dst.getNumBands()+")");
}
if (ImagingLib.filter(this, src, dst) == null) {
throw new ImagingOpException ("Unable to transform src image");
}
return dst;
| public final java.awt.geom.Rectangle2D | getBounds2D(java.awt.image.BufferedImage src)Returns the bounding box of the transformed destination. The
rectangle returned is the actual bounding box of the
transformed points. The coordinates of the upper-left corner
of the returned rectangle might not be (0, 0).
return getBounds2D(src.getRaster());
| public final java.awt.geom.Rectangle2D | getBounds2D(java.awt.image.Raster src)Returns the bounding box of the transformed destination. The
rectangle returned will be the actual bounding box of the
transformed points. The coordinates of the upper-left corner
of the returned rectangle might not be (0, 0).
int w = src.getWidth();
int h = src.getHeight();
// Get the bounding box of the src and transform the corners
float[] pts = {0, 0, w, 0, w, h, 0, h};
xform.transform(pts, 0, pts, 0, 4);
// Get the min, max of the dst
float fmaxX = pts[0];
float fmaxY = pts[1];
float fminX = pts[0];
float fminY = pts[1];
for (int i=2; i < 8; i+=2) {
if (pts[i] > fmaxX) {
fmaxX = pts[i];
}
else if (pts[i] < fminX) {
fminX = pts[i];
}
if (pts[i+1] > fmaxY) {
fmaxY = pts[i+1];
}
else if (pts[i+1] < fminY) {
fminY = pts[i+1];
}
}
return new Rectangle2D.Float(fminX, fminY, fmaxX-fminX, fmaxY-fminY);
| public final int | getInterpolationType()Returns the interpolation type used by this op.
return interpolationType;
| public final java.awt.geom.Point2D | getPoint2D(java.awt.geom.Point2D srcPt, java.awt.geom.Point2D dstPt)Returns the location of the corresponding destination point given a
point in the source. If dstPt is specified, it
is used to hold the return value.
return xform.transform (srcPt, dstPt);
| public final java.awt.RenderingHints | getRenderingHints()Returns the rendering hints used by this transform operation.
if (hints == null) {
Object val;
switch(interpolationType) {
case TYPE_NEAREST_NEIGHBOR:
val = RenderingHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR;
break;
case TYPE_BILINEAR:
val = RenderingHints.VALUE_INTERPOLATION_BILINEAR;
break;
case TYPE_BICUBIC:
val = RenderingHints.VALUE_INTERPOLATION_BICUBIC;
break;
default:
// Should never get here
throw new InternalError("Unknown interpolation type "+
interpolationType);
}
hints = new RenderingHints(RenderingHints.KEY_INTERPOLATION, val);
}
return hints;
| public final java.awt.geom.AffineTransform | getTransform()Returns the affine transform used by this transform operation.
return (AffineTransform) xform.clone();
| void | validateTransform(java.awt.geom.AffineTransform xform)
if (Math.abs(xform.getDeterminant()) <= Double.MIN_VALUE) {
throw new ImagingOpException("Unable to invert transform "+xform);
}
|
|