Areapublic class Area extends Object implements Shape, CloneableThe Area class is a device-independent specification of an
arbitrarily-shaped area. The Area object is defined as an
object that performs certain binary CAG (Constructive Area Geometry)
operations on other area-enclosing geometries, such as rectangles,
ellipses, and polygons. The CAG operations are Add(union), Subtract,
Intersect, and ExclusiveOR. For example, an Area can be
made up of the area of a rectangle minus the area of an ellipse. |
Fields Summary |
---|
private static Vector | EmptyCurves | private Vector | curves | private Rectangle2D | cachedBounds |
Constructors Summary |
---|
public Area()Default constructor which creates an empty area.
curves = EmptyCurves;
| public Area(Shape s)The Area class creates an area geometry from the
specified {@link Shape} object. The geometry is explicitly
closed, if the Shape is not already closed. The
fill rule (even-odd or winding) specified by the geometry of the
Shape is used to determine the resulting enclosed area.
if (s instanceof Area) {
curves = ((Area) s).curves;
return;
}
curves = new Vector();
PathIterator pi = s.getPathIterator(null);
int windingRule = pi.getWindingRule();
// coords array is big enough for holding:
// coordinates returned from currentSegment (6)
// OR
// two subdivided quadratic curves (2+4+4=10)
// AND
// 0-1 horizontal splitting parameters
// OR
// 2 parametric equation derivative coefficients
// OR
// three subdivided cubic curves (2+6+6+6=20)
// AND
// 0-2 horizontal splitting parameters
// OR
// 3 parametric equation derivative coefficients
double coords[] = new double[23];
double movx = 0, movy = 0;
double curx = 0, cury = 0;
double newx, newy;
while (!pi.isDone()) {
switch (pi.currentSegment(coords)) {
case PathIterator.SEG_MOVETO:
Curve.insertLine(curves, curx, cury, movx, movy);
curx = movx = coords[0];
cury = movy = coords[1];
Curve.insertMove(curves, movx, movy);
break;
case PathIterator.SEG_LINETO:
newx = coords[0];
newy = coords[1];
Curve.insertLine(curves, curx, cury, newx, newy);
curx = newx;
cury = newy;
break;
case PathIterator.SEG_QUADTO:
newx = coords[2];
newy = coords[3];
Curve.insertQuad(curves, curx, cury, coords);
curx = newx;
cury = newy;
break;
case PathIterator.SEG_CUBICTO:
newx = coords[4];
newy = coords[5];
Curve.insertCubic(curves, curx, cury, coords);
curx = newx;
cury = newy;
break;
case PathIterator.SEG_CLOSE:
Curve.insertLine(curves, curx, cury, movx, movy);
curx = movx;
cury = movy;
break;
}
pi.next();
}
Curve.insertLine(curves, curx, cury, movx, movy);
AreaOp operator;
if (windingRule == PathIterator.WIND_EVEN_ODD) {
operator = new AreaOp.EOWindOp();
} else {
operator = new AreaOp.NZWindOp();
}
curves = operator.calculate(this.curves, EmptyCurves);
|
Methods Summary |
---|
public void | add(java.awt.geom.Area rhs)Adds the shape of the specified Area to the
shape of this Area .
Addition is achieved through union.
curves = new AreaOp.AddOp().calculate(this.curves, rhs.curves);
invalidateBounds();
| public java.lang.Object | clone()Returns an exact copy of this Area object.
return new Area(this);
| public boolean | contains(double x, double y)Tests if a specifed point lies inside the boundary of
this Area object.
if (!getCachedBounds().contains(x, y)) {
return false;
}
Enumeration enum_ = curves.elements();
int crossings = 0;
while (enum_.hasMoreElements()) {
Curve c = (Curve) enum_.nextElement();
crossings += c.crossingsFor(x, y);
}
return ((crossings & 1) == 1);
| public boolean | contains(java.awt.geom.Point2D p)Tests if a specified {@link Point2D} lies inside the boundary of the
this Area object.
return contains(p.getX(), p.getY());
| public boolean | contains(double x, double y, double w, double h)Tests whether or not the interior of this Area object
completely contains the specified rectangular area.
if (w < 0 || h < 0) {
return false;
}
if (!getCachedBounds().contains(x, y, w, h)) {
return false;
}
Crossings c = Crossings.findCrossings(curves, x, y, x+w, y+h);
return (c != null && c.covers(y, y+h));
| public boolean | contains(java.awt.geom.Rectangle2D p)Tests whether or not the interior of this Area object
completely contains the specified Rectangle2D .
return contains(p.getX(), p.getY(), p.getWidth(), p.getHeight());
| public java.awt.geom.Area | createTransformedArea(java.awt.geom.AffineTransform t)Creates a new Area object that contains the same
geometry as this Area transformed by the specified
AffineTransform . This Area object
is unchanged.
// REMIND: A simpler operation can be performed for some types
// of transform.
// REMIND: this could be simplified by "breaking out" the
// PathIterator code from the constructor
return new Area(t.createTransformedShape(this));
| public boolean | equals(java.awt.geom.Area other)Tests whether the geometries of the two Area objects
are equal.
// REMIND: A *much* simpler operation should be possible...
// Should be able to do a curve-wise comparison since all Areas
// should evaluate their curves in the same top-down order.
if (other == this) {
return true;
}
if (other == null) {
return false;
}
Vector c = new AreaOp.XorOp().calculate(this.curves, other.curves);
return c.isEmpty();
| public void | exclusiveOr(java.awt.geom.Area rhs)Sets the shape of this Area to be the combined area
of its current shape and the shape of the specified Area ,
minus their intersection.
curves = new AreaOp.XorOp().calculate(this.curves, rhs.curves);
invalidateBounds();
| public java.awt.Rectangle | getBounds()Returns a bounding {@link Rectangle} that completely encloses
this Area .
The Area class will attempt to return the tightest bounding
box possible for the Shape. The bounding box will not be
padded to include the control points of curves in the outline
of the Shape, but should tightly fit the actual geometry of
the outline itself. Since the returned object represents
the bounding box with integers, the bounding box can only be
as tight as the nearest integer coordinates that encompass
the geometry of the Shape.
return getCachedBounds().getBounds();
| public java.awt.geom.Rectangle2D | getBounds2D()Returns a high precision bounding {@link Rectangle2D} that
completely encloses this Area .
The Area class will attempt to return the tightest bounding
box possible for the Shape. The bounding box will not be
padded to include the control points of curves in the outline
of the Shape, but should tightly fit the actual geometry of
the outline itself.
return getCachedBounds().getBounds2D();
| private java.awt.geom.Rectangle2D | getCachedBounds()
if (cachedBounds != null) {
return cachedBounds;
}
Rectangle2D r = new Rectangle2D.Double();
if (curves.size() > 0) {
Curve c = (Curve) curves.get(0);
// First point is always an order 0 curve (moveto)
r.setRect(c.getX0(), c.getY0(), 0, 0);
for (int i = 1; i < curves.size(); i++) {
((Curve) curves.get(i)).enlarge(r);
}
}
return (cachedBounds = r);
| public java.awt.geom.PathIterator | getPathIterator(java.awt.geom.AffineTransform at)Creates a {@link PathIterator} for the outline of this
Area object. This Area object is unchanged.
return new AreaIterator(curves, at);
| public java.awt.geom.PathIterator | getPathIterator(java.awt.geom.AffineTransform at, double flatness)Creates a PathIterator for the flattened outline of
this Area object. Only uncurved path segments
represented by the SEG_MOVETO, SEG_LINETO, and SEG_CLOSE point
types are returned by the iterator. This Area
object is unchanged.
return new FlatteningPathIterator(getPathIterator(at), flatness);
| public void | intersect(java.awt.geom.Area rhs)Sets the shape of this Area to the intersection of
its current shape and the shape of the specified Area .
curves = new AreaOp.IntOp().calculate(this.curves, rhs.curves);
invalidateBounds();
| public boolean | intersects(double x, double y, double w, double h)Tests whether the interior of this Area object
intersects the interior of the specified rectangular area.
if (w < 0 || h < 0) {
return false;
}
if (!getCachedBounds().intersects(x, y, w, h)) {
return false;
}
Crossings c = Crossings.findCrossings(curves, x, y, x+w, y+h);
return (c == null || !c.isEmpty());
| public boolean | intersects(java.awt.geom.Rectangle2D p)Tests whether the interior of this Area object
intersects the interior of the specified Rectangle2D .
return intersects(p.getX(), p.getY(), p.getWidth(), p.getHeight());
| private void | invalidateBounds()
cachedBounds = null;
| public boolean | isEmpty()Tests whether this Area object encloses any area.
return (curves.size() == 0);
| public boolean | isPolygonal()Tests whether this Area consists entirely of
straight edged polygonal geometry.
Enumeration enum_ = curves.elements();
while (enum_.hasMoreElements()) {
if (((Curve) enum_.nextElement()).getOrder() > 1) {
return false;
}
}
return true;
| public boolean | isRectangular()Tests whether this Area is rectangular in shape.
int size = curves.size();
if (size == 0) {
return true;
}
if (size > 3) {
return false;
}
Curve c1 = (Curve) curves.get(1);
Curve c2 = (Curve) curves.get(2);
if (c1.getOrder() != 1 || c2.getOrder() != 1) {
return false;
}
if (c1.getXTop() != c1.getXBot() || c2.getXTop() != c2.getXBot()) {
return false;
}
if (c1.getYTop() != c2.getYTop() || c1.getYBot() != c2.getYBot()) {
// One might be able to prove that this is impossible...
return false;
}
return true;
| public boolean | isSingular()Tests whether this Area is comprised of a single
closed subpath. This method returns true if the
path contains 0 or 1 subpaths, or false if the path
contains more than 1 subpath. The subpaths are counted by the
number of {@link PathIterator#SEG_MOVETO SEG_MOVETO} segments
that appear in the path.
if (curves.size() < 3) {
return true;
}
Enumeration enum_ = curves.elements();
enum_.nextElement(); // First Order0 "moveto"
while (enum_.hasMoreElements()) {
if (((Curve) enum_.nextElement()).getOrder() == 0) {
return false;
}
}
return true;
| public void | reset()Removes all of the geometry from this Area and
restores it to an empty area.
curves = new Vector();
invalidateBounds();
| public void | subtract(java.awt.geom.Area rhs)Subtracts the shape of the specified Area from the
shape of this Area .
curves = new AreaOp.SubOp().calculate(this.curves, rhs.curves);
invalidateBounds();
| public void | transform(java.awt.geom.AffineTransform t)Transforms the geometry of this Area using the specified
{@link AffineTransform}. The geometry is transformed in place, which
permanently changes the enclosed area defined by this object.
// REMIND: A simpler operation can be performed for some types
// of transform.
// REMIND: this could be simplified by "breaking out" the
// PathIterator code from the constructor
curves = new Area(t.createTransformedShape(this)).curves;
invalidateBounds();
|
|