Fields Summary |
---|
private static final long | serialVersionUID |
private final float | valueThe value which the receiver represents. |
public static final float | MAX_VALUEConstant for the maximum {@code float} value, (2 - 2-23) * 2127. |
public static final float | MIN_VALUEConstant for the minimum {@code float} value, 2-149. |
public static final float | NaNConstant for the Not-a-Number (NaN) value of the {@code float} type. |
public static final float | POSITIVE_INFINITYConstant for the Positive Infinity value of the {@code float} type. |
public static final float | NEGATIVE_INFINITYConstant for the Negative Infinity value of the {@code float} type. |
public static final Class | TYPEThe {@link Class} object that represents the primitive type {@code
float}. |
public static final int | SIZEConstant for the number of bits needed to represent a {@code float} in
two's complement form. |
Methods Summary |
---|
public byte | byteValue()
return (byte) value;
|
public static int | compare(float float1, float float2)Compares the two specified float values. There are two special cases:
- {@code Float.NaN} is equal to {@code Float.NaN} and it is greater
than any other float value, including {@code Float.POSITIVE_INFINITY};
- +0.0f is greater than -0.0f
int f1, f2;
int NaNbits = Float.floatToIntBits(Float.NaN);
if ((f1 = Float.floatToIntBits(float1)) == NaNbits) {
if (Float.floatToIntBits(float2) == NaNbits) {
return 0;
}
return 1;
}
if ((f2 = Float.floatToIntBits(float2)) == NaNbits) {
return -1;
}
if (float1 == float2) {
if (f1 == f2) {
return 0;
}
// check for -0
return f1 > f2 ? 1 : -1;
}
return float1 > float2 ? 1 : -1;
|
public int | compareTo(java.lang.Float object)Compares this object to the specified float object to determine their
relative order. There are two special cases:
- {@code Float.NaN} is equal to {@code Float.NaN} and it is greater
than any other float value, including {@code Float.POSITIVE_INFINITY};
- +0.0f is greater than -0.0f
int f1, f2;
int NaNbits = Float.floatToIntBits(Float.NaN);
if ((f1 = Float.floatToIntBits(value)) == NaNbits) {
if (Float.floatToIntBits(object.value) == NaNbits) {
return 0;
}
return 1;
}
if ((f2 = Float.floatToIntBits(object.value)) == NaNbits) {
return -1;
}
if (value == object.value) {
if (f1 == f2) {
return 0;
}
// check for -0
return f1 > f2 ? 1 : -1;
}
return value > object.value ? 1 : -1;
|
public double | doubleValue()
return value;
|
public boolean | equals(java.lang.Object object)Compares this instance with the specified object and indicates if they
are equal. In order to be equal, {@code object} must be an instance of
{@code Float} and have the same float value as this object.
return (object == this)
|| (object instanceof Float)
&& (floatToIntBits(this.value) == floatToIntBits(((Float) object).value));
|
public static native int | floatToIntBits(float value)Converts the specified float value to a binary representation conforming
to the IEEE 754 floating-point single precision bit layout. All
Not-a-Number (NaN) values are converted to a single NaN
representation ({@code 0x7ff8000000000000L}).
|
public static native int | floatToRawIntBits(float value)Converts the specified float value to a binary representation conforming
to the IEEE 754 floating-point single precision bit layout.
Not-a-Number (NaN) values are preserved.
|
public float | floatValue()Gets the primitive value of this float.
return value;
|
public int | hashCode()
return floatToIntBits(value);
|
public static native float | intBitsToFloat(int bits)Converts the specified IEEE 754 floating-point single precision bit
pattern to a Java float value.
|
public int | intValue()
return (int) value;
|
public boolean | isInfinite()Indicates whether this object represents an infinite value.
return isInfinite(value);
|
public static boolean | isInfinite(float f)Indicates whether the specified float represents an infinite value.
return (f == POSITIVE_INFINITY) || (f == NEGATIVE_INFINITY);
|
public boolean | isNaN()Indicates whether this object is a Not-a-Number (NaN) value.
return isNaN(value);
|
public static boolean | isNaN(float f)Indicates whether the specified float is a Not-a-Number (NaN)
value.
return f != f;
|
public long | longValue()
return (long) value;
|
public static float | parseFloat(java.lang.String string)Parses the specified string as a float value.
return org.apache.harmony.luni.util.FloatingPointParser
.parseFloat(string);
|
public short | shortValue()
return (short) value;
|
public static java.lang.String | toHexString(float f)Converts the specified float into its hexadecimal string representation.
/*
* Reference: http://en.wikipedia.org/wiki/IEEE_754
*/
if (f != f) {
return "NaN"; //$NON-NLS-1$
}
if (f == POSITIVE_INFINITY) {
return "Infinity"; //$NON-NLS-1$
}
if (f == NEGATIVE_INFINITY) {
return "-Infinity"; //$NON-NLS-1$
}
int bitValue = floatToIntBits(f);
boolean negative = (bitValue & 0x80000000) != 0;
// mask exponent bits and shift down
int exponent = (bitValue & 0x7f800000) >>> 23;
// mask significand bits and shift up
// significand is 23-bits, so we shift to treat it like 24-bits
int significand = (bitValue & 0x007FFFFF) << 1;
if (exponent == 0 && significand == 0) {
return (negative ? "-0x0.0p0" : "0x0.0p0"); //$NON-NLS-1$ //$NON-NLS-2$
}
StringBuilder hexString = new StringBuilder(10);
if (negative) {
hexString.append("-0x"); //$NON-NLS-1$
} else {
hexString.append("0x"); //$NON-NLS-1$
}
if (exponent == 0) { // denormal (subnormal) value
hexString.append("0."); //$NON-NLS-1$
// significand is 23-bits, so there can be 6 hex digits
int fractionDigits = 6;
// remove trailing hex zeros, so Integer.toHexString() won't print
// them
while ((significand != 0) && ((significand & 0xF) == 0)) {
significand >>>= 4;
fractionDigits--;
}
// this assumes Integer.toHexString() returns lowercase characters
String hexSignificand = Integer.toHexString(significand);
// if there are digits left, then insert some '0' chars first
if (significand != 0 && fractionDigits > hexSignificand.length()) {
int digitDiff = fractionDigits - hexSignificand.length();
while (digitDiff-- != 0) {
hexString.append('0");
}
}
hexString.append(hexSignificand);
hexString.append("p-126"); //$NON-NLS-1$
} else { // normal value
hexString.append("1."); //$NON-NLS-1$
// significand is 23-bits, so there can be 6 hex digits
int fractionDigits = 6;
// remove trailing hex zeros, so Integer.toHexString() won't print
// them
while ((significand != 0) && ((significand & 0xF) == 0)) {
significand >>>= 4;
fractionDigits--;
}
// this assumes Integer.toHexString() returns lowercase characters
String hexSignificand = Integer.toHexString(significand);
// if there are digits left, then insert some '0' chars first
if (significand != 0 && fractionDigits > hexSignificand.length()) {
int digitDiff = fractionDigits - hexSignificand.length();
while (digitDiff-- != 0) {
hexString.append('0");
}
}
hexString.append(hexSignificand);
hexString.append('p");
// remove exponent's 'bias' and convert to a string
hexString.append(Integer.toString(exponent - 127));
}
return hexString.toString();
|
public java.lang.String | toString()
return Float.toString(value);
|
public static java.lang.String | toString(float f)Returns a string containing a concise, human-readable description of the
specified float value.
return org.apache.harmony.luni.util.NumberConverter.convert(f);
|
public static java.lang.Float | valueOf(java.lang.String string)Parses the specified string as a float value.
return valueOf(parseFloat(string));
|
public static java.lang.Float | valueOf(float f)Returns a {@code Float} instance for the specified float value.
return new Float(f);
|