Arrayspublic class Arrays extends Object This class contains various methods for manipulating arrays (such as
sorting and searching). This class also contains a static factory
that allows arrays to be viewed as lists.
The methods in this class all throw a NullPointerException if
the specified array reference is null, except where noted.
The documentation for the methods contained in this class includes
briefs description of the implementations. Such descriptions should
be regarded as implementation notes, rather than parts of the
specification. Implementors should feel free to substitute other
algorithms, so long as the specification itself is adhered to. (For
example, the algorithm used by sort(Object[]) does not have to be
a mergesort, but it does have to be stable.)
This class is a member of the
Java Collections Framework. |
Fields Summary |
---|
private static final int | INSERTIONSORT_THRESHOLDTuning parameter: list size at or below which insertion sort will be
used in preference to mergesort or quicksort. |
Constructors Summary |
---|
private Arrays()
|
Methods Summary |
---|
public static java.util.List | asList(T a)Returns a fixed-size list backed by the specified array. (Changes to
the returned list "write through" to the array.) This method acts
as bridge between array-based and collection-based APIs, in
combination with {@link Collection#toArray}. The returned list is
serializable and implements {@link RandomAccess}.
This method also provides a convenient way to create a fixed-size
list initialized to contain several elements:
List<String> stooges = Arrays.asList("Larry", "Moe", "Curly");
return new ArrayList<T>(a);
| public static int | binarySearch(long[] a, long key)Searches the specified array of longs for the specified value using the
binary search algorithm. The array must be sorted (as
by the {@link #sort(long[])} method) prior to making this call. If it
is not sorted, the results are undefined. If the array contains
multiple elements with the specified value, there is no guarantee which
one will be found.
return binarySearch0(a, 0, a.length, key);
| public static int | binarySearch(long[] a, int fromIndex, int toIndex, long key)Searches a range of
the specified array of longs for the specified value using the
binary search algorithm.
The range must be sorted (as
by the {@link #sort(long[], int, int)} method)
prior to making this call. If it
is not sorted, the results are undefined. If the range contains
multiple elements with the specified value, there is no guarantee which
one will be found.
rangeCheck(a.length, fromIndex, toIndex);
return binarySearch0(a, fromIndex, toIndex, key);
| public static int | binarySearch(int[] a, int key)Searches the specified array of ints for the specified value using the
binary search algorithm. The array must be sorted (as
by the {@link #sort(int[])} method) prior to making this call. If it
is not sorted, the results are undefined. If the array contains
multiple elements with the specified value, there is no guarantee which
one will be found.
return binarySearch0(a, 0, a.length, key);
| public static int | binarySearch(int[] a, int fromIndex, int toIndex, int key)Searches a range of
the specified array of ints for the specified value using the
binary search algorithm.
The range must be sorted (as
by the {@link #sort(int[], int, int)} method)
prior to making this call. If it
is not sorted, the results are undefined. If the range contains
multiple elements with the specified value, there is no guarantee which
one will be found.
rangeCheck(a.length, fromIndex, toIndex);
return binarySearch0(a, fromIndex, toIndex, key);
| public static int | binarySearch(short[] a, short key)Searches the specified array of shorts for the specified value using
the binary search algorithm. The array must be sorted
(as by the {@link #sort(short[])} method) prior to making this call. If
it is not sorted, the results are undefined. If the array contains
multiple elements with the specified value, there is no guarantee which
one will be found.
return binarySearch0(a, 0, a.length, key);
| public static int | binarySearch(short[] a, int fromIndex, int toIndex, short key)Searches a range of
the specified array of shorts for the specified value using
the binary search algorithm.
The range must be sorted
(as by the {@link #sort(short[], int, int)} method)
prior to making this call. If
it is not sorted, the results are undefined. If the range contains
multiple elements with the specified value, there is no guarantee which
one will be found.
rangeCheck(a.length, fromIndex, toIndex);
return binarySearch0(a, fromIndex, toIndex, key);
| public static int | binarySearch(char[] a, char key)Searches the specified array of chars for the specified value using the
binary search algorithm. The array must be sorted (as
by the {@link #sort(char[])} method) prior to making this call. If it
is not sorted, the results are undefined. If the array contains
multiple elements with the specified value, there is no guarantee which
one will be found.
return binarySearch0(a, 0, a.length, key);
| public static int | binarySearch(char[] a, int fromIndex, int toIndex, char key)Searches a range of
the specified array of chars for the specified value using the
binary search algorithm.
The range must be sorted (as
by the {@link #sort(char[], int, int)} method)
prior to making this call. If it
is not sorted, the results are undefined. If the range contains
multiple elements with the specified value, there is no guarantee which
one will be found.
rangeCheck(a.length, fromIndex, toIndex);
return binarySearch0(a, fromIndex, toIndex, key);
| public static int | binarySearch(byte[] a, byte key)Searches the specified array of bytes for the specified value using the
binary search algorithm. The array must be sorted (as
by the {@link #sort(byte[])} method) prior to making this call. If it
is not sorted, the results are undefined. If the array contains
multiple elements with the specified value, there is no guarantee which
one will be found.
return binarySearch0(a, 0, a.length, key);
| public static int | binarySearch(byte[] a, int fromIndex, int toIndex, byte key)Searches a range of
the specified array of bytes for the specified value using the
binary search algorithm.
The range must be sorted (as
by the {@link #sort(byte[], int, int)} method)
prior to making this call. If it
is not sorted, the results are undefined. If the range contains
multiple elements with the specified value, there is no guarantee which
one will be found.
rangeCheck(a.length, fromIndex, toIndex);
return binarySearch0(a, fromIndex, toIndex, key);
| public static int | binarySearch(double[] a, double key)Searches the specified array of doubles for the specified value using
the binary search algorithm. The array must be sorted
(as by the {@link #sort(double[])} method) prior to making this call.
If it is not sorted, the results are undefined. If the array contains
multiple elements with the specified value, there is no guarantee which
one will be found. This method considers all NaN values to be
equivalent and equal.
return binarySearch0(a, 0, a.length, key);
| public static int | binarySearch(double[] a, int fromIndex, int toIndex, double key)Searches a range of
the specified array of doubles for the specified value using
the binary search algorithm.
The range must be sorted
(as by the {@link #sort(double[], int, int)} method)
prior to making this call.
If it is not sorted, the results are undefined. If the range contains
multiple elements with the specified value, there is no guarantee which
one will be found. This method considers all NaN values to be
equivalent and equal.
rangeCheck(a.length, fromIndex, toIndex);
return binarySearch0(a, fromIndex, toIndex, key);
| public static int | binarySearch(float[] a, float key)Searches the specified array of floats for the specified value using
the binary search algorithm. The array must be sorted
(as by the {@link #sort(float[])} method) prior to making this call. If
it is not sorted, the results are undefined. If the array contains
multiple elements with the specified value, there is no guarantee which
one will be found. This method considers all NaN values to be
equivalent and equal.
return binarySearch0(a, 0, a.length, key);
| public static int | binarySearch(float[] a, int fromIndex, int toIndex, float key)Searches a range of
the specified array of floats for the specified value using
the binary search algorithm.
The range must be sorted
(as by the {@link #sort(float[], int, int)} method)
prior to making this call. If
it is not sorted, the results are undefined. If the range contains
multiple elements with the specified value, there is no guarantee which
one will be found. This method considers all NaN values to be
equivalent and equal.
rangeCheck(a.length, fromIndex, toIndex);
return binarySearch0(a, fromIndex, toIndex, key);
| public static int | binarySearch(java.lang.Object[] a, java.lang.Object key)Searches the specified array for the specified object using the binary
search algorithm. The array must be sorted into ascending order
according to the
{@linkplain Comparable natural ordering}
of its elements (as by the
{@link #sort(Object[])} method) prior to making this call.
If it is not sorted, the results are undefined.
(If the array contains elements that are not mutually comparable (for
example, strings and integers), it cannot be sorted according
to the natural ordering of its elements, hence results are undefined.)
If the array contains multiple
elements equal to the specified object, there is no guarantee which
one will be found.
return binarySearch0(a, 0, a.length, key);
| public static int | binarySearch(java.lang.Object[] a, int fromIndex, int toIndex, java.lang.Object key)Searches a range of
the specified array for the specified object using the binary
search algorithm.
The range must be sorted into ascending order
according to the
{@linkplain Comparable natural ordering}
of its elements (as by the
{@link #sort(Object[], int, int)} method) prior to making this
call. If it is not sorted, the results are undefined.
(If the range contains elements that are not mutually comparable (for
example, strings and integers), it cannot be sorted according
to the natural ordering of its elements, hence results are undefined.)
If the range contains multiple
elements equal to the specified object, there is no guarantee which
one will be found.
rangeCheck(a.length, fromIndex, toIndex);
return binarySearch0(a, fromIndex, toIndex, key);
| public static int | binarySearch(T[] a, T key, java.util.Comparator c)Searches the specified array for the specified object using the binary
search algorithm. The array must be sorted into ascending order
according to the specified comparator (as by the
{@link #sort(Object[], Comparator) sort(T[], Comparator)}
method) prior to making this call. If it is
not sorted, the results are undefined.
If the array contains multiple
elements equal to the specified object, there is no guarantee which one
will be found.
return binarySearch0(a, 0, a.length, key, c);
| public static int | binarySearch(T[] a, int fromIndex, int toIndex, T key, java.util.Comparator c)Searches a range of
the specified array for the specified object using the binary
search algorithm.
The range must be sorted into ascending order
according to the specified comparator (as by the
{@link #sort(Object[], int, int, Comparator)
sort(T[], int, int, Comparator)}
method) prior to making this call.
If it is not sorted, the results are undefined.
If the range contains multiple elements equal to the specified object,
there is no guarantee which one will be found.
rangeCheck(a.length, fromIndex, toIndex);
return binarySearch0(a, fromIndex, toIndex, key, c);
| private static int | binarySearch0(long[] a, int fromIndex, int toIndex, long key)
int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
long midVal = a[mid];
if (midVal < key)
low = mid + 1;
else if (midVal > key)
high = mid - 1;
else
return mid; // key found
}
return -(low + 1); // key not found.
| private static int | binarySearch0(int[] a, int fromIndex, int toIndex, int key)
int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
int midVal = a[mid];
if (midVal < key)
low = mid + 1;
else if (midVal > key)
high = mid - 1;
else
return mid; // key found
}
return -(low + 1); // key not found.
| private static int | binarySearch0(short[] a, int fromIndex, int toIndex, short key)
int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
short midVal = a[mid];
if (midVal < key)
low = mid + 1;
else if (midVal > key)
high = mid - 1;
else
return mid; // key found
}
return -(low + 1); // key not found.
| private static int | binarySearch0(char[] a, int fromIndex, int toIndex, char key)
int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
char midVal = a[mid];
if (midVal < key)
low = mid + 1;
else if (midVal > key)
high = mid - 1;
else
return mid; // key found
}
return -(low + 1); // key not found.
| private static int | binarySearch0(byte[] a, int fromIndex, int toIndex, byte key)
int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
byte midVal = a[mid];
if (midVal < key)
low = mid + 1;
else if (midVal > key)
high = mid - 1;
else
return mid; // key found
}
return -(low + 1); // key not found.
| private static int | binarySearch0(double[] a, int fromIndex, int toIndex, double key)
int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
double midVal = a[mid];
int cmp;
if (midVal < key) {
cmp = -1; // Neither val is NaN, thisVal is smaller
} else if (midVal > key) {
cmp = 1; // Neither val is NaN, thisVal is larger
} else {
long midBits = Double.doubleToLongBits(midVal);
long keyBits = Double.doubleToLongBits(key);
cmp = (midBits == keyBits ? 0 : // Values are equal
(midBits < keyBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
1)); // (0.0, -0.0) or (NaN, !NaN)
}
if (cmp < 0)
low = mid + 1;
else if (cmp > 0)
high = mid - 1;
else
return mid; // key found
}
return -(low + 1); // key not found.
| private static int | binarySearch0(float[] a, int fromIndex, int toIndex, float key)
int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
float midVal = a[mid];
int cmp;
if (midVal < key) {
cmp = -1; // Neither val is NaN, thisVal is smaller
} else if (midVal > key) {
cmp = 1; // Neither val is NaN, thisVal is larger
} else {
int midBits = Float.floatToIntBits(midVal);
int keyBits = Float.floatToIntBits(key);
cmp = (midBits == keyBits ? 0 : // Values are equal
(midBits < keyBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
1)); // (0.0, -0.0) or (NaN, !NaN)
}
if (cmp < 0)
low = mid + 1;
else if (cmp > 0)
high = mid - 1;
else
return mid; // key found
}
return -(low + 1); // key not found.
| private static int | binarySearch0(java.lang.Object[] a, int fromIndex, int toIndex, java.lang.Object key)
int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
Comparable midVal = (Comparable)a[mid];
int cmp = midVal.compareTo(key);
if (cmp < 0)
low = mid + 1;
else if (cmp > 0)
high = mid - 1;
else
return mid; // key found
}
return -(low + 1); // key not found.
| private static int | binarySearch0(T[] a, int fromIndex, int toIndex, T key, java.util.Comparator c)
if (c == null) {
return binarySearch0(a, fromIndex, toIndex, key);
}
int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
T midVal = a[mid];
int cmp = c.compare(midVal, key);
if (cmp < 0)
low = mid + 1;
else if (cmp > 0)
high = mid - 1;
else
return mid; // key found
}
return -(low + 1); // key not found.
| public static T[] | copyOf(T[] original, int newLength)Copies the specified array, truncating or padding with nulls (if necessary)
so the copy has the specified length. For all indices that are
valid in both the original array and the copy, the two arrays will
contain identical values. For any indices that are valid in the
copy but not the original, the copy will contain null.
Such indices will exist if and only if the specified length
is greater than that of the original array.
The resulting array is of exactly the same class as the original array.
return (T[]) copyOf(original, newLength, original.getClass());
| public static T[] | copyOf(U[] original, int newLength, java.lang.Class newType)Copies the specified array, truncating or padding with nulls (if necessary)
so the copy has the specified length. For all indices that are
valid in both the original array and the copy, the two arrays will
contain identical values. For any indices that are valid in the
copy but not the original, the copy will contain null.
Such indices will exist if and only if the specified length
is greater than that of the original array.
The resulting array is of the class newType.
T[] copy = ((Object)newType == (Object)Object[].class)
? (T[]) new Object[newLength]
: (T[]) Array.newInstance(newType.getComponentType(), newLength);
System.arraycopy(original, 0, copy, 0,
Math.min(original.length, newLength));
return copy;
| public static byte[] | copyOf(byte[] original, int newLength)Copies the specified array, truncating or padding with zeros (if necessary)
so the copy has the specified length. For all indices that are
valid in both the original array and the copy, the two arrays will
contain identical values. For any indices that are valid in the
copy but not the original, the copy will contain (byte)0.
Such indices will exist if and only if the specified length
is greater than that of the original array.
byte[] copy = new byte[newLength];
System.arraycopy(original, 0, copy, 0,
Math.min(original.length, newLength));
return copy;
| public static short[] | copyOf(short[] original, int newLength)Copies the specified array, truncating or padding with zeros (if necessary)
so the copy has the specified length. For all indices that are
valid in both the original array and the copy, the two arrays will
contain identical values. For any indices that are valid in the
copy but not the original, the copy will contain (short)0.
Such indices will exist if and only if the specified length
is greater than that of the original array.
short[] copy = new short[newLength];
System.arraycopy(original, 0, copy, 0,
Math.min(original.length, newLength));
return copy;
| public static int[] | copyOf(int[] original, int newLength)Copies the specified array, truncating or padding with zeros (if necessary)
so the copy has the specified length. For all indices that are
valid in both the original array and the copy, the two arrays will
contain identical values. For any indices that are valid in the
copy but not the original, the copy will contain 0.
Such indices will exist if and only if the specified length
is greater than that of the original array.
int[] copy = new int[newLength];
System.arraycopy(original, 0, copy, 0,
Math.min(original.length, newLength));
return copy;
| public static long[] | copyOf(long[] original, int newLength)Copies the specified array, truncating or padding with zeros (if necessary)
so the copy has the specified length. For all indices that are
valid in both the original array and the copy, the two arrays will
contain identical values. For any indices that are valid in the
copy but not the original, the copy will contain 0L.
Such indices will exist if and only if the specified length
is greater than that of the original array.
long[] copy = new long[newLength];
System.arraycopy(original, 0, copy, 0,
Math.min(original.length, newLength));
return copy;
| public static char[] | copyOf(char[] original, int newLength)Copies the specified array, truncating or padding with null characters (if necessary)
so the copy has the specified length. For all indices that are valid
in both the original array and the copy, the two arrays will contain
identical values. For any indices that are valid in the copy but not
the original, the copy will contain '\\u000'. Such indices
will exist if and only if the specified length is greater than that of
the original array.
char[] copy = new char[newLength];
System.arraycopy(original, 0, copy, 0,
Math.min(original.length, newLength));
return copy;
| public static float[] | copyOf(float[] original, int newLength)Copies the specified array, truncating or padding with zeros (if necessary)
so the copy has the specified length. For all indices that are
valid in both the original array and the copy, the two arrays will
contain identical values. For any indices that are valid in the
copy but not the original, the copy will contain 0f.
Such indices will exist if and only if the specified length
is greater than that of the original array.
float[] copy = new float[newLength];
System.arraycopy(original, 0, copy, 0,
Math.min(original.length, newLength));
return copy;
| public static double[] | copyOf(double[] original, int newLength)Copies the specified array, truncating or padding with zeros (if necessary)
so the copy has the specified length. For all indices that are
valid in both the original array and the copy, the two arrays will
contain identical values. For any indices that are valid in the
copy but not the original, the copy will contain 0d.
Such indices will exist if and only if the specified length
is greater than that of the original array.
double[] copy = new double[newLength];
System.arraycopy(original, 0, copy, 0,
Math.min(original.length, newLength));
return copy;
| public static boolean[] | copyOf(boolean[] original, int newLength)Copies the specified array, truncating or padding with false (if necessary)
so the copy has the specified length. For all indices that are
valid in both the original array and the copy, the two arrays will
contain identical values. For any indices that are valid in the
copy but not the original, the copy will contain false.
Such indices will exist if and only if the specified length
is greater than that of the original array.
boolean[] copy = new boolean[newLength];
System.arraycopy(original, 0, copy, 0,
Math.min(original.length, newLength));
return copy;
| public static T[] | copyOfRange(T[] original, int from, int to)Copies the specified range of the specified array into a new array.
The initial index of the range (from) must lie between zero
and original.length, inclusive. The value at
original[from] is placed into the initial element of the copy
(unless from == original.length or from == to).
Values from subsequent elements in the original array are placed into
subsequent elements in the copy. The final index of the range
(to), which must be greater than or equal to from,
may be greater than original.length, in which case
null is placed in all elements of the copy whose index is
greater than or equal to original.length - from. The length
of the returned array will be to - from.
The resulting array is of exactly the same class as the original array.
return copyOfRange(original, from, to, (Class<T[]>) original.getClass());
| public static T[] | copyOfRange(U[] original, int from, int to, java.lang.Class newType)Copies the specified range of the specified array into a new array.
The initial index of the range (from) must lie between zero
and original.length, inclusive. The value at
original[from] is placed into the initial element of the copy
(unless from == original.length or from == to).
Values from subsequent elements in the original array are placed into
subsequent elements in the copy. The final index of the range
(to), which must be greater than or equal to from,
may be greater than original.length, in which case
null is placed in all elements of the copy whose index is
greater than or equal to original.length - from. The length
of the returned array will be to - from.
The resulting array is of the class newType.
int newLength = to - from;
if (newLength < 0)
throw new IllegalArgumentException(from + " > " + to);
T[] copy = ((Object)newType == (Object)Object[].class)
? (T[]) new Object[newLength]
: (T[]) Array.newInstance(newType.getComponentType(), newLength);
System.arraycopy(original, from, copy, 0,
Math.min(original.length - from, newLength));
return copy;
| public static byte[] | copyOfRange(byte[] original, int from, int to)Copies the specified range of the specified array into a new array.
The initial index of the range (from) must lie between zero
and original.length, inclusive. The value at
original[from] is placed into the initial element of the copy
(unless from == original.length or from == to).
Values from subsequent elements in the original array are placed into
subsequent elements in the copy. The final index of the range
(to), which must be greater than or equal to from,
may be greater than original.length, in which case
(byte)0 is placed in all elements of the copy whose index is
greater than or equal to original.length - from. The length
of the returned array will be to - from.
int newLength = to - from;
if (newLength < 0)
throw new IllegalArgumentException(from + " > " + to);
byte[] copy = new byte[newLength];
System.arraycopy(original, from, copy, 0,
Math.min(original.length - from, newLength));
return copy;
| public static short[] | copyOfRange(short[] original, int from, int to)Copies the specified range of the specified array into a new array.
The initial index of the range (from) must lie between zero
and original.length, inclusive. The value at
original[from] is placed into the initial element of the copy
(unless from == original.length or from == to).
Values from subsequent elements in the original array are placed into
subsequent elements in the copy. The final index of the range
(to), which must be greater than or equal to from,
may be greater than original.length, in which case
(short)0 is placed in all elements of the copy whose index is
greater than or equal to original.length - from. The length
of the returned array will be to - from.
int newLength = to - from;
if (newLength < 0)
throw new IllegalArgumentException(from + " > " + to);
short[] copy = new short[newLength];
System.arraycopy(original, from, copy, 0,
Math.min(original.length - from, newLength));
return copy;
| public static int[] | copyOfRange(int[] original, int from, int to)Copies the specified range of the specified array into a new array.
The initial index of the range (from) must lie between zero
and original.length, inclusive. The value at
original[from] is placed into the initial element of the copy
(unless from == original.length or from == to).
Values from subsequent elements in the original array are placed into
subsequent elements in the copy. The final index of the range
(to), which must be greater than or equal to from,
may be greater than original.length, in which case
0 is placed in all elements of the copy whose index is
greater than or equal to original.length - from. The length
of the returned array will be to - from.
int newLength = to - from;
if (newLength < 0)
throw new IllegalArgumentException(from + " > " + to);
int[] copy = new int[newLength];
System.arraycopy(original, from, copy, 0,
Math.min(original.length - from, newLength));
return copy;
| public static long[] | copyOfRange(long[] original, int from, int to)Copies the specified range of the specified array into a new array.
The initial index of the range (from) must lie between zero
and original.length, inclusive. The value at
original[from] is placed into the initial element of the copy
(unless from == original.length or from == to).
Values from subsequent elements in the original array are placed into
subsequent elements in the copy. The final index of the range
(to), which must be greater than or equal to from,
may be greater than original.length, in which case
0L is placed in all elements of the copy whose index is
greater than or equal to original.length - from. The length
of the returned array will be to - from.
int newLength = to - from;
if (newLength < 0)
throw new IllegalArgumentException(from + " > " + to);
long[] copy = new long[newLength];
System.arraycopy(original, from, copy, 0,
Math.min(original.length - from, newLength));
return copy;
| public static char[] | copyOfRange(char[] original, int from, int to)Copies the specified range of the specified array into a new array.
The initial index of the range (from) must lie between zero
and original.length, inclusive. The value at
original[from] is placed into the initial element of the copy
(unless from == original.length or from == to).
Values from subsequent elements in the original array are placed into
subsequent elements in the copy. The final index of the range
(to), which must be greater than or equal to from,
may be greater than original.length, in which case
'\\u000' is placed in all elements of the copy whose index is
greater than or equal to original.length - from. The length
of the returned array will be to - from.
int newLength = to - from;
if (newLength < 0)
throw new IllegalArgumentException(from + " > " + to);
char[] copy = new char[newLength];
System.arraycopy(original, from, copy, 0,
Math.min(original.length - from, newLength));
return copy;
| public static float[] | copyOfRange(float[] original, int from, int to)Copies the specified range of the specified array into a new array.
The initial index of the range (from) must lie between zero
and original.length, inclusive. The value at
original[from] is placed into the initial element of the copy
(unless from == original.length or from == to).
Values from subsequent elements in the original array are placed into
subsequent elements in the copy. The final index of the range
(to), which must be greater than or equal to from,
may be greater than original.length, in which case
0f is placed in all elements of the copy whose index is
greater than or equal to original.length - from. The length
of the returned array will be to - from.
int newLength = to - from;
if (newLength < 0)
throw new IllegalArgumentException(from + " > " + to);
float[] copy = new float[newLength];
System.arraycopy(original, from, copy, 0,
Math.min(original.length - from, newLength));
return copy;
| public static double[] | copyOfRange(double[] original, int from, int to)Copies the specified range of the specified array into a new array.
The initial index of the range (from) must lie between zero
and original.length, inclusive. The value at
original[from] is placed into the initial element of the copy
(unless from == original.length or from == to).
Values from subsequent elements in the original array are placed into
subsequent elements in the copy. The final index of the range
(to), which must be greater than or equal to from,
may be greater than original.length, in which case
0d is placed in all elements of the copy whose index is
greater than or equal to original.length - from. The length
of the returned array will be to - from.
int newLength = to - from;
if (newLength < 0)
throw new IllegalArgumentException(from + " > " + to);
double[] copy = new double[newLength];
System.arraycopy(original, from, copy, 0,
Math.min(original.length - from, newLength));
return copy;
| public static boolean[] | copyOfRange(boolean[] original, int from, int to)Copies the specified range of the specified array into a new array.
The initial index of the range (from) must lie between zero
and original.length, inclusive. The value at
original[from] is placed into the initial element of the copy
(unless from == original.length or from == to).
Values from subsequent elements in the original array are placed into
subsequent elements in the copy. The final index of the range
(to), which must be greater than or equal to from,
may be greater than original.length, in which case
false is placed in all elements of the copy whose index is
greater than or equal to original.length - from. The length
of the returned array will be to - from.
int newLength = to - from;
if (newLength < 0)
throw new IllegalArgumentException(from + " > " + to);
boolean[] copy = new boolean[newLength];
System.arraycopy(original, from, copy, 0,
Math.min(original.length - from, newLength));
return copy;
| public static boolean | deepEquals(java.lang.Object[] a1, java.lang.Object[] a2)Returns true if the two specified arrays are deeply
equal to one another. Unlike the {@link #equals(Object[],Object[])}
method, this method is appropriate for use with nested arrays of
arbitrary depth.
Two array references are considered deeply equal if both
are null, or if they refer to arrays that contain the same
number of elements and all corresponding pairs of elements in the two
arrays are deeply equal.
Two possibly null elements e1 and e2 are
deeply equal if any of the following conditions hold:
- e1 and e2 are both arrays of object reference
types, and Arrays.deepEquals(e1, e2) would return true
- e1 and e2 are arrays of the same primitive
type, and the appropriate overloading of
Arrays.equals(e1, e2) would return true.
- e1 == e2
- e1.equals(e2) would return true.
Note that this definition permits null elements at any depth.
If either of the specified arrays contain themselves as elements
either directly or indirectly through one or more levels of arrays,
the behavior of this method is undefined.
if (a1 == a2)
return true;
if (a1 == null || a2==null)
return false;
int length = a1.length;
if (a2.length != length)
return false;
for (int i = 0; i < length; i++) {
Object e1 = a1[i];
Object e2 = a2[i];
if (e1 == e2)
continue;
if (e1 == null)
return false;
// Figure out whether the two elements are equal
boolean eq;
if (e1 instanceof Object[] && e2 instanceof Object[])
eq = deepEquals ((Object[]) e1, (Object[]) e2);
else if (e1 instanceof byte[] && e2 instanceof byte[])
eq = equals((byte[]) e1, (byte[]) e2);
else if (e1 instanceof short[] && e2 instanceof short[])
eq = equals((short[]) e1, (short[]) e2);
else if (e1 instanceof int[] && e2 instanceof int[])
eq = equals((int[]) e1, (int[]) e2);
else if (e1 instanceof long[] && e2 instanceof long[])
eq = equals((long[]) e1, (long[]) e2);
else if (e1 instanceof char[] && e2 instanceof char[])
eq = equals((char[]) e1, (char[]) e2);
else if (e1 instanceof float[] && e2 instanceof float[])
eq = equals((float[]) e1, (float[]) e2);
else if (e1 instanceof double[] && e2 instanceof double[])
eq = equals((double[]) e1, (double[]) e2);
else if (e1 instanceof boolean[] && e2 instanceof boolean[])
eq = equals((boolean[]) e1, (boolean[]) e2);
else
eq = e1.equals(e2);
if (!eq)
return false;
}
return true;
| public static int | deepHashCode(java.lang.Object[] a)Returns a hash code based on the "deep contents" of the specified
array. If the array contains other arrays as elements, the
hash code is based on their contents and so on, ad infinitum.
It is therefore unacceptable to invoke this method on an array that
contains itself as an element, either directly or indirectly through
one or more levels of arrays. The behavior of such an invocation is
undefined.
For any two arrays a and b such that
Arrays.deepEquals(a, b), it is also the case that
Arrays.deepHashCode(a) == Arrays.deepHashCode(b).
The computation of the value returned by this method is similar to
that of the value returned by {@link List#hashCode()} on a list
containing the same elements as a in the same order, with one
difference: If an element e of a is itself an array,
its hash code is computed not by calling e.hashCode(), but as
by calling the appropriate overloading of Arrays.hashCode(e)
if e is an array of a primitive type, or as by calling
Arrays.deepHashCode(e) recursively if e is an array
of a reference type. If a is null, this method
returns 0.
if (a == null)
return 0;
int result = 1;
for (Object element : a) {
int elementHash = 0;
if (element instanceof Object[])
elementHash = deepHashCode((Object[]) element);
else if (element instanceof byte[])
elementHash = hashCode((byte[]) element);
else if (element instanceof short[])
elementHash = hashCode((short[]) element);
else if (element instanceof int[])
elementHash = hashCode((int[]) element);
else if (element instanceof long[])
elementHash = hashCode((long[]) element);
else if (element instanceof char[])
elementHash = hashCode((char[]) element);
else if (element instanceof float[])
elementHash = hashCode((float[]) element);
else if (element instanceof double[])
elementHash = hashCode((double[]) element);
else if (element instanceof boolean[])
elementHash = hashCode((boolean[]) element);
else if (element != null)
elementHash = element.hashCode();
result = 31 * result + elementHash;
}
return result;
| public static java.lang.String | deepToString(java.lang.Object[] a)Returns a string representation of the "deep contents" of the specified
array. If the array contains other arrays as elements, the string
representation contains their contents and so on. This method is
designed for converting multidimensional arrays to strings.
The string representation consists of a list of the array's
elements, enclosed in square brackets ("[]"). Adjacent
elements are separated by the characters ", " (a comma
followed by a space). Elements are converted to strings as by
String.valueOf(Object), unless they are themselves
arrays.
If an element e is an array of a primitive type, it is
converted to a string as by invoking the appropriate overloading of
Arrays.toString(e). If an element e is an array of a
reference type, it is converted to a string as by invoking
this method recursively.
To avoid infinite recursion, if the specified array contains itself
as an element, or contains an indirect reference to itself through one
or more levels of arrays, the self-reference is converted to the string
"[...]". For example, an array containing only a reference
to itself would be rendered as "[[...]]".
This method returns "null" if the specified array
is null.
if (a == null)
return "null";
int bufLen = 20 * a.length;
if (a.length != 0 && bufLen <= 0)
bufLen = Integer.MAX_VALUE;
StringBuilder buf = new StringBuilder(bufLen);
deepToString(a, buf, new HashSet());
return buf.toString();
| private static void | deepToString(java.lang.Object[] a, java.lang.StringBuilder buf, java.util.Set dejaVu)
if (a == null) {
buf.append("null");
return;
}
dejaVu.add(a);
buf.append('[");
for (int i = 0; i < a.length; i++) {
if (i != 0)
buf.append(", ");
Object element = a[i];
if (element == null) {
buf.append("null");
} else {
Class eClass = element.getClass();
if (eClass.isArray()) {
if (eClass == byte[].class)
buf.append(toString((byte[]) element));
else if (eClass == short[].class)
buf.append(toString((short[]) element));
else if (eClass == int[].class)
buf.append(toString((int[]) element));
else if (eClass == long[].class)
buf.append(toString((long[]) element));
else if (eClass == char[].class)
buf.append(toString((char[]) element));
else if (eClass == float[].class)
buf.append(toString((float[]) element));
else if (eClass == double[].class)
buf.append(toString((double[]) element));
else if (eClass == boolean[].class)
buf.append(toString((boolean[]) element));
else { // element is an array of object references
if (dejaVu.contains(element))
buf.append("[...]");
else
deepToString((Object[])element, buf, dejaVu);
}
} else { // element is non-null and not an array
buf.append(element.toString());
}
}
}
buf.append(']");
dejaVu.remove(a);
| public static boolean | equals(long[] a, long[] a2)Returns true if the two specified arrays of longs are
equal to one another. Two arrays are considered equal if both
arrays contain the same number of elements, and all corresponding pairs
of elements in the two arrays are equal. In other words, two arrays
are equal if they contain the same elements in the same order. Also,
two array references are considered equal if both are null.
if (a==a2)
return true;
if (a==null || a2==null)
return false;
int length = a.length;
if (a2.length != length)
return false;
for (int i=0; i<length; i++)
if (a[i] != a2[i])
return false;
return true;
| public static boolean | equals(int[] a, int[] a2)Returns true if the two specified arrays of ints are
equal to one another. Two arrays are considered equal if both
arrays contain the same number of elements, and all corresponding pairs
of elements in the two arrays are equal. In other words, two arrays
are equal if they contain the same elements in the same order. Also,
two array references are considered equal if both are null.
if (a==a2)
return true;
if (a==null || a2==null)
return false;
int length = a.length;
if (a2.length != length)
return false;
for (int i=0; i<length; i++)
if (a[i] != a2[i])
return false;
return true;
| public static boolean | equals(short[] a, short[] a2)Returns true if the two specified arrays of shorts are
equal to one another. Two arrays are considered equal if both
arrays contain the same number of elements, and all corresponding pairs
of elements in the two arrays are equal. In other words, two arrays
are equal if they contain the same elements in the same order. Also,
two array references are considered equal if both are null.
if (a==a2)
return true;
if (a==null || a2==null)
return false;
int length = a.length;
if (a2.length != length)
return false;
for (int i=0; i<length; i++)
if (a[i] != a2[i])
return false;
return true;
| public static boolean | equals(char[] a, char[] a2)Returns true if the two specified arrays of chars are
equal to one another. Two arrays are considered equal if both
arrays contain the same number of elements, and all corresponding pairs
of elements in the two arrays are equal. In other words, two arrays
are equal if they contain the same elements in the same order. Also,
two array references are considered equal if both are null.
if (a==a2)
return true;
if (a==null || a2==null)
return false;
int length = a.length;
if (a2.length != length)
return false;
for (int i=0; i<length; i++)
if (a[i] != a2[i])
return false;
return true;
| public static boolean | equals(byte[] a, byte[] a2)Returns true if the two specified arrays of bytes are
equal to one another. Two arrays are considered equal if both
arrays contain the same number of elements, and all corresponding pairs
of elements in the two arrays are equal. In other words, two arrays
are equal if they contain the same elements in the same order. Also,
two array references are considered equal if both are null.
if (a==a2)
return true;
if (a==null || a2==null)
return false;
int length = a.length;
if (a2.length != length)
return false;
for (int i=0; i<length; i++)
if (a[i] != a2[i])
return false;
return true;
| public static boolean | equals(boolean[] a, boolean[] a2)Returns true if the two specified arrays of booleans are
equal to one another. Two arrays are considered equal if both
arrays contain the same number of elements, and all corresponding pairs
of elements in the two arrays are equal. In other words, two arrays
are equal if they contain the same elements in the same order. Also,
two array references are considered equal if both are null.
if (a==a2)
return true;
if (a==null || a2==null)
return false;
int length = a.length;
if (a2.length != length)
return false;
for (int i=0; i<length; i++)
if (a[i] != a2[i])
return false;
return true;
| public static boolean | equals(double[] a, double[] a2)Returns true if the two specified arrays of doubles are
equal to one another. Two arrays are considered equal if both
arrays contain the same number of elements, and all corresponding pairs
of elements in the two arrays are equal. In other words, two arrays
are equal if they contain the same elements in the same order. Also,
two array references are considered equal if both are null.
Two doubles d1 and d2 are considered equal if:
new Double(d1).equals(new Double(d2))
(Unlike the == operator, this method considers
NaN equals to itself, and 0.0d unequal to -0.0d.)
if (a==a2)
return true;
if (a==null || a2==null)
return false;
int length = a.length;
if (a2.length != length)
return false;
for (int i=0; i<length; i++)
if (Double.doubleToLongBits(a[i])!=Double.doubleToLongBits(a2[i]))
return false;
return true;
| public static boolean | equals(float[] a, float[] a2)Returns true if the two specified arrays of floats are
equal to one another. Two arrays are considered equal if both
arrays contain the same number of elements, and all corresponding pairs
of elements in the two arrays are equal. In other words, two arrays
are equal if they contain the same elements in the same order. Also,
two array references are considered equal if both are null.
Two floats f1 and f2 are considered equal if:
new Float(f1).equals(new Float(f2))
(Unlike the == operator, this method considers
NaN equals to itself, and 0.0f unequal to -0.0f.)
if (a==a2)
return true;
if (a==null || a2==null)
return false;
int length = a.length;
if (a2.length != length)
return false;
for (int i=0; i<length; i++)
if (Float.floatToIntBits(a[i])!=Float.floatToIntBits(a2[i]))
return false;
return true;
| public static boolean | equals(java.lang.Object[] a, java.lang.Object[] a2)Returns true if the two specified arrays of Objects are
equal to one another. The two arrays are considered equal if
both arrays contain the same number of elements, and all corresponding
pairs of elements in the two arrays are equal. Two objects e1
and e2 are considered equal if (e1==null ? e2==null
: e1.equals(e2)). In other words, the two arrays are equal if
they contain the same elements in the same order. Also, two array
references are considered equal if both are null.
if (a==a2)
return true;
if (a==null || a2==null)
return false;
int length = a.length;
if (a2.length != length)
return false;
for (int i=0; i<length; i++) {
Object o1 = a[i];
Object o2 = a2[i];
if (!(o1==null ? o2==null : o1.equals(o2)))
return false;
}
return true;
| public static void | fill(boolean[] a, boolean val)Assigns the specified boolean value to each element of the specified
array of booleans.
fill(a, 0, a.length, val);
| public static void | fill(boolean[] a, int fromIndex, int toIndex, boolean val)Assigns the specified boolean value to each element of the specified
range of the specified array of booleans. The range to be filled
extends from index fromIndex, inclusive, to index
toIndex, exclusive. (If fromIndex==toIndex, the
range to be filled is empty.)
rangeCheck(a.length, fromIndex, toIndex);
for (int i=fromIndex; i<toIndex; i++)
a[i] = val;
| public static void | fill(double[] a, double val)Assigns the specified double value to each element of the specified
array of doubles.
fill(a, 0, a.length, val);
| public static void | fill(double[] a, int fromIndex, int toIndex, double val)Assigns the specified double value to each element of the specified
range of the specified array of doubles. The range to be filled
extends from index fromIndex, inclusive, to index
toIndex, exclusive. (If fromIndex==toIndex, the
range to be filled is empty.)
rangeCheck(a.length, fromIndex, toIndex);
for (int i=fromIndex; i<toIndex; i++)
a[i] = val;
| public static void | fill(float[] a, float val)Assigns the specified float value to each element of the specified array
of floats.
fill(a, 0, a.length, val);
| public static void | fill(float[] a, int fromIndex, int toIndex, float val)Assigns the specified float value to each element of the specified
range of the specified array of floats. The range to be filled
extends from index fromIndex, inclusive, to index
toIndex, exclusive. (If fromIndex==toIndex, the
range to be filled is empty.)
rangeCheck(a.length, fromIndex, toIndex);
for (int i=fromIndex; i<toIndex; i++)
a[i] = val;
| public static void | fill(java.lang.Object[] a, java.lang.Object val)Assigns the specified Object reference to each element of the specified
array of Objects.
fill(a, 0, a.length, val);
| public static void | fill(java.lang.Object[] a, int fromIndex, int toIndex, java.lang.Object val)Assigns the specified Object reference to each element of the specified
range of the specified array of Objects. The range to be filled
extends from index fromIndex, inclusive, to index
toIndex, exclusive. (If fromIndex==toIndex, the
range to be filled is empty.)
rangeCheck(a.length, fromIndex, toIndex);
for (int i=fromIndex; i<toIndex; i++)
a[i] = val;
| public static void | fill(long[] a, long val)Assigns the specified long value to each element of the specified array
of longs.
fill(a, 0, a.length, val);
| public static void | fill(long[] a, int fromIndex, int toIndex, long val)Assigns the specified long value to each element of the specified
range of the specified array of longs. The range to be filled
extends from index fromIndex, inclusive, to index
toIndex, exclusive. (If fromIndex==toIndex, the
range to be filled is empty.)
rangeCheck(a.length, fromIndex, toIndex);
for (int i=fromIndex; i<toIndex; i++)
a[i] = val;
| public static void | fill(int[] a, int val)Assigns the specified int value to each element of the specified array
of ints.
fill(a, 0, a.length, val);
| public static void | fill(int[] a, int fromIndex, int toIndex, int val)Assigns the specified int value to each element of the specified
range of the specified array of ints. The range to be filled
extends from index fromIndex, inclusive, to index
toIndex, exclusive. (If fromIndex==toIndex, the
range to be filled is empty.)
rangeCheck(a.length, fromIndex, toIndex);
for (int i=fromIndex; i<toIndex; i++)
a[i] = val;
| public static void | fill(short[] a, short val)Assigns the specified short value to each element of the specified array
of shorts.
fill(a, 0, a.length, val);
| public static void | fill(short[] a, int fromIndex, int toIndex, short val)Assigns the specified short value to each element of the specified
range of the specified array of shorts. The range to be filled
extends from index fromIndex, inclusive, to index
toIndex, exclusive. (If fromIndex==toIndex, the
range to be filled is empty.)
rangeCheck(a.length, fromIndex, toIndex);
for (int i=fromIndex; i<toIndex; i++)
a[i] = val;
| public static void | fill(char[] a, char val)Assigns the specified char value to each element of the specified array
of chars.
fill(a, 0, a.length, val);
| public static void | fill(char[] a, int fromIndex, int toIndex, char val)Assigns the specified char value to each element of the specified
range of the specified array of chars. The range to be filled
extends from index fromIndex, inclusive, to index
toIndex, exclusive. (If fromIndex==toIndex, the
range to be filled is empty.)
rangeCheck(a.length, fromIndex, toIndex);
for (int i=fromIndex; i<toIndex; i++)
a[i] = val;
| public static void | fill(byte[] a, byte val)Assigns the specified byte value to each element of the specified array
of bytes.
fill(a, 0, a.length, val);
| public static void | fill(byte[] a, int fromIndex, int toIndex, byte val)Assigns the specified byte value to each element of the specified
range of the specified array of bytes. The range to be filled
extends from index fromIndex, inclusive, to index
toIndex, exclusive. (If fromIndex==toIndex, the
range to be filled is empty.)
rangeCheck(a.length, fromIndex, toIndex);
for (int i=fromIndex; i<toIndex; i++)
a[i] = val;
| public static int | hashCode(long[] a)Returns a hash code based on the contents of the specified array.
For any two long arrays a and b
such that Arrays.equals(a, b), it is also the case that
Arrays.hashCode(a) == Arrays.hashCode(b).
The value returned by this method is the same value that would be
obtained by invoking the {@link List#hashCode() hashCode}
method on a {@link List} containing a sequence of {@link Long}
instances representing the elements of a in the same order.
If a is null, this method returns 0.
if (a == null)
return 0;
int result = 1;
for (long element : a) {
int elementHash = (int)(element ^ (element >>> 32));
result = 31 * result + elementHash;
}
return result;
| public static int | hashCode(int[] a)Returns a hash code based on the contents of the specified array.
For any two non-null int arrays a and b
such that Arrays.equals(a, b), it is also the case that
Arrays.hashCode(a) == Arrays.hashCode(b).
The value returned by this method is the same value that would be
obtained by invoking the {@link List#hashCode() hashCode}
method on a {@link List} containing a sequence of {@link Integer}
instances representing the elements of a in the same order.
If a is null, this method returns 0.
if (a == null)
return 0;
int result = 1;
for (int element : a)
result = 31 * result + element;
return result;
| public static int | hashCode(short[] a)Returns a hash code based on the contents of the specified array.
For any two short arrays a and b
such that Arrays.equals(a, b), it is also the case that
Arrays.hashCode(a) == Arrays.hashCode(b).
The value returned by this method is the same value that would be
obtained by invoking the {@link List#hashCode() hashCode}
method on a {@link List} containing a sequence of {@link Short}
instances representing the elements of a in the same order.
If a is null, this method returns 0.
if (a == null)
return 0;
int result = 1;
for (short element : a)
result = 31 * result + element;
return result;
| public static int | hashCode(char[] a)Returns a hash code based on the contents of the specified array.
For any two char arrays a and b
such that Arrays.equals(a, b), it is also the case that
Arrays.hashCode(a) == Arrays.hashCode(b).
The value returned by this method is the same value that would be
obtained by invoking the {@link List#hashCode() hashCode}
method on a {@link List} containing a sequence of {@link Character}
instances representing the elements of a in the same order.
If a is null, this method returns 0.
if (a == null)
return 0;
int result = 1;
for (char element : a)
result = 31 * result + element;
return result;
| public static int | hashCode(byte[] a)Returns a hash code based on the contents of the specified array.
For any two byte arrays a and b
such that Arrays.equals(a, b), it is also the case that
Arrays.hashCode(a) == Arrays.hashCode(b).
The value returned by this method is the same value that would be
obtained by invoking the {@link List#hashCode() hashCode}
method on a {@link List} containing a sequence of {@link Byte}
instances representing the elements of a in the same order.
If a is null, this method returns 0.
if (a == null)
return 0;
int result = 1;
for (byte element : a)
result = 31 * result + element;
return result;
| public static int | hashCode(boolean[] a)Returns a hash code based on the contents of the specified array.
For any two boolean arrays a and b
such that Arrays.equals(a, b), it is also the case that
Arrays.hashCode(a) == Arrays.hashCode(b).
The value returned by this method is the same value that would be
obtained by invoking the {@link List#hashCode() hashCode}
method on a {@link List} containing a sequence of {@link Boolean}
instances representing the elements of a in the same order.
If a is null, this method returns 0.
if (a == null)
return 0;
int result = 1;
for (boolean element : a)
result = 31 * result + (element ? 1231 : 1237);
return result;
| public static int | hashCode(float[] a)Returns a hash code based on the contents of the specified array.
For any two float arrays a and b
such that Arrays.equals(a, b), it is also the case that
Arrays.hashCode(a) == Arrays.hashCode(b).
The value returned by this method is the same value that would be
obtained by invoking the {@link List#hashCode() hashCode}
method on a {@link List} containing a sequence of {@link Float}
instances representing the elements of a in the same order.
If a is null, this method returns 0.
if (a == null)
return 0;
int result = 1;
for (float element : a)
result = 31 * result + Float.floatToIntBits(element);
return result;
| public static int | hashCode(double[] a)Returns a hash code based on the contents of the specified array.
For any two double arrays a and b
such that Arrays.equals(a, b), it is also the case that
Arrays.hashCode(a) == Arrays.hashCode(b).
The value returned by this method is the same value that would be
obtained by invoking the {@link List#hashCode() hashCode}
method on a {@link List} containing a sequence of {@link Double}
instances representing the elements of a in the same order.
If a is null, this method returns 0.
if (a == null)
return 0;
int result = 1;
for (double element : a) {
long bits = Double.doubleToLongBits(element);
result = 31 * result + (int)(bits ^ (bits >>> 32));
}
return result;
| public static int | hashCode(java.lang.Object[] a)Returns a hash code based on the contents of the specified array. If
the array contains other arrays as elements, the hash code is based on
their identities rather than their contents. It is therefore
acceptable to invoke this method on an array that contains itself as an
element, either directly or indirectly through one or more levels of
arrays.
For any two arrays a and b such that
Arrays.equals(a, b), it is also the case that
Arrays.hashCode(a) == Arrays.hashCode(b).
The value returned by this method is equal to the value that would
be returned by Arrays.asList(a).hashCode(), unless a
is null, in which case 0 is returned.
if (a == null)
return 0;
int result = 1;
for (Object element : a)
result = 31 * result + (element == null ? 0 : element.hashCode());
return result;
| private static int | med3(long[] x, int a, int b, int c)Returns the index of the median of the three indexed longs.
return (x[a] < x[b] ?
(x[b] < x[c] ? b : x[a] < x[c] ? c : a) :
(x[b] > x[c] ? b : x[a] > x[c] ? c : a));
| private static int | med3(int[] x, int a, int b, int c)Returns the index of the median of the three indexed integers.
return (x[a] < x[b] ?
(x[b] < x[c] ? b : x[a] < x[c] ? c : a) :
(x[b] > x[c] ? b : x[a] > x[c] ? c : a));
| private static int | med3(short[] x, int a, int b, int c)Returns the index of the median of the three indexed shorts.
return (x[a] < x[b] ?
(x[b] < x[c] ? b : x[a] < x[c] ? c : a) :
(x[b] > x[c] ? b : x[a] > x[c] ? c : a));
| private static int | med3(char[] x, int a, int b, int c)Returns the index of the median of the three indexed chars.
return (x[a] < x[b] ?
(x[b] < x[c] ? b : x[a] < x[c] ? c : a) :
(x[b] > x[c] ? b : x[a] > x[c] ? c : a));
| private static int | med3(byte[] x, int a, int b, int c)Returns the index of the median of the three indexed bytes.
return (x[a] < x[b] ?
(x[b] < x[c] ? b : x[a] < x[c] ? c : a) :
(x[b] > x[c] ? b : x[a] > x[c] ? c : a));
| private static int | med3(double[] x, int a, int b, int c)Returns the index of the median of the three indexed doubles.
return (x[a] < x[b] ?
(x[b] < x[c] ? b : x[a] < x[c] ? c : a) :
(x[b] > x[c] ? b : x[a] > x[c] ? c : a));
| private static int | med3(float[] x, int a, int b, int c)Returns the index of the median of the three indexed floats.
return (x[a] < x[b] ?
(x[b] < x[c] ? b : x[a] < x[c] ? c : a) :
(x[b] > x[c] ? b : x[a] > x[c] ? c : a));
| private static void | mergeSort(java.lang.Object[] src, java.lang.Object[] dest, int low, int high, int off)Src is the source array that starts at index 0
Dest is the (possibly larger) array destination with a possible offset
low is the index in dest to start sorting
high is the end index in dest to end sorting
off is the offset to generate corresponding low, high in src
int length = high - low;
// Insertion sort on smallest arrays
if (length < INSERTIONSORT_THRESHOLD) {
for (int i=low; i<high; i++)
for (int j=i; j>low &&
((Comparable) dest[j-1]).compareTo(dest[j])>0; j--)
swap(dest, j, j-1);
return;
}
// Recursively sort halves of dest into src
int destLow = low;
int destHigh = high;
low += off;
high += off;
int mid = (low + high) >>> 1;
mergeSort(dest, src, low, mid, -off);
mergeSort(dest, src, mid, high, -off);
// If list is already sorted, just copy from src to dest. This is an
// optimization that results in faster sorts for nearly ordered lists.
if (((Comparable)src[mid-1]).compareTo(src[mid]) <= 0) {
System.arraycopy(src, low, dest, destLow, length);
return;
}
// Merge sorted halves (now in src) into dest
for(int i = destLow, p = low, q = mid; i < destHigh; i++) {
if (q >= high || p < mid && ((Comparable)src[p]).compareTo(src[q])<=0)
dest[i] = src[p++];
else
dest[i] = src[q++];
}
| private static void | mergeSort(java.lang.Object[] src, java.lang.Object[] dest, int low, int high, int off, java.util.Comparator c)Src is the source array that starts at index 0
Dest is the (possibly larger) array destination with a possible offset
low is the index in dest to start sorting
high is the end index in dest to end sorting
off is the offset into src corresponding to low in dest
int length = high - low;
// Insertion sort on smallest arrays
if (length < INSERTIONSORT_THRESHOLD) {
for (int i=low; i<high; i++)
for (int j=i; j>low && c.compare(dest[j-1], dest[j])>0; j--)
swap(dest, j, j-1);
return;
}
// Recursively sort halves of dest into src
int destLow = low;
int destHigh = high;
low += off;
high += off;
int mid = (low + high) >>> 1;
mergeSort(dest, src, low, mid, -off, c);
mergeSort(dest, src, mid, high, -off, c);
// If list is already sorted, just copy from src to dest. This is an
// optimization that results in faster sorts for nearly ordered lists.
if (c.compare(src[mid-1], src[mid]) <= 0) {
System.arraycopy(src, low, dest, destLow, length);
return;
}
// Merge sorted halves (now in src) into dest
for(int i = destLow, p = low, q = mid; i < destHigh; i++) {
if (q >= high || p < mid && c.compare(src[p], src[q]) <= 0)
dest[i] = src[p++];
else
dest[i] = src[q++];
}
| private static void | rangeCheck(int arrayLen, int fromIndex, int toIndex)Check that fromIndex and toIndex are in range, and throw an
appropriate exception if they aren't.
if (fromIndex > toIndex)
throw new IllegalArgumentException("fromIndex(" + fromIndex +
") > toIndex(" + toIndex+")");
if (fromIndex < 0)
throw new ArrayIndexOutOfBoundsException(fromIndex);
if (toIndex > arrayLen)
throw new ArrayIndexOutOfBoundsException(toIndex);
| public static void | sort(byte[] a)Sorts the specified array of bytes into ascending numerical order.
The sorting algorithm is a tuned quicksort, adapted from Jon
L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
1993). This algorithm offers n*log(n) performance on many data sets
that cause other quicksorts to degrade to quadratic performance.
sort1(a, 0, a.length);
| public static void | sort(byte[] a, int fromIndex, int toIndex)Sorts the specified range of the specified array of bytes into
ascending numerical order. The range to be sorted extends from index
fromIndex, inclusive, to index toIndex, exclusive.
(If fromIndex==toIndex, the range to be sorted is empty.)
The sorting algorithm is a tuned quicksort, adapted from Jon
L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
1993). This algorithm offers n*log(n) performance on many data sets
that cause other quicksorts to degrade to quadratic performance.
rangeCheck(a.length, fromIndex, toIndex);
sort1(a, fromIndex, toIndex-fromIndex);
| public static void | sort(double[] a)Sorts the specified array of doubles into ascending numerical order.
The < relation does not provide a total order on
all floating-point values; although they are distinct numbers
-0.0 == 0.0 is true and a NaN value
compares neither less than, greater than, nor equal to any
floating-point value, even itself. To allow the sort to
proceed, instead of using the < relation to
determine ascending numerical order, this method uses the total
order imposed by {@link Double#compareTo}. This ordering
differs from the < relation in that
-0.0 is treated as less than 0.0 and
NaN is considered greater than any other floating-point value.
For the purposes of sorting, all NaN values are considered
equivalent and equal.
The sorting algorithm is a tuned quicksort, adapted from Jon
L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
1993). This algorithm offers n*log(n) performance on many data sets
that cause other quicksorts to degrade to quadratic performance.
sort2(a, 0, a.length);
| public static void | sort(double[] a, int fromIndex, int toIndex)Sorts the specified range of the specified array of doubles into
ascending numerical order. The range to be sorted extends from index
fromIndex, inclusive, to index toIndex, exclusive.
(If fromIndex==toIndex, the range to be sorted is empty.)
The < relation does not provide a total order on
all floating-point values; although they are distinct numbers
-0.0 == 0.0 is true and a NaN value
compares neither less than, greater than, nor equal to any
floating-point value, even itself. To allow the sort to
proceed, instead of using the < relation to
determine ascending numerical order, this method uses the total
order imposed by {@link Double#compareTo}. This ordering
differs from the < relation in that
-0.0 is treated as less than 0.0 and
NaN is considered greater than any other floating-point value.
For the purposes of sorting, all NaN values are considered
equivalent and equal.
The sorting algorithm is a tuned quicksort, adapted from Jon
L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
1993). This algorithm offers n*log(n) performance on many data sets
that cause other quicksorts to degrade to quadratic performance.
rangeCheck(a.length, fromIndex, toIndex);
sort2(a, fromIndex, toIndex);
| public static void | sort(float[] a)Sorts the specified array of floats into ascending numerical order.
The < relation does not provide a total order on
all floating-point values; although they are distinct numbers
-0.0f == 0.0f is true and a NaN value
compares neither less than, greater than, nor equal to any
floating-point value, even itself. To allow the sort to
proceed, instead of using the < relation to
determine ascending numerical order, this method uses the total
order imposed by {@link Float#compareTo}. This ordering
differs from the < relation in that
-0.0f is treated as less than 0.0f and
NaN is considered greater than any other floating-point value.
For the purposes of sorting, all NaN values are considered
equivalent and equal.
The sorting algorithm is a tuned quicksort, adapted from Jon
L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
1993). This algorithm offers n*log(n) performance on many data sets
that cause other quicksorts to degrade to quadratic performance.
sort2(a, 0, a.length);
| public static void | sort(float[] a, int fromIndex, int toIndex)Sorts the specified range of the specified array of floats into
ascending numerical order. The range to be sorted extends from index
fromIndex, inclusive, to index toIndex, exclusive.
(If fromIndex==toIndex, the range to be sorted is empty.)
The < relation does not provide a total order on
all floating-point values; although they are distinct numbers
-0.0f == 0.0f is true and a NaN value
compares neither less than, greater than, nor equal to any
floating-point value, even itself. To allow the sort to
proceed, instead of using the < relation to
determine ascending numerical order, this method uses the total
order imposed by {@link Float#compareTo}. This ordering
differs from the < relation in that
-0.0f is treated as less than 0.0f and
NaN is considered greater than any other floating-point value.
For the purposes of sorting, all NaN values are considered
equivalent and equal.
The sorting algorithm is a tuned quicksort, adapted from Jon
L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
1993). This algorithm offers n*log(n) performance on many data sets
that cause other quicksorts to degrade to quadratic performance.
rangeCheck(a.length, fromIndex, toIndex);
sort2(a, fromIndex, toIndex);
| public static void | sort(long[] a)Sorts the specified array of longs into ascending numerical order.
The sorting algorithm is a tuned quicksort, adapted from Jon
L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
1993). This algorithm offers n*log(n) performance on many data sets
that cause other quicksorts to degrade to quadratic performance.
sort1(a, 0, a.length);
| public static void | sort(long[] a, int fromIndex, int toIndex)Sorts the specified range of the specified array of longs into
ascending numerical order. The range to be sorted extends from index
fromIndex, inclusive, to index toIndex, exclusive.
(If fromIndex==toIndex, the range to be sorted is empty.)
The sorting algorithm is a tuned quicksort, adapted from Jon
L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
1993). This algorithm offers n*log(n) performance on many data sets
that cause other quicksorts to degrade to quadratic performance.
rangeCheck(a.length, fromIndex, toIndex);
sort1(a, fromIndex, toIndex-fromIndex);
| public static void | sort(int[] a)Sorts the specified array of ints into ascending numerical order.
The sorting algorithm is a tuned quicksort, adapted from Jon
L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
1993). This algorithm offers n*log(n) performance on many data sets
that cause other quicksorts to degrade to quadratic performance.
sort1(a, 0, a.length);
| public static void | sort(java.lang.Object[] a)Sorts the specified array of objects into ascending order, according to
the {@linkplain Comparable natural ordering}
of its elements. All elements in the array
must implement the {@link Comparable} interface. Furthermore, all
elements in the array must be mutually comparable (that is,
e1.compareTo(e2) must not throw a ClassCastException
for any elements e1 and e2 in the array).
This sort is guaranteed to be stable: equal elements will
not be reordered as a result of the sort.
The sorting algorithm is a modified mergesort (in which the merge is
omitted if the highest element in the low sublist is less than the
lowest element in the high sublist). This algorithm offers guaranteed
n*log(n) performance.
Object[] aux = (Object[])a.clone();
mergeSort(aux, a, 0, a.length, 0);
| public static void | sort(java.lang.Object[] a, int fromIndex, int toIndex)Sorts the specified range of the specified array of objects into
ascending order, according to the
{@linkplain Comparable natural ordering} of its
elements. The range to be sorted extends from index
fromIndex, inclusive, to index toIndex, exclusive.
(If fromIndex==toIndex, the range to be sorted is empty.) All
elements in this range must implement the {@link Comparable}
interface. Furthermore, all elements in this range must be mutually
comparable (that is, e1.compareTo(e2) must not throw a
ClassCastException for any elements e1 and
e2 in the array).
This sort is guaranteed to be stable: equal elements will
not be reordered as a result of the sort.
The sorting algorithm is a modified mergesort (in which the merge is
omitted if the highest element in the low sublist is less than the
lowest element in the high sublist). This algorithm offers guaranteed
n*log(n) performance.
rangeCheck(a.length, fromIndex, toIndex);
Object[] aux = copyOfRange(a, fromIndex, toIndex);
mergeSort(aux, a, fromIndex, toIndex, -fromIndex);
| public static void | sort(int[] a, int fromIndex, int toIndex)Sorts the specified range of the specified array of ints into
ascending numerical order. The range to be sorted extends from index
fromIndex, inclusive, to index toIndex, exclusive.
(If fromIndex==toIndex, the range to be sorted is empty.)
The sorting algorithm is a tuned quicksort, adapted from Jon
L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
1993). This algorithm offers n*log(n) performance on many data sets
that cause other quicksorts to degrade to quadratic performance.
rangeCheck(a.length, fromIndex, toIndex);
sort1(a, fromIndex, toIndex-fromIndex);
| public static void | sort(T[] a, java.util.Comparator c)Sorts the specified array of objects according to the order induced by
the specified comparator. All elements in the array must be
mutually comparable by the specified comparator (that is,
c.compare(e1, e2) must not throw a ClassCastException
for any elements e1 and e2 in the array).
This sort is guaranteed to be stable: equal elements will
not be reordered as a result of the sort.
The sorting algorithm is a modified mergesort (in which the merge is
omitted if the highest element in the low sublist is less than the
lowest element in the high sublist). This algorithm offers guaranteed
n*log(n) performance.
T[] aux = (T[])a.clone();
if (c==null)
mergeSort(aux, a, 0, a.length, 0);
else
mergeSort(aux, a, 0, a.length, 0, c);
| public static void | sort(T[] a, int fromIndex, int toIndex, java.util.Comparator c)Sorts the specified range of the specified array of objects according
to the order induced by the specified comparator. The range to be
sorted extends from index fromIndex, inclusive, to index
toIndex, exclusive. (If fromIndex==toIndex, the
range to be sorted is empty.) All elements in the range must be
mutually comparable by the specified comparator (that is,
c.compare(e1, e2) must not throw a ClassCastException
for any elements e1 and e2 in the range).
This sort is guaranteed to be stable: equal elements will
not be reordered as a result of the sort.
The sorting algorithm is a modified mergesort (in which the merge is
omitted if the highest element in the low sublist is less than the
lowest element in the high sublist). This algorithm offers guaranteed
n*log(n) performance.
rangeCheck(a.length, fromIndex, toIndex);
T[] aux = (T[])copyOfRange(a, fromIndex, toIndex);
if (c==null)
mergeSort(aux, a, fromIndex, toIndex, -fromIndex);
else
mergeSort(aux, a, fromIndex, toIndex, -fromIndex, c);
| public static void | sort(short[] a)Sorts the specified array of shorts into ascending numerical order.
The sorting algorithm is a tuned quicksort, adapted from Jon
L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
1993). This algorithm offers n*log(n) performance on many data sets
that cause other quicksorts to degrade to quadratic performance.
sort1(a, 0, a.length);
| public static void | sort(short[] a, int fromIndex, int toIndex)Sorts the specified range of the specified array of shorts into
ascending numerical order. The range to be sorted extends from index
fromIndex, inclusive, to index toIndex, exclusive.
(If fromIndex==toIndex, the range to be sorted is empty.)
The sorting algorithm is a tuned quicksort, adapted from Jon
L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
1993). This algorithm offers n*log(n) performance on many data sets
that cause other quicksorts to degrade to quadratic performance.
rangeCheck(a.length, fromIndex, toIndex);
sort1(a, fromIndex, toIndex-fromIndex);
| public static void | sort(char[] a)Sorts the specified array of chars into ascending numerical order.
The sorting algorithm is a tuned quicksort, adapted from Jon
L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
1993). This algorithm offers n*log(n) performance on many data sets
that cause other quicksorts to degrade to quadratic performance.
sort1(a, 0, a.length);
| public static void | sort(char[] a, int fromIndex, int toIndex)Sorts the specified range of the specified array of chars into
ascending numerical order. The range to be sorted extends from index
fromIndex, inclusive, to index toIndex, exclusive.
(If fromIndex==toIndex, the range to be sorted is empty.)
The sorting algorithm is a tuned quicksort, adapted from Jon
L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
1993). This algorithm offers n*log(n) performance on many data sets
that cause other quicksorts to degrade to quadratic performance.
rangeCheck(a.length, fromIndex, toIndex);
sort1(a, fromIndex, toIndex-fromIndex);
| private static void | sort1(long[] x, int off, int len)Sorts the specified sub-array of longs into ascending order.
// Insertion sort on smallest arrays
if (len < 7) {
for (int i=off; i<len+off; i++)
for (int j=i; j>off && x[j-1]>x[j]; j--)
swap(x, j, j-1);
return;
}
// Choose a partition element, v
int m = off + (len >> 1); // Small arrays, middle element
if (len > 7) {
int l = off;
int n = off + len - 1;
if (len > 40) { // Big arrays, pseudomedian of 9
int s = len/8;
l = med3(x, l, l+s, l+2*s);
m = med3(x, m-s, m, m+s);
n = med3(x, n-2*s, n-s, n);
}
m = med3(x, l, m, n); // Mid-size, med of 3
}
long v = x[m];
// Establish Invariant: v* (<v)* (>v)* v*
int a = off, b = a, c = off + len - 1, d = c;
while(true) {
while (b <= c && x[b] <= v) {
if (x[b] == v)
swap(x, a++, b);
b++;
}
while (c >= b && x[c] >= v) {
if (x[c] == v)
swap(x, c, d--);
c--;
}
if (b > c)
break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int s, n = off + len;
s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s);
s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);
// Recursively sort non-partition-elements
if ((s = b-a) > 1)
sort1(x, off, s);
if ((s = d-c) > 1)
sort1(x, n-s, s);
| private static void | sort1(int[] x, int off, int len)Sorts the specified sub-array of integers into ascending order.
// Insertion sort on smallest arrays
if (len < 7) {
for (int i=off; i<len+off; i++)
for (int j=i; j>off && x[j-1]>x[j]; j--)
swap(x, j, j-1);
return;
}
// Choose a partition element, v
int m = off + (len >> 1); // Small arrays, middle element
if (len > 7) {
int l = off;
int n = off + len - 1;
if (len > 40) { // Big arrays, pseudomedian of 9
int s = len/8;
l = med3(x, l, l+s, l+2*s);
m = med3(x, m-s, m, m+s);
n = med3(x, n-2*s, n-s, n);
}
m = med3(x, l, m, n); // Mid-size, med of 3
}
int v = x[m];
// Establish Invariant: v* (<v)* (>v)* v*
int a = off, b = a, c = off + len - 1, d = c;
while(true) {
while (b <= c && x[b] <= v) {
if (x[b] == v)
swap(x, a++, b);
b++;
}
while (c >= b && x[c] >= v) {
if (x[c] == v)
swap(x, c, d--);
c--;
}
if (b > c)
break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int s, n = off + len;
s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s);
s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);
// Recursively sort non-partition-elements
if ((s = b-a) > 1)
sort1(x, off, s);
if ((s = d-c) > 1)
sort1(x, n-s, s);
| private static void | sort1(short[] x, int off, int len)Sorts the specified sub-array of shorts into ascending order.
// Insertion sort on smallest arrays
if (len < 7) {
for (int i=off; i<len+off; i++)
for (int j=i; j>off && x[j-1]>x[j]; j--)
swap(x, j, j-1);
return;
}
// Choose a partition element, v
int m = off + (len >> 1); // Small arrays, middle element
if (len > 7) {
int l = off;
int n = off + len - 1;
if (len > 40) { // Big arrays, pseudomedian of 9
int s = len/8;
l = med3(x, l, l+s, l+2*s);
m = med3(x, m-s, m, m+s);
n = med3(x, n-2*s, n-s, n);
}
m = med3(x, l, m, n); // Mid-size, med of 3
}
short v = x[m];
// Establish Invariant: v* (<v)* (>v)* v*
int a = off, b = a, c = off + len - 1, d = c;
while(true) {
while (b <= c && x[b] <= v) {
if (x[b] == v)
swap(x, a++, b);
b++;
}
while (c >= b && x[c] >= v) {
if (x[c] == v)
swap(x, c, d--);
c--;
}
if (b > c)
break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int s, n = off + len;
s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s);
s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);
// Recursively sort non-partition-elements
if ((s = b-a) > 1)
sort1(x, off, s);
if ((s = d-c) > 1)
sort1(x, n-s, s);
| private static void | sort1(char[] x, int off, int len)Sorts the specified sub-array of chars into ascending order.
// Insertion sort on smallest arrays
if (len < 7) {
for (int i=off; i<len+off; i++)
for (int j=i; j>off && x[j-1]>x[j]; j--)
swap(x, j, j-1);
return;
}
// Choose a partition element, v
int m = off + (len >> 1); // Small arrays, middle element
if (len > 7) {
int l = off;
int n = off + len - 1;
if (len > 40) { // Big arrays, pseudomedian of 9
int s = len/8;
l = med3(x, l, l+s, l+2*s);
m = med3(x, m-s, m, m+s);
n = med3(x, n-2*s, n-s, n);
}
m = med3(x, l, m, n); // Mid-size, med of 3
}
char v = x[m];
// Establish Invariant: v* (<v)* (>v)* v*
int a = off, b = a, c = off + len - 1, d = c;
while(true) {
while (b <= c && x[b] <= v) {
if (x[b] == v)
swap(x, a++, b);
b++;
}
while (c >= b && x[c] >= v) {
if (x[c] == v)
swap(x, c, d--);
c--;
}
if (b > c)
break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int s, n = off + len;
s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s);
s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);
// Recursively sort non-partition-elements
if ((s = b-a) > 1)
sort1(x, off, s);
if ((s = d-c) > 1)
sort1(x, n-s, s);
| private static void | sort1(byte[] x, int off, int len)Sorts the specified sub-array of bytes into ascending order.
// Insertion sort on smallest arrays
if (len < 7) {
for (int i=off; i<len+off; i++)
for (int j=i; j>off && x[j-1]>x[j]; j--)
swap(x, j, j-1);
return;
}
// Choose a partition element, v
int m = off + (len >> 1); // Small arrays, middle element
if (len > 7) {
int l = off;
int n = off + len - 1;
if (len > 40) { // Big arrays, pseudomedian of 9
int s = len/8;
l = med3(x, l, l+s, l+2*s);
m = med3(x, m-s, m, m+s);
n = med3(x, n-2*s, n-s, n);
}
m = med3(x, l, m, n); // Mid-size, med of 3
}
byte v = x[m];
// Establish Invariant: v* (<v)* (>v)* v*
int a = off, b = a, c = off + len - 1, d = c;
while(true) {
while (b <= c && x[b] <= v) {
if (x[b] == v)
swap(x, a++, b);
b++;
}
while (c >= b && x[c] >= v) {
if (x[c] == v)
swap(x, c, d--);
c--;
}
if (b > c)
break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int s, n = off + len;
s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s);
s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);
// Recursively sort non-partition-elements
if ((s = b-a) > 1)
sort1(x, off, s);
if ((s = d-c) > 1)
sort1(x, n-s, s);
| private static void | sort1(double[] x, int off, int len)Sorts the specified sub-array of doubles into ascending order.
// Insertion sort on smallest arrays
if (len < 7) {
for (int i=off; i<len+off; i++)
for (int j=i; j>off && x[j-1]>x[j]; j--)
swap(x, j, j-1);
return;
}
// Choose a partition element, v
int m = off + (len >> 1); // Small arrays, middle element
if (len > 7) {
int l = off;
int n = off + len - 1;
if (len > 40) { // Big arrays, pseudomedian of 9
int s = len/8;
l = med3(x, l, l+s, l+2*s);
m = med3(x, m-s, m, m+s);
n = med3(x, n-2*s, n-s, n);
}
m = med3(x, l, m, n); // Mid-size, med of 3
}
double v = x[m];
// Establish Invariant: v* (<v)* (>v)* v*
int a = off, b = a, c = off + len - 1, d = c;
while(true) {
while (b <= c && x[b] <= v) {
if (x[b] == v)
swap(x, a++, b);
b++;
}
while (c >= b && x[c] >= v) {
if (x[c] == v)
swap(x, c, d--);
c--;
}
if (b > c)
break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int s, n = off + len;
s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s);
s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);
// Recursively sort non-partition-elements
if ((s = b-a) > 1)
sort1(x, off, s);
if ((s = d-c) > 1)
sort1(x, n-s, s);
| private static void | sort1(float[] x, int off, int len)Sorts the specified sub-array of floats into ascending order.
// Insertion sort on smallest arrays
if (len < 7) {
for (int i=off; i<len+off; i++)
for (int j=i; j>off && x[j-1]>x[j]; j--)
swap(x, j, j-1);
return;
}
// Choose a partition element, v
int m = off + (len >> 1); // Small arrays, middle element
if (len > 7) {
int l = off;
int n = off + len - 1;
if (len > 40) { // Big arrays, pseudomedian of 9
int s = len/8;
l = med3(x, l, l+s, l+2*s);
m = med3(x, m-s, m, m+s);
n = med3(x, n-2*s, n-s, n);
}
m = med3(x, l, m, n); // Mid-size, med of 3
}
float v = x[m];
// Establish Invariant: v* (<v)* (>v)* v*
int a = off, b = a, c = off + len - 1, d = c;
while(true) {
while (b <= c && x[b] <= v) {
if (x[b] == v)
swap(x, a++, b);
b++;
}
while (c >= b && x[c] >= v) {
if (x[c] == v)
swap(x, c, d--);
c--;
}
if (b > c)
break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int s, n = off + len;
s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s);
s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);
// Recursively sort non-partition-elements
if ((s = b-a) > 1)
sort1(x, off, s);
if ((s = d-c) > 1)
sort1(x, n-s, s);
| private static void | sort2(double[] a, int fromIndex, int toIndex)
final long NEG_ZERO_BITS = Double.doubleToLongBits(-0.0d);
/*
* The sort is done in three phases to avoid the expense of using
* NaN and -0.0 aware comparisons during the main sort.
*/
/*
* Preprocessing phase: Move any NaN's to end of array, count the
* number of -0.0's, and turn them into 0.0's.
*/
int numNegZeros = 0;
int i = fromIndex, n = toIndex;
while(i < n) {
if (a[i] != a[i]) {
double swap = a[i];
a[i] = a[--n];
a[n] = swap;
} else {
if (a[i]==0 && Double.doubleToLongBits(a[i])==NEG_ZERO_BITS) {
a[i] = 0.0d;
numNegZeros++;
}
i++;
}
}
// Main sort phase: quicksort everything but the NaN's
sort1(a, fromIndex, n-fromIndex);
// Postprocessing phase: change 0.0's to -0.0's as required
if (numNegZeros != 0) {
int j = binarySearch0(a, fromIndex, n, 0.0d); // posn of ANY zero
do {
j--;
} while (j>=0 && a[j]==0.0d);
// j is now one less than the index of the FIRST zero
for (int k=0; k<numNegZeros; k++)
a[++j] = -0.0d;
}
| private static void | sort2(float[] a, int fromIndex, int toIndex)
final int NEG_ZERO_BITS = Float.floatToIntBits(-0.0f);
/*
* The sort is done in three phases to avoid the expense of using
* NaN and -0.0 aware comparisons during the main sort.
*/
/*
* Preprocessing phase: Move any NaN's to end of array, count the
* number of -0.0's, and turn them into 0.0's.
*/
int numNegZeros = 0;
int i = fromIndex, n = toIndex;
while(i < n) {
if (a[i] != a[i]) {
float swap = a[i];
a[i] = a[--n];
a[n] = swap;
} else {
if (a[i]==0 && Float.floatToIntBits(a[i])==NEG_ZERO_BITS) {
a[i] = 0.0f;
numNegZeros++;
}
i++;
}
}
// Main sort phase: quicksort everything but the NaN's
sort1(a, fromIndex, n-fromIndex);
// Postprocessing phase: change 0.0's to -0.0's as required
if (numNegZeros != 0) {
int j = binarySearch0(a, fromIndex, n, 0.0f); // posn of ANY zero
do {
j--;
} while (j>=0 && a[j]==0.0f);
// j is now one less than the index of the FIRST zero
for (int k=0; k<numNegZeros; k++)
a[++j] = -0.0f;
}
| private static void | swap(long[] x, int a, int b)Swaps x[a] with x[b].
long t = x[a];
x[a] = x[b];
x[b] = t;
| private static void | swap(int[] x, int a, int b)Swaps x[a] with x[b].
int t = x[a];
x[a] = x[b];
x[b] = t;
| private static void | swap(short[] x, int a, int b)Swaps x[a] with x[b].
short t = x[a];
x[a] = x[b];
x[b] = t;
| private static void | swap(char[] x, int a, int b)Swaps x[a] with x[b].
char t = x[a];
x[a] = x[b];
x[b] = t;
| private static void | swap(byte[] x, int a, int b)Swaps x[a] with x[b].
byte t = x[a];
x[a] = x[b];
x[b] = t;
| private static void | swap(double[] x, int a, int b)Swaps x[a] with x[b].
double t = x[a];
x[a] = x[b];
x[b] = t;
| private static void | swap(float[] x, int a, int b)Swaps x[a] with x[b].
float t = x[a];
x[a] = x[b];
x[b] = t;
| private static void | swap(java.lang.Object[] x, int a, int b)Swaps x[a] with x[b].
Object t = x[a];
x[a] = x[b];
x[b] = t;
| public static java.lang.String | toString(long[] a)Returns a string representation of the contents of the specified array.
The string representation consists of a list of the array's elements,
enclosed in square brackets ("[]"). Adjacent elements are
separated by the characters ", " (a comma followed by a
space). Elements are converted to strings as by
String.valueOf(long). Returns "null" if a
is null.
if (a == null)
return "null";
int iMax = a.length - 1;
if (iMax == -1)
return "[]";
StringBuilder b = new StringBuilder();
b.append('[");
for (int i = 0; ; i++) {
b.append(a[i]);
if (i == iMax)
return b.append(']").toString();
b.append(", ");
}
| public static java.lang.String | toString(int[] a)Returns a string representation of the contents of the specified array.
The string representation consists of a list of the array's elements,
enclosed in square brackets ("[]"). Adjacent elements are
separated by the characters ", " (a comma followed by a
space). Elements are converted to strings as by
String.valueOf(int). Returns "null" if a is
null.
if (a == null)
return "null";
int iMax = a.length - 1;
if (iMax == -1)
return "[]";
StringBuilder b = new StringBuilder();
b.append('[");
for (int i = 0; ; i++) {
b.append(a[i]);
if (i == iMax)
return b.append(']").toString();
b.append(", ");
}
| public static java.lang.String | toString(short[] a)Returns a string representation of the contents of the specified array.
The string representation consists of a list of the array's elements,
enclosed in square brackets ("[]"). Adjacent elements are
separated by the characters ", " (a comma followed by a
space). Elements are converted to strings as by
String.valueOf(short). Returns "null" if a
is null.
if (a == null)
return "null";
int iMax = a.length - 1;
if (iMax == -1)
return "[]";
StringBuilder b = new StringBuilder();
b.append('[");
for (int i = 0; ; i++) {
b.append(a[i]);
if (i == iMax)
return b.append(']").toString();
b.append(", ");
}
| public static java.lang.String | toString(char[] a)Returns a string representation of the contents of the specified array.
The string representation consists of a list of the array's elements,
enclosed in square brackets ("[]"). Adjacent elements are
separated by the characters ", " (a comma followed by a
space). Elements are converted to strings as by
String.valueOf(char). Returns "null" if a
is null.
if (a == null)
return "null";
int iMax = a.length - 1;
if (iMax == -1)
return "[]";
StringBuilder b = new StringBuilder();
b.append('[");
for (int i = 0; ; i++) {
b.append(a[i]);
if (i == iMax)
return b.append(']").toString();
b.append(", ");
}
| public static java.lang.String | toString(byte[] a)Returns a string representation of the contents of the specified array.
The string representation consists of a list of the array's elements,
enclosed in square brackets ("[]"). Adjacent elements
are separated by the characters ", " (a comma followed
by a space). Elements are converted to strings as by
String.valueOf(byte). Returns "null" if
a is null.
if (a == null)
return "null";
int iMax = a.length - 1;
if (iMax == -1)
return "[]";
StringBuilder b = new StringBuilder();
b.append('[");
for (int i = 0; ; i++) {
b.append(a[i]);
if (i == iMax)
return b.append(']").toString();
b.append(", ");
}
| public static java.lang.String | toString(boolean[] a)Returns a string representation of the contents of the specified array.
The string representation consists of a list of the array's elements,
enclosed in square brackets ("[]"). Adjacent elements are
separated by the characters ", " (a comma followed by a
space). Elements are converted to strings as by
String.valueOf(boolean). Returns "null" if
a is null.
if (a == null)
return "null";
int iMax = a.length - 1;
if (iMax == -1)
return "[]";
StringBuilder b = new StringBuilder();
b.append('[");
for (int i = 0; ; i++) {
b.append(a[i]);
if (i == iMax)
return b.append(']").toString();
b.append(", ");
}
| public static java.lang.String | toString(float[] a)Returns a string representation of the contents of the specified array.
The string representation consists of a list of the array's elements,
enclosed in square brackets ("[]"). Adjacent elements are
separated by the characters ", " (a comma followed by a
space). Elements are converted to strings as by
String.valueOf(float). Returns "null" if a
is null.
if (a == null)
return "null";
int iMax = a.length - 1;
if (iMax == -1)
return "[]";
StringBuilder b = new StringBuilder();
b.append('[");
for (int i = 0; ; i++) {
b.append(a[i]);
if (i == iMax)
return b.append(']").toString();
b.append(", ");
}
| public static java.lang.String | toString(double[] a)Returns a string representation of the contents of the specified array.
The string representation consists of a list of the array's elements,
enclosed in square brackets ("[]"). Adjacent elements are
separated by the characters ", " (a comma followed by a
space). Elements are converted to strings as by
String.valueOf(double). Returns "null" if a
is null.
if (a == null)
return "null";
int iMax = a.length - 1;
if (iMax == -1)
return "[]";
StringBuilder b = new StringBuilder();
b.append('[");
for (int i = 0; ; i++) {
b.append(a[i]);
if (i == iMax)
return b.append(']").toString();
b.append(", ");
}
| public static java.lang.String | toString(java.lang.Object[] a)Returns a string representation of the contents of the specified array.
If the array contains other arrays as elements, they are converted to
strings by the {@link Object#toString} method inherited from
Object, which describes their identities rather than
their contents.
The value returned by this method is equal to the value that would
be returned by Arrays.asList(a).toString(), unless a
is null, in which case "null" is returned.
if (a == null)
return "null";
int iMax = a.length - 1;
if (iMax == -1)
return "[]";
StringBuilder b = new StringBuilder();
b.append('[");
for (int i = 0; ; i++) {
b.append(String.valueOf(a[i]));
if (i == iMax)
return b.append(']").toString();
b.append(", ");
}
| private static void | vecswap(long[] x, int a, int b, int n)Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
for (int i=0; i<n; i++, a++, b++)
swap(x, a, b);
| private static void | vecswap(int[] x, int a, int b, int n)Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
for (int i=0; i<n; i++, a++, b++)
swap(x, a, b);
| private static void | vecswap(short[] x, int a, int b, int n)Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
for (int i=0; i<n; i++, a++, b++)
swap(x, a, b);
| private static void | vecswap(char[] x, int a, int b, int n)Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
for (int i=0; i<n; i++, a++, b++)
swap(x, a, b);
| private static void | vecswap(byte[] x, int a, int b, int n)Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
for (int i=0; i<n; i++, a++, b++)
swap(x, a, b);
| private static void | vecswap(double[] x, int a, int b, int n)Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
for (int i=0; i<n; i++, a++, b++)
swap(x, a, b);
| private static void | vecswap(float[] x, int a, int b, int n)Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
for (int i=0; i<n; i++, a++, b++)
swap(x, a, b);
|
|