DigitListpublic final class DigitList extends Object Digit List. Handles the transcoding between numeric values and strings of
characters. Only handles non-negative numbers. The division of labor between
DigitList and NumberFormat is that DigitList handles the radix 10
representation issues; numberFormat handles the locale-specific issues such
as positive/negative, grouping, decimal point, currency, and so on. A
DigitList is really a representation of a floating point value. It may be an
integer value; we assume that a double has sufficient precision to represent
all digits of a long. The DigitList representation consists of a string of
characters, which are the digits radix 10, from '0' to '9'. It also has a
radix 10 exponent associated with it. |
Fields Summary |
---|
public static final int | MAX_COUNTThe maximum number of significant digits in an IEEE 754 double, that is,
in a Java double. This must not be increased, or garbage digits will be
generated, and should not be decreased, or accuracy will be lost. | public static final int | DBL_DIGDescription of the Field. | public int | decimalAtThese data members are intentionally public and can be set directly. The
value represented is given by placing the decimal point before
digits[decimalAt]. If decimalAt is < 0, then leading zeros between the
decimal point and the first nonzero digit are implied. If decimalAt is >
count, then trailing zeros between the digits[count-1] and the decimal
point are implied. Equivalently, the represented value is given by f *
10^decimalAt. Here f is a value 0.1 <= f < 1 arrived at by placing the
digits in Digits to the right of the decimal. DigitList is normalized,
so if it is non-zero, figits[0] is non-zero. We don't allow denormalized
numbers because our exponent is effectively of unlimited magnitude. The
count value contains the number of significant digits present in
digits[]. Zero is represented by any DigitList with count == 0 or with
each digits[i] for all i <= count == '0'. | public int | countCounter of digits. | public char[] | digitsArray for digits. | private static final char[] | LONG_MIN_REPThe digit part of -9223372036854775808L |
Methods Summary |
---|
public void | clear()Clears out the digits. Use before appending them. Typically, you set a
series of digits with append, then at the point you hit the decimal
point, you set myDigitList.decimalAt = myDigitList.count; then go on
appending digits.
decimalAt = 0;
count = 0;
| public boolean | isZero()Return true if the represented number is zero.
for (int i = 0; i < count; ++i) {
if (digits[i] != '0") {
return false;
}
}
return true;
| private static final int | parseInt(char[] str, int offset)Description of the Method
char c;
boolean positive = true;
if ((c = str[offset]) == '-") {
positive = false;
offset++;
} else if (c == '+") {
offset++;
}
int value = 0;
while (offset < str.length) {
c = str[offset++];
if (c >= '0" && c <= '9") {
value = value * 10 + (c - '0");
} else {
break;
}
}
return positive ? value : -value;
| private final void | round(int maximumDigits)Round the representation to the given number of digits.
// Eliminate digits beyond maximum digits to be displayed.
// Round up if appropriate.
if (maximumDigits >= 0 && maximumDigits < count) {
if (shouldRoundUp(maximumDigits)) {
// Rounding up involved incrementing digits from LSD to MSD.
// In most cases this is simple, but in a worst case situation
// (9999..99) we have to adjust the decimalAt value.
for (; ; ) {
--maximumDigits;
if (maximumDigits < 0) {
// We have all 9's, so we increment to a single digit
// of one and adjust the exponent.
digits[0] = '1";
++decimalAt;
maximumDigits = 0;
// Adjust the count
break;
}
++digits[maximumDigits];
if (digits[maximumDigits] <= '9") {
break;
}
// digits[maximumDigits] = '0';
// Unnecessary since we'll truncate this
}
++maximumDigits;
// Increment for use as count
}
count = maximumDigits;
// Eliminate trailing zeros.
while (count > 1 && digits[count - 1] == '0") {
--count;
}
}
| public final void | set(double source, int maximumFractionDigits)Set the digit list to a representation of the given double value. This
method supports fixed-point notation.
set(source, maximumFractionDigits, true);
| final void | set(double source, int maximumDigits, boolean fixedPoint)Set the digit list to a representation of the given double value. This
method supports both fixed-point and exponential notation.
if (source == 0) {
source = 0;
}
// Generate a representation of the form DDDDD, DDDDD.DDDDD, or
// DDDDDE+/-DDDDD.
String sourceAsStr = Double.toString(source);
char[] rep = sourceAsStr.toCharArray();
int len = rep.length;
decimalAt = -1;
count = 0;
int exponent = 0;
// Number of zeros between decimal point and first non-zero digit after
// decimal point, for numbers < 1.
int leadingZerosAfterDecimal = 0;
boolean nonZeroDigitSeen = false;
for (int i = 0; i < len; ) {
char c = rep[i++];
if (c == '.") {
decimalAt = count;
} else if (c == 'e" || c == 'E") {
exponent = parseInt(rep, i);
break;
} else if (count < MAX_COUNT) {
if (!nonZeroDigitSeen) {
nonZeroDigitSeen = (c != '0");
if (!nonZeroDigitSeen && decimalAt != -1) {
++leadingZerosAfterDecimal;
}
}
if (nonZeroDigitSeen) {
digits[count++] = c;
}
}
}
if (decimalAt == -1) {
decimalAt = count;
}
if (nonZeroDigitSeen) {
decimalAt += exponent - leadingZerosAfterDecimal;
}
if (fixedPoint) {
// The negative of the exponent represents the number of leading
// zeros between the decimal and the first non-zero digit, for
// a value < 0.1 (e.g., for 0.00123, -decimalAt == 2). If this
// is more than the maximum fraction digits, then we have an
// underflow for the printed representation.
if (-decimalAt > maximumDigits) {
// Handle an underflow to zero when we round something like
// 0.0009 to 2 fractional digits.
count = 0;
return;
} else if (-decimalAt == maximumDigits) {
// If we round 0.0009 to 3 fractional digits, then we have to
// create a new one digit in the least significant location.
if (shouldRoundUp(0)) {
count = 1;
++decimalAt;
digits[0] = '1";
} else {
count = 0;
}
return;
}
// else fall through
}
// Eliminate trailing zeros.
while (count > 1 && digits[count - 1] == '0") {
--count;
}
// Eliminate digits beyond maximum digits to be displayed.
// Round up if appropriate.
round(fixedPoint ? (maximumDigits + decimalAt) : maximumDigits);
| public final void | set(long source, int maximumDigits)Set the digit list to a representation of the given long value.
// This method does not expect a negative number. However,
// "source" can be a Long.MIN_VALUE (-9223372036854775808),
// if the number being formatted is a Long.MIN_VALUE. In that
// case, it will be formatted as -Long.MIN_VALUE, a number
// which is outside the legal range of a long, but which can
// be represented by DigitList.
if (source <= 0) {
if (source == Long.MIN_VALUE) {
decimalAt = count = MAX_COUNT;
System.arraycopy(LONG_MIN_REP, 0, digits, 0, count);
} else {
decimalAt = count = 0;
// Values <= 0 format as zero
}
} else {
// Rewritten to improve performance. I used to call
// Long.toString(), which was about 4x slower than this code.
int left = MAX_COUNT;
int right;
while (source > 0) {
digits[--left] = (char) ('0" + (source % 10));
source /= 10;
}
decimalAt = MAX_COUNT - left;
// Don't copy trailing zeros. We are guaranteed that there is at
// least one non-zero digit, so we don't have to check lower bounds.
for (right = MAX_COUNT - 1; digits[right] == '0"; --right);
count = right - left + 1;
System.arraycopy(digits, left, digits, 0, count);
}
if (maximumDigits > 0) {
round(maximumDigits);
}
| private boolean | shouldRoundUp(int maximumDigits)Return true if truncating the representation to the given number of
digits will result in an increment to the last digit. This method
implements half-even rounding, the default rounding mode. [bnf]
boolean increment = false;
// Implement IEEE half-even rounding
if (maximumDigits < count) {
if (digits[maximumDigits] > '5") {
return true;
} else if (digits[maximumDigits] == '5") {
for (int i = maximumDigits + 1; i < count; ++i) {
if (digits[i] != '0") {
return true;
}
}
return maximumDigits > 0 &&
(digits[maximumDigits - 1] % 2 != 0);
}
}
return false;
|
|