CppCodeGeneratorpublic class CppCodeGenerator extends CodeGenerator Generate MyParser.cpp, MyParser.hpp, MyLexer.cpp, MyLexer.hpp
and MyParserTokenTypes.hpp |
Fields Summary |
---|
boolean | DEBUG_CPP_CODE_GENERATOR | protected int | syntacticPredLevel | protected boolean | genAST | protected boolean | saveText | protected boolean | genHashLines | protected boolean | noConstructors | protected int | outputLine | protected String | outputFile | boolean | usingCustomAST | String | labeledElementType | String | labeledElementASTType | String | labeledElementASTInit | String | labeledElementInit | String | commonExtraArgs | String | commonExtraParams | String | commonLocalVars | String | lt1Value | String | exceptionThrown | String | throwNoViable | RuleBlock | currentRule | String | currentASTResult | Hashtable | treeVariableMap | Hashtable | declaredASTVariablesUsed to keep track of which AST variables have been defined in a rule
(except for the #rule_name and #rule_name_in var's | int | astVarNumber | protected static final String | NONUNIQUE | public static final int | caseSizeThreshold | private Vector | semPreds | private Vector | astTypes | private static String | namespaceStd | private static String | namespaceAntlr | private static NameSpace | nameSpace | private static final String | preIncludeCpp | private static final String | preIncludeHpp | private static final String | postIncludeCpp | private static final String | postIncludeHpp |
Constructors Summary |
---|
public CppCodeGenerator()Create a C++ code-generator using the given Grammar.
The caller must still call setTool, setBehavior, and setAnalyzer
before generating code.
super();
charFormatter = new CppCharFormatter();
|
Methods Summary |
---|
private void | GenRuleInvocation(persistence.antlr.RuleRefElement rr)
// dump rule name
_print(rr.targetRule + "(");
// lexers must tell rule if it should set _returnToken
if ( grammar instanceof LexerGrammar ) {
// if labeled, could access Token, so tell rule to create
if ( rr.getLabel() != null ) {
_print("true");
}
else {
_print("false");
}
if (commonExtraArgs.length() != 0 || rr.args!=null ) {
_print(",");
}
}
// Extra arguments common to all rules for this grammar
_print(commonExtraArgs);
if (commonExtraArgs.length() != 0 && rr.args!=null ) {
_print(",");
}
// Process arguments to method, if any
RuleSymbol rs = (RuleSymbol)grammar.getSymbol(rr.targetRule);
if (rr.args != null)
{
// When not guessing, execute user arg action
ActionTransInfo tInfo = new ActionTransInfo();
// FIXME: fix line number passed to processActionForTreeSpecifiers here..
// this one might be a bit off..
String args = processActionForSpecialSymbols(rr.args, rr.line,
currentRule, tInfo);
if ( tInfo.assignToRoot || tInfo.refRuleRoot!=null )
{
antlrTool.error("Arguments of rule reference '" + rr.targetRule + "' cannot set or ref #"+
currentRule.getRuleName()+" on line "+rr.getLine());
}
_print(args);
// Warn if the rule accepts no arguments
if (rs.block.argAction == null)
{
antlrTool.warning("Rule '" + rr.targetRule + "' accepts no arguments",
grammar.getFilename(),
rr.getLine(), rr.getColumn());
}
}
else
{
// For C++, no warning if rule has parameters, because there may be default
// values for all of the parameters
//if (rs.block.argAction != null) {
// tool.warning("Missing parameters on reference to rule "+rr.targetRule, rr.getLine());
//}
}
_println(");");
// move down to the first child while parsing
if ( grammar instanceof TreeWalkerGrammar ) {
println("_t = _retTree;");
}
| protected void | _print(java.lang.String s)Output a String to the currentOutput stream.
Ignored if string is null.
if (s != null)
{
outputLine += countLines(s);
currentOutput.print(s);
}
| protected void | _printAction(java.lang.String s)Print an action without leading tabs, attempting to
preserve the current indentation level for multi-line actions
Ignored if string is null.
if (s != null)
{
outputLine += countLines(s)+1;
super._printAction(s);
}
| protected void | _println(java.lang.String s)Output a String followed by newline, to the currentOutput stream.
Ignored if string is null.
if (s != null) {
outputLine += countLines(s)+1;
currentOutput.println(s);
}
| protected int | addSemPred(java.lang.String predicate)Adds a semantic predicate string to the sem pred vector
These strings will be used to build an array of sem pred names
when building a debugging parser. This method should only be
called when the debug option is specified
semPreds.appendElement(predicate);
return semPreds.size()-1;
| private java.lang.String | convertJavaToCppString(java.lang.String s)Sanitize a string coming from antlr's lexer to something that's ok
Also bomb out on multibyte char attempts.
The bombing out on mb char's is a bit crude but alas.
String ret = new String();
int i = 0;
int val;
while ( i < s.length() )
{
if( s.charAt(i) == '\\" )
{
// deal with escaped junk
switch ( s.charAt(i+1) ) {
case 'b" :
case 'r" :
case 't" :
case 'n" :
case 'f" :
case '"" :
case '\'" :
case '\\" :
ret += "\\"+s.charAt(i+1);
i+=2;
continue;
case 'u" :
// Unicode char \u1234
val = Character.digit(s.charAt(i+2), 16) * 16 * 16 * 16 +
Character.digit(s.charAt(i+3), 16) * 16 * 16 +
Character.digit(s.charAt(i+4), 16) * 16 +
Character.digit(s.charAt(i+5), 16);
i += 6;
break;
case '0" : // \123
case '1" :
case '2" :
case '3" :
if( Character.isDigit(s.charAt(i+2)) )
{
if( Character.isDigit(s.charAt(i+3)) )
{
val = (s.charAt(i+1)-'0")*8*8 + (s.charAt(i+2)-'0")*8 +
(s.charAt(i+3)-'0");
i += 4;
}
else
{
val = (s.charAt(i+1)-'0")*8 + (s.charAt(i+2)-'0");
i += 3;
}
}
else
{
val = s.charAt(i+1)-'0";
i += 2;
}
break;
case '4" :
case '5" :
case '6" :
case '7" :
if ( Character.isDigit(s.charAt(i+2)) )
{
val = (s.charAt(i+1)-'0")*8 + (s.charAt(i+2)-'0");
i += 3;
}
else
{
val = s.charAt(i+1)-'0";
i += 2;
}
default:
antlrTool.error("Unhandled escape in string constant: '"+s+"'");
val = 0;
}
if( val >= ' " && val <= 126 ) // just concat if printable
ret += (char)val;
else if( val > 255 ) // abort if multibyte
antlrTool.error("Multibyte character found in string constant: '"+s+"'");
else
ret += charFormatter.escapeChar(val,true);
}
else if( s.charAt(i) >= ' " && s.charAt(i) <= 126 )
ret += s.charAt(i++);
else
ret += charFormatter.escapeChar(s.charAt(i++),true);
}
// System.out.println("convertJavaToCppString: "+s+" -> "+ret);
return ret;
| protected int | countLines(java.lang.String s)
int lines = 0;
for( int i = 0; i < s.length(); i++ )
{
if( s.charAt(i) == '\n" )
lines++;
}
return lines;
| public void | exitIfError()
if (antlrTool.hasError())
{
antlrTool.fatalError("Exiting due to errors.");
}
| private java.lang.String | fixNameSpaceOption(java.lang.String ns)
ns = StringUtils.stripFrontBack(ns,"\"","\"");
if( ns.length() > 2 &&
!ns.substring(ns.length()-2, ns.length()).equals("::") )
ns += "::";
return ns;
| public void | gen()Generate the parser, lexer, treeparser, and token types in C++
// Do the code generation
try {
// Loop over all grammars
Enumeration grammarIter = behavior.grammars.elements();
while (grammarIter.hasMoreElements()) {
Grammar g = (Grammar)grammarIter.nextElement();
if ( g.debuggingOutput ) {
antlrTool.error(g.getFilename()+": C++ mode does not support -debug");
}
// Connect all the components to each other
g.setGrammarAnalyzer(analyzer);
g.setCodeGenerator(this);
analyzer.setGrammar(g);
// To get right overloading behavior across hetrogeneous grammars
setupGrammarParameters(g);
g.generate();
exitIfError();
}
// Loop over all token managers (some of which are lexers)
Enumeration tmIter = behavior.tokenManagers.elements();
while (tmIter.hasMoreElements()) {
TokenManager tm = (TokenManager)tmIter.nextElement();
if (!tm.isReadOnly()) {
// Write the token manager tokens as C++
// this must appear before genTokenInterchange so that
// labels are set on string literals
genTokenTypes(tm);
// Write the token manager tokens as plain text
genTokenInterchange(tm);
}
exitIfError();
}
}
catch (IOException e) {
antlrTool.reportException(e, null);
}
| public void | gen(persistence.antlr.ActionElement action)Generate code for the given grammar element.
if ( DEBUG_CODE_GENERATOR || DEBUG_CPP_CODE_GENERATOR ) System.out.println("genAction("+action+")");
if ( action.isSemPred ) {
genSemPred(action.actionText, action.line);
}
else {
if ( grammar.hasSyntacticPredicate ) {
println("if ( inputState->guessing==0 ) {");
tabs++;
}
ActionTransInfo tInfo = new ActionTransInfo();
String actionStr = processActionForSpecialSymbols(action.actionText,
action.getLine(),
currentRule, tInfo);
if ( tInfo.refRuleRoot!=null ) {
// Somebody referenced "#rule", make sure translated var is valid
// assignment to #rule is left as a ref also, meaning that assignments
// with no other refs like "#rule = foo();" still forces this code to be
// generated (unnecessarily).
println(tInfo.refRuleRoot + " = "+labeledElementASTType+"(currentAST.root);");
}
// dump the translated action
genLineNo(action);
printAction(actionStr);
genLineNo2();
if ( tInfo.assignToRoot ) {
// Somebody did a "#rule=", reset internal currentAST.root
println("currentAST.root = "+tInfo.refRuleRoot+";");
// reset the child pointer too to be last sibling in sibling list
// now use if else in stead of x ? y : z to shut CC 4.2 up.
println("if ( "+tInfo.refRuleRoot+"!="+labeledElementASTInit+" &&");
tabs++;
println(tInfo.refRuleRoot+"->getFirstChild() != "+labeledElementASTInit+" )");
println(" currentAST.child = "+tInfo.refRuleRoot+"->getFirstChild();");
tabs--;
println("else");
tabs++;
println("currentAST.child = "+tInfo.refRuleRoot+";");
tabs--;
println("currentAST.advanceChildToEnd();");
}
if ( grammar.hasSyntacticPredicate ) {
tabs--;
println("}");
}
}
| public void | gen(persistence.antlr.AlternativeBlock blk)Generate code for the given grammar element.
if ( DEBUG_CODE_GENERATOR || DEBUG_CPP_CODE_GENERATOR ) System.out.println("gen("+blk+")");
println("{");
genBlockPreamble(blk);
genBlockInitAction(blk);
// Tell AST generation to build subrule result
String saveCurrentASTResult = currentASTResult;
if (blk.getLabel() != null) {
currentASTResult = blk.getLabel();
}
boolean ok = grammar.theLLkAnalyzer.deterministic(blk);
CppBlockFinishingInfo howToFinish = genCommonBlock(blk, true);
genBlockFinish(howToFinish, throwNoViable);
println("}");
// Restore previous AST generation
currentASTResult = saveCurrentASTResult;
| public void | gen(persistence.antlr.BlockEndElement end)Generate code for the given grammar element.
if ( DEBUG_CODE_GENERATOR || DEBUG_CPP_CODE_GENERATOR ) System.out.println("genRuleEnd("+end+")");
| public void | gen(persistence.antlr.CharLiteralElement atom)Generate code for the given grammar element.
if ( DEBUG_CODE_GENERATOR || DEBUG_CPP_CODE_GENERATOR )
System.out.println("genChar("+atom+")");
if ( atom.getLabel()!=null ) {
println(atom.getLabel() + " = " + lt1Value + ";");
}
boolean oldsaveText = saveText;
saveText = saveText && atom.getAutoGenType()==GrammarElement.AUTO_GEN_NONE;
genMatch(atom);
saveText = oldsaveText;
| public void | gen(persistence.antlr.CharRangeElement r)Generate code for the given grammar element.
if ( DEBUG_CODE_GENERATOR || DEBUG_CPP_CODE_GENERATOR )
System.out.println("genCharRangeElement("+r.beginText+".."+r.endText+")");
if ( r.getLabel()!=null && syntacticPredLevel == 0) {
println(r.getLabel() + " = " + lt1Value + ";");
}
// Correctly take care of saveIndex stuff...
boolean save = ( grammar instanceof LexerGrammar &&
( !saveText ||
r.getAutoGenType() == GrammarElement.AUTO_GEN_BANG )
);
if (save)
println("_saveIndex=text.length();");
if( grammar instanceof LexerGrammar )
println("matchRange("+convertJavaToCppString(r.beginText)+","+convertJavaToCppString(r.endText)+");");
else
println("matchRange("+r.beginText+","+r.endText+");");
if (save)
println("text.setLength(_saveIndex);");
| public void | gen(persistence.antlr.LexerGrammar g)Generate the lexer C++ files
// If debugging, create a new sempred vector for this grammar
if (g.debuggingOutput)
semPreds = new Vector();
if( g.charVocabulary.size() > 256 )
antlrTool.warning(g.getFilename()+": C++ mode does not support more than 8 bit characters (vocabulary size now: "+g.charVocabulary.size()+")");
setGrammar(g);
if (!(grammar instanceof LexerGrammar)) {
antlrTool.panic("Internal error generating lexer");
}
genBody(g);
genInclude(g);
| public void | gen(persistence.antlr.OneOrMoreBlock blk)Generate code for the given grammar element.
if ( DEBUG_CODE_GENERATOR || DEBUG_CPP_CODE_GENERATOR ) System.out.println("gen+("+blk+")");
String label;
String cnt;
println("{ // ( ... )+");
genBlockPreamble(blk);
if ( blk.getLabel() != null ) {
cnt = "_cnt_"+blk.getLabel();
}
else {
cnt = "_cnt" + blk.ID;
}
println("int "+cnt+"=0;");
if ( blk.getLabel() != null ) {
label = blk.getLabel();
}
else {
label = "_loop" + blk.ID;
}
println("for (;;) {");
tabs++;
// generate the init action for ()+ ()* inside the loop
// this allows us to do usefull EOF checking...
genBlockInitAction(blk);
// Tell AST generation to build subrule result
String saveCurrentASTResult = currentASTResult;
if (blk.getLabel() != null) {
currentASTResult = blk.getLabel();
}
boolean ok = grammar.theLLkAnalyzer.deterministic(blk);
// generate exit test if greedy set to false
// and an alt is ambiguous with exit branch
// or when lookahead derived purely from end-of-file
// Lookahead analysis stops when end-of-file is hit,
// returning set {epsilon}. Since {epsilon} is not
// ambig with any real tokens, no error is reported
// by deterministic() routines and we have to check
// for the case where the lookahead depth didn't get
// set to NONDETERMINISTIC (this only happens when the
// FOLLOW contains real atoms + epsilon).
boolean generateNonGreedyExitPath = false;
int nonGreedyExitDepth = grammar.maxk;
if ( !blk.greedy &&
blk.exitLookaheadDepth<=grammar.maxk &&
blk.exitCache[blk.exitLookaheadDepth].containsEpsilon() )
{
generateNonGreedyExitPath = true;
nonGreedyExitDepth = blk.exitLookaheadDepth;
}
else if ( !blk.greedy &&
blk.exitLookaheadDepth==LLkGrammarAnalyzer.NONDETERMINISTIC )
{
generateNonGreedyExitPath = true;
}
// generate exit test if greedy set to false
// and an alt is ambiguous with exit branch
if ( generateNonGreedyExitPath ) {
if ( DEBUG_CODE_GENERATOR || DEBUG_CPP_CODE_GENERATOR ) {
System.out.println("nongreedy (...)+ loop; exit depth is "+
blk.exitLookaheadDepth);
}
String predictExit =
getLookaheadTestExpression(blk.exitCache,
nonGreedyExitDepth);
println("// nongreedy exit test");
println("if ( "+cnt+">=1 && "+predictExit+") goto "+label+";");
}
CppBlockFinishingInfo howToFinish = genCommonBlock(blk, false);
genBlockFinish(
howToFinish,
"if ( "+cnt+">=1 ) { goto "+label+"; } else {" + throwNoViable + "}"
);
println(cnt+"++;");
tabs--;
println("}");
println(label+":;");
println("} // ( ... )+");
// Restore previous AST generation
currentASTResult = saveCurrentASTResult;
| public void | gen(persistence.antlr.ParserGrammar g)Generate the parser C++ file
// if debugging, set up a new vector to keep track of sempred
// strings for this grammar
if (g.debuggingOutput)
semPreds = new Vector();
setGrammar(g);
if (!(grammar instanceof ParserGrammar)) {
antlrTool.panic("Internal error generating parser");
}
genBody(g);
genInclude(g);
| public void | gen(persistence.antlr.RuleRefElement rr)Generate code for the given grammar element.
if ( DEBUG_CODE_GENERATOR || DEBUG_CPP_CODE_GENERATOR ) System.out.println("genRR("+rr+")");
RuleSymbol rs = (RuleSymbol)grammar.getSymbol(rr.targetRule);
if (rs == null || !rs.isDefined())
{
// Is this redundant???
antlrTool.error("Rule '" + rr.targetRule + "' is not defined", grammar.getFilename(), rr.getLine(), rr.getColumn());
return;
}
if (!(rs instanceof RuleSymbol))
{
// Is this redundant???
antlrTool.error("'" + rr.targetRule + "' does not name a grammar rule", grammar.getFilename(), rr.getLine(), rr.getColumn());
return;
}
genErrorTryForElement(rr);
// AST value for labeled rule refs in tree walker.
// This is not AST construction; it is just the input tree node value.
if ( grammar instanceof TreeWalkerGrammar &&
rr.getLabel() != null &&
syntacticPredLevel == 0 )
{
println(rr.getLabel() + " = (_t == ASTNULL) ? "+labeledElementASTInit+" : "+lt1Value+";");
}
// if in lexer and ! on rule ref or alt or rule, save buffer index to
// kill later
if ( grammar instanceof LexerGrammar && (!saveText||rr.getAutoGenType()==GrammarElement.AUTO_GEN_BANG) )
{
println("_saveIndex = text.length();");
}
// Process return value assignment if any
printTabs();
if (rr.idAssign != null)
{
// Warn if the rule has no return type
if (rs.block.returnAction == null)
{
antlrTool.warning("Rule '" + rr.targetRule + "' has no return type", grammar.getFilename(), rr.getLine(), rr.getColumn());
}
_print(rr.idAssign + "=");
} else {
// Warn about return value if any, but not inside syntactic predicate
if ( !(grammar instanceof LexerGrammar) && syntacticPredLevel == 0 && rs.block.returnAction != null)
{
antlrTool.warning("Rule '" + rr.targetRule + "' returns a value", grammar.getFilename(), rr.getLine(), rr.getColumn());
}
}
// Call the rule
GenRuleInvocation(rr);
// if in lexer and ! on element or alt or rule, save buffer index to kill later
if ( grammar instanceof LexerGrammar && (!saveText||rr.getAutoGenType()==GrammarElement.AUTO_GEN_BANG) ) {
println("text.erase(_saveIndex);");
}
// if not in a syntactic predicate
if (syntacticPredLevel == 0)
{
boolean doNoGuessTest = (
grammar.hasSyntacticPredicate &&
(
grammar.buildAST && rr.getLabel() != null ||
(genAST && rr.getAutoGenType() == GrammarElement.AUTO_GEN_NONE)
)
);
if (doNoGuessTest) {
println("if (inputState->guessing==0) {");
tabs++;
}
if (grammar.buildAST && rr.getLabel() != null)
{
// always gen variable for rule return on labeled rules
// RK: hmm do I know here if the returnAST needs a cast ?
println(rr.getLabel() + "_AST = returnAST;");
}
if (genAST)
{
switch (rr.getAutoGenType())
{
case GrammarElement.AUTO_GEN_NONE:
if( usingCustomAST )
println("astFactory->addASTChild(currentAST, "+namespaceAntlr+"RefAST(returnAST));");
else
println("astFactory->addASTChild( currentAST, returnAST );");
break;
case GrammarElement.AUTO_GEN_CARET:
// FIXME: RK: I'm not so sure this should be an error..
// I think it might actually work and be usefull at times.
antlrTool.error("Internal: encountered ^ after rule reference");
break;
default:
break;
}
}
// if a lexer and labeled, Token label defined at rule level, just set it here
if ( grammar instanceof LexerGrammar && rr.getLabel() != null )
{
println(rr.getLabel()+"=_returnToken;");
}
if (doNoGuessTest)
{
tabs--;
println("}");
}
}
genErrorCatchForElement(rr);
| public void | gen(persistence.antlr.StringLiteralElement atom)Generate code for the given grammar element.
if ( DEBUG_CODE_GENERATOR || DEBUG_CPP_CODE_GENERATOR ) System.out.println("genString("+atom+")");
// Variable declarations for labeled elements
if (atom.getLabel()!=null && syntacticPredLevel == 0) {
println(atom.getLabel() + " = " + lt1Value + ";");
}
// AST
genElementAST(atom);
// is there a bang on the literal?
boolean oldsaveText = saveText;
saveText = saveText && atom.getAutoGenType()==GrammarElement.AUTO_GEN_NONE;
// matching
genMatch(atom);
saveText = oldsaveText;
// tack on tree cursor motion if doing a tree walker
if (grammar instanceof TreeWalkerGrammar) {
println("_t = _t->getNextSibling();");
}
| public void | gen(persistence.antlr.TokenRangeElement r)Generate code for the given grammar element.
genErrorTryForElement(r);
if ( r.getLabel()!=null && syntacticPredLevel == 0) {
println(r.getLabel() + " = " + lt1Value + ";");
}
// AST
genElementAST(r);
// match
println("matchRange("+r.beginText+","+r.endText+");");
genErrorCatchForElement(r);
| public void | gen(persistence.antlr.TokenRefElement atom)Generate code for the given grammar element.
if ( DEBUG_CODE_GENERATOR || DEBUG_CPP_CODE_GENERATOR ) System.out.println("genTokenRef("+atom+")");
if ( grammar instanceof LexerGrammar ) {
antlrTool.panic("Token reference found in lexer");
}
genErrorTryForElement(atom);
// Assign Token value to token label variable
if ( atom.getLabel()!=null && syntacticPredLevel == 0) {
println(atom.getLabel() + " = " + lt1Value + ";");
}
// AST
genElementAST(atom);
// matching
genMatch(atom);
genErrorCatchForElement(atom);
// tack on tree cursor motion if doing a tree walker
if (grammar instanceof TreeWalkerGrammar) {
println("_t = _t->getNextSibling();");
}
| public void | gen(persistence.antlr.TreeElement t)
// save AST cursor
println(labeledElementType+" __t" + t.ID + " = _t;");
// If there is a label on the root, then assign that to the variable
if (t.root.getLabel() != null) {
println(t.root.getLabel() + " = (_t == ASTNULL) ? "+labeledElementASTInit+" : _t;");
}
// check for invalid modifiers ! and ^ on tree element roots
if ( t.root.getAutoGenType() == GrammarElement.AUTO_GEN_BANG ) {
antlrTool.error("Suffixing a root node with '!' is not implemented",
grammar.getFilename(), t.getLine(), t.getColumn());
t.root.setAutoGenType(GrammarElement.AUTO_GEN_NONE);
}
if ( t.root.getAutoGenType() == GrammarElement.AUTO_GEN_CARET ) {
antlrTool.warning("Suffixing a root node with '^' is redundant; already a root",
grammar.getFilename(), t.getLine(), t.getColumn());
t.root.setAutoGenType(GrammarElement.AUTO_GEN_NONE);
}
// Generate AST variables
genElementAST(t.root);
if (grammar.buildAST) {
// Save the AST construction state
println(namespaceAntlr+"ASTPair __currentAST" + t.ID + " = currentAST;");
// Make the next item added a child of the TreeElement root
println("currentAST.root = currentAST.child;");
println("currentAST.child = "+labeledElementASTInit+";");
}
// match root
if ( t.root instanceof WildcardElement ) {
println("if ( _t == ASTNULL ) throw "+namespaceAntlr+"MismatchedTokenException();");
}
else {
genMatch(t.root);
}
// move to list of children
println("_t = _t->getFirstChild();");
// walk list of children, generating code for each
for (int i=0; i<t.getAlternatives().size(); i++) {
Alternative a = t.getAlternativeAt(i);
AlternativeElement e = a.head;
while ( e != null ) {
e.generate();
e = e.next;
}
}
if (grammar.buildAST) {
// restore the AST construction state to that just after the
// tree root was added
println("currentAST = __currentAST" + t.ID + ";");
}
// restore AST cursor
println("_t = __t" + t.ID + ";");
// move cursor to sibling of tree just parsed
println("_t = _t->getNextSibling();");
| public void | gen(persistence.antlr.TreeWalkerGrammar g)Generate the tree-parser C++ files
setGrammar(g);
if (!(grammar instanceof TreeWalkerGrammar)) {
antlrTool.panic("Internal error generating tree-walker");
}
genBody(g);
genInclude(g);
| public void | gen(persistence.antlr.WildcardElement wc)Generate code for the given grammar element.
// Variable assignment for labeled elements
if (wc.getLabel()!=null && syntacticPredLevel == 0) {
println(wc.getLabel() + " = " + lt1Value + ";");
}
// AST
genElementAST(wc);
// Match anything but EOF
if (grammar instanceof TreeWalkerGrammar) {
println("if ( _t == "+labeledElementASTInit+" ) throw "+namespaceAntlr+"MismatchedTokenException();");
}
else if (grammar instanceof LexerGrammar) {
if ( grammar instanceof LexerGrammar &&
(!saveText||wc.getAutoGenType()==GrammarElement.AUTO_GEN_BANG) ) {
println("_saveIndex = text.length();");
}
println("matchNot(EOF/*_CHAR*/);");
if ( grammar instanceof LexerGrammar &&
(!saveText||wc.getAutoGenType()==GrammarElement.AUTO_GEN_BANG) ) {
println("text.erase(_saveIndex);"); // kill text atom put in buffer
}
}
else {
println("matchNot(" + getValueString(Token.EOF_TYPE) + ");");
}
// tack on tree cursor motion if doing a tree walker
if (grammar instanceof TreeWalkerGrammar) {
println("_t = _t->getNextSibling();");
}
| public void | gen(persistence.antlr.ZeroOrMoreBlock blk)Generate code for the given grammar element.
if ( DEBUG_CODE_GENERATOR || DEBUG_CPP_CODE_GENERATOR ) System.out.println("gen*("+blk+")");
println("{ // ( ... )*");
genBlockPreamble(blk);
String label;
if ( blk.getLabel() != null ) {
label = blk.getLabel();
}
else {
label = "_loop" + blk.ID;
}
println("for (;;) {");
tabs++;
// generate the init action for ()+ ()* inside the loop
// this allows us to do usefull EOF checking...
genBlockInitAction(blk);
// Tell AST generation to build subrule result
String saveCurrentASTResult = currentASTResult;
if (blk.getLabel() != null) {
currentASTResult = blk.getLabel();
}
boolean ok = grammar.theLLkAnalyzer.deterministic(blk);
// generate exit test if greedy set to false
// and an alt is ambiguous with exit branch
// or when lookahead derived purely from end-of-file
// Lookahead analysis stops when end-of-file is hit,
// returning set {epsilon}. Since {epsilon} is not
// ambig with any real tokens, no error is reported
// by deterministic() routines and we have to check
// for the case where the lookahead depth didn't get
// set to NONDETERMINISTIC (this only happens when the
// FOLLOW contains real atoms + epsilon).
boolean generateNonGreedyExitPath = false;
int nonGreedyExitDepth = grammar.maxk;
if ( !blk.greedy &&
blk.exitLookaheadDepth<=grammar.maxk &&
blk.exitCache[blk.exitLookaheadDepth].containsEpsilon() )
{
generateNonGreedyExitPath = true;
nonGreedyExitDepth = blk.exitLookaheadDepth;
}
else if ( !blk.greedy &&
blk.exitLookaheadDepth==LLkGrammarAnalyzer.NONDETERMINISTIC )
{
generateNonGreedyExitPath = true;
}
if ( generateNonGreedyExitPath ) {
if ( DEBUG_CODE_GENERATOR || DEBUG_CPP_CODE_GENERATOR ) {
System.out.println("nongreedy (...)* loop; exit depth is "+
blk.exitLookaheadDepth);
}
String predictExit =
getLookaheadTestExpression(blk.exitCache,
nonGreedyExitDepth);
println("// nongreedy exit test");
println("if ("+predictExit+") goto "+label+";");
}
CppBlockFinishingInfo howToFinish = genCommonBlock(blk, false);
genBlockFinish(howToFinish, "goto " + label + ";");
tabs--;
println("}");
println(label+":;");
println("} // ( ... )*");
// Restore previous AST generation
currentASTResult = saveCurrentASTResult;
| protected void | genASTDeclaration(persistence.antlr.AlternativeElement el)
genASTDeclaration( el, labeledElementASTType );
| protected void | genASTDeclaration(persistence.antlr.AlternativeElement el, java.lang.String node_type)
genASTDeclaration( el, el.getLabel(), node_type );
| protected void | genASTDeclaration(persistence.antlr.AlternativeElement el, java.lang.String var_name, java.lang.String node_type)
// already declared?
if( declaredASTVariables.contains(el) )
return;
String init = labeledElementASTInit;
if (el instanceof GrammarAtom &&
((GrammarAtom)el).getASTNodeType() != null )
init = "Ref"+((GrammarAtom)el).getASTNodeType()+"("+labeledElementASTInit+")";
// emit code
println(node_type+" " + var_name + "_AST = "+init+";");
// mark as declared
declaredASTVariables.put(el, el);
| protected void | genAlt(persistence.antlr.Alternative alt, persistence.antlr.AlternativeBlock blk)Generate an alternative.
// Save the AST generation state, and set it to that of the alt
boolean savegenAST = genAST;
genAST = genAST && alt.getAutoGen();
boolean oldsaveTest = saveText;
saveText = saveText && alt.getAutoGen();
// Reset the variable name map for the alternative
Hashtable saveMap = treeVariableMap;
treeVariableMap = new Hashtable();
// Generate try block around the alt for error handling
if (alt.exceptionSpec != null) {
println("try { // for error handling");
tabs++;
}
AlternativeElement elem = alt.head;
while ( !(elem instanceof BlockEndElement) ) {
elem.generate(); // alt can begin with anything. Ask target to gen.
elem = elem.next;
}
if ( genAST)
{
if (blk instanceof RuleBlock)
{
// Set the AST return value for the rule
RuleBlock rblk = (RuleBlock)blk;
if( usingCustomAST )
println(rblk.getRuleName() + "_AST = "+labeledElementASTType+"(currentAST.root);");
else
println(rblk.getRuleName() + "_AST = currentAST.root;");
}
else if (blk.getLabel() != null) {
// ### future: also set AST value for labeled subrules.
// println(blk.getLabel() + "_AST = "+labeledElementASTType+"(currentAST.root);");
antlrTool.warning("Labeled subrules are not implemented", grammar.getFilename(), blk.getLine(), blk.getColumn());
}
}
if (alt.exceptionSpec != null)
{
// close try block
tabs--;
println("}");
genErrorHandler(alt.exceptionSpec);
}
genAST = savegenAST;
saveText = oldsaveTest;
treeVariableMap = saveMap;
| protected void | genBitsets(persistence.antlr.collections.impl.Vector bitsetList, int maxVocabulary, java.lang.String prefix)Generate all the bitsets to be used in the parser or lexer
Generate the raw bitset data like "long _tokenSet1_data[] = {...};"
and the BitSet object declarations like
"BitSet _tokenSet1 = new BitSet(_tokenSet1_data);"
Note that most languages do not support object initialization inside a
class definition, so other code-generators may have to separate the
bitset declarations from the initializations (e.g., put the
initializations in the generated constructor instead).
TokenManager tm = grammar.tokenManager;
println("");
for (int i = 0; i < bitsetList.size(); i++)
{
BitSet p = (BitSet)bitsetList.elementAt(i);
// Ensure that generated BitSet is large enough for vocabulary
p.growToInclude(maxVocabulary);
// initialization data
println(
"const unsigned long " + prefix + getBitsetName(i) + "_data_" + "[] = { " +
p.toStringOfHalfWords() +
" };"
);
// Dump the contents of the bitset in readable format...
String t = "// ";
for( int j = 0; j < tm.getVocabulary().size(); j++ )
{
if ( p.member( j ) )
{
if ( (grammar instanceof LexerGrammar) )
t += tm.getVocabulary().elementAt(j)+" ";
else
t += tm.getTokenStringAt(j)+" ";
if( t.length() > 70 )
{
println(t);
t = "// ";
}
}
}
if ( t != "// " )
println(t);
// BitSet object
println(
"const "+namespaceAntlr+"BitSet " + prefix + getBitsetName(i) + "(" +
getBitsetName(i) + "_data_," + p.size()/32 +
");"
);
}
| protected void | genBitsetsHeader(persistence.antlr.collections.impl.Vector bitsetList, int maxVocabulary)
println("");
for (int i = 0; i < bitsetList.size(); i++)
{
BitSet p = (BitSet)bitsetList.elementAt(i);
// Ensure that generated BitSet is large enough for vocabulary
p.growToInclude(maxVocabulary);
// initialization data
println("static const unsigned long " + getBitsetName(i) + "_data_" + "[];");
// BitSet object
println("static const "+namespaceAntlr+"BitSet " + getBitsetName(i) + ";");
}
| private void | genBlockFinish(persistence.antlr.CppBlockFinishingInfo howToFinish, java.lang.String noViableAction)Generate the finish of a block, using a combination of the info
returned from genCommonBlock() and the action to perform when
no alts were taken
if (howToFinish.needAnErrorClause &&
(howToFinish.generatedAnIf || howToFinish.generatedSwitch)) {
if ( howToFinish.generatedAnIf ) {
println("else {");
}
else {
println("{");
}
tabs++;
println(noViableAction);
tabs--;
println("}");
}
if ( howToFinish.postscript!=null ) {
println(howToFinish.postscript);
}
| protected void | genBlockInitAction(persistence.antlr.AlternativeBlock blk)Generate the initaction for a block, which may be a RuleBlock or a
plain AlternativeBLock.
// dump out init action
if ( blk.initAction!=null ) {
genLineNo(blk);
printAction(processActionForSpecialSymbols(blk.initAction, blk.line,
currentRule, null) );
genLineNo2();
}
| protected void | genBlockPreamble(persistence.antlr.AlternativeBlock blk)Generate the header for a block, which may be a RuleBlock or a
plain AlternativeBlock. This generates any variable declarations
and syntactic-predicate-testing variables.
// define labels for rule blocks.
if ( blk instanceof RuleBlock ) {
RuleBlock rblk = (RuleBlock)blk;
if ( rblk.labeledElements!=null ) {
for (int i=0; i<rblk.labeledElements.size(); i++) {
AlternativeElement a = (AlternativeElement)rblk.labeledElements.elementAt(i);
//System.out.println("looking at labeled element: "+a);
// Variables for labeled rule refs and subrules are different than
// variables for grammar atoms. This test is a little tricky because
// we want to get all rule refs and ebnf, but not rule blocks or
// syntactic predicates
if (
a instanceof RuleRefElement ||
a instanceof AlternativeBlock &&
!(a instanceof RuleBlock) &&
!(a instanceof SynPredBlock) )
{
if ( !(a instanceof RuleRefElement) &&
((AlternativeBlock)a).not &&
analyzer.subruleCanBeInverted(((AlternativeBlock)a), grammar instanceof LexerGrammar)
) {
// Special case for inverted subrules that will be
// inlined. Treat these like token or char literal
// references
println(labeledElementType + " " + a.getLabel() + " = " + labeledElementInit + ";");
if (grammar.buildAST) {
genASTDeclaration( a );
}
}
else
{
if (grammar.buildAST)
{
// Always gen AST variables for labeled elements,
// even if the element itself is marked with !
genASTDeclaration( a );
}
if ( grammar instanceof LexerGrammar )
println(namespaceAntlr+"RefToken "+a.getLabel()+";");
if (grammar instanceof TreeWalkerGrammar) {
// always generate rule-ref variables for tree walker
println(labeledElementType + " " + a.getLabel() + " = " + labeledElementInit + ";");
}
}
}
else
{
// It is a token or literal reference. Generate the
// correct variable type for this grammar
println(labeledElementType + " " + a.getLabel() + " = " + labeledElementInit + ";");
// In addition, generate *_AST variables if building ASTs
if (grammar.buildAST)
{
if (a instanceof GrammarAtom &&
((GrammarAtom)a).getASTNodeType() != null )
{
GrammarAtom ga = (GrammarAtom)a;
genASTDeclaration( a, "Ref"+ga.getASTNodeType() );
}
else
{
genASTDeclaration( a );
}
}
}
}
}
}
| public void | genBody(persistence.antlr.LexerGrammar g)
outputFile = grammar.getClassName() + ".cpp";
outputLine = 1;
currentOutput = antlrTool.openOutputFile(outputFile);
//SAS: changed for proper text file io
genAST = false; // no way to gen trees.
saveText = true; // save consumed characters.
tabs=0;
// Generate header common to all C++ output files
genHeader(outputFile);
printHeaderAction(preIncludeCpp);
// Generate header specific to lexer C++ file
println("#include \"" + grammar.getClassName() + ".hpp\"");
println("#include <antlr/CharBuffer.hpp>");
println("#include <antlr/TokenStreamException.hpp>");
println("#include <antlr/TokenStreamIOException.hpp>");
println("#include <antlr/TokenStreamRecognitionException.hpp>");
println("#include <antlr/CharStreamException.hpp>");
println("#include <antlr/CharStreamIOException.hpp>");
println("#include <antlr/NoViableAltForCharException.hpp>");
if (grammar.debuggingOutput)
println("#include <antlr/DebuggingInputBuffer.hpp>");
println("");
printHeaderAction(postIncludeCpp);
if (nameSpace != null)
nameSpace.emitDeclarations(currentOutput);
// Generate user-defined lexer file preamble
printAction(grammar.preambleAction);
// Generate lexer class definition
String sup=null;
if ( grammar.superClass!=null ) {
sup = grammar.superClass;
}
else {
sup = grammar.getSuperClass();
if (sup.lastIndexOf('.") != -1)
sup = sup.substring(sup.lastIndexOf('.")+1);
sup = namespaceAntlr + sup;
}
if( noConstructors )
{
println("#if 0");
println("// constructor creation turned of with 'noConstructor' option");
}
//
// Generate the constructor from InputStream
//
println(grammar.getClassName() + "::" + grammar.getClassName() + "(" + namespaceStd + "istream& in)");
tabs++;
// if debugging, wrap the input buffer in a debugger
if (grammar.debuggingOutput)
println(": " + sup + "(new "+namespaceAntlr+"DebuggingInputBuffer(new "+namespaceAntlr+"CharBuffer(in)),"+g.caseSensitive+")");
else
println(": " + sup + "(new "+namespaceAntlr+"CharBuffer(in),"+g.caseSensitive+")");
tabs--;
println("{");
tabs++;
// if debugging, set up array variables and call user-overridable
// debugging setup method
if ( grammar.debuggingOutput ) {
println("setRuleNames(_ruleNames);");
println("setSemPredNames(_semPredNames);");
println("setupDebugging();");
}
// println("setCaseSensitive("+g.caseSensitive+");");
println("initLiterals();");
tabs--;
println("}");
println("");
// Generate the constructor from InputBuffer
println(grammar.getClassName() + "::" + grammar.getClassName() + "("+namespaceAntlr+"InputBuffer& ib)");
tabs++;
// if debugging, wrap the input buffer in a debugger
if (grammar.debuggingOutput)
println(": " + sup + "(new "+namespaceAntlr+"DebuggingInputBuffer(ib),"+g.caseSensitive+")");
else
println(": " + sup + "(ib,"+g.caseSensitive+")");
tabs--;
println("{");
tabs++;
// if debugging, set up array variables and call user-overridable
// debugging setup method
if ( grammar.debuggingOutput ) {
println("setRuleNames(_ruleNames);");
println("setSemPredNames(_semPredNames);");
println("setupDebugging();");
}
// println("setCaseSensitive("+g.caseSensitive+");");
println("initLiterals();");
tabs--;
println("}");
println("");
// Generate the constructor from LexerSharedInputState
println(grammar.getClassName() + "::" + grammar.getClassName() + "(const "+namespaceAntlr+"LexerSharedInputState& state)");
tabs++;
println(": " + sup + "(state,"+g.caseSensitive+")");
tabs--;
println("{");
tabs++;
// if debugging, set up array variables and call user-overridable
// debugging setup method
if ( grammar.debuggingOutput ) {
println("setRuleNames(_ruleNames);");
println("setSemPredNames(_semPredNames);");
println("setupDebugging();");
}
// println("setCaseSensitive("+g.caseSensitive+");");
println("initLiterals();");
tabs--;
println("}");
println("");
if( noConstructors )
{
println("// constructor creation turned of with 'noConstructor' option");
println("#endif");
}
println("void " + grammar.getClassName() + "::initLiterals()");
println("{");
tabs++;
// Generate the initialization of the map
// containing the string literals used in the lexer
// The literals variable itself is in CharScanner
Enumeration keys = grammar.tokenManager.getTokenSymbolKeys();
while ( keys.hasMoreElements() ) {
String key = (String)keys.nextElement();
if ( key.charAt(0) != '"" ) {
continue;
}
TokenSymbol sym = grammar.tokenManager.getTokenSymbol(key);
if ( sym instanceof StringLiteralSymbol ) {
StringLiteralSymbol s = (StringLiteralSymbol)sym;
println("literals["+s.getId()+"] = "+s.getTokenType()+";");
}
}
// Generate the setting of various generated options.
tabs--;
println("}");
Enumeration ids;
// generate the rule name array for debugging
if (grammar.debuggingOutput) {
println("const char* "+grammar.getClassName()+"::_ruleNames[] = {");
tabs++;
ids = grammar.rules.elements();
int ruleNum=0;
while ( ids.hasMoreElements() ) {
GrammarSymbol sym = (GrammarSymbol) ids.nextElement();
if ( sym instanceof RuleSymbol)
println("\""+((RuleSymbol)sym).getId()+"\",");
}
println("0");
tabs--;
println("};");
}
// Generate nextToken() rule.
// nextToken() is a synthetic lexer rule that is the implicit OR of all
// user-defined lexer rules.
genNextToken();
// Generate code for each rule in the lexer
ids = grammar.rules.elements();
int ruleNum=0;
while ( ids.hasMoreElements() ) {
RuleSymbol sym = (RuleSymbol) ids.nextElement();
// Don't generate the synthetic rules
if (!sym.getId().equals("mnextToken")) {
genRule(sym, false, ruleNum++, grammar.getClassName() + "::");
}
exitIfError();
}
// Generate the semantic predicate map for debugging
if (grammar.debuggingOutput)
genSemPredMap(grammar.getClassName() + "::");
// Generate the bitsets used throughout the lexer
genBitsets(bitsetsUsed, ((LexerGrammar)grammar).charVocabulary.size(), grammar.getClassName() + "::" );
println("");
if (nameSpace != null)
nameSpace.emitClosures(currentOutput);
// Close the lexer output stream
currentOutput.close();
currentOutput = null;
| public void | genBody(persistence.antlr.ParserGrammar g)
// Open the output stream for the parser and set the currentOutput
outputFile = grammar.getClassName() + ".cpp";
outputLine = 1;
currentOutput = antlrTool.openOutputFile(outputFile);
genAST = grammar.buildAST;
tabs = 0;
// Generate the header common to all output files.
genHeader(outputFile);
printHeaderAction(preIncludeCpp);
// Generate header for the parser
println("#include \"" + grammar.getClassName() + ".hpp\"");
println("#include <antlr/NoViableAltException.hpp>");
println("#include <antlr/SemanticException.hpp>");
println("#include <antlr/ASTFactory.hpp>");
printHeaderAction(postIncludeCpp);
if (nameSpace != null)
nameSpace.emitDeclarations(currentOutput);
// Output the user-defined parser preamble
printAction(grammar.preambleAction);
String sup=null;
if ( grammar.superClass!=null )
sup = grammar.superClass;
else {
sup = grammar.getSuperClass();
if (sup.lastIndexOf('.") != -1)
sup = sup.substring(sup.lastIndexOf('.")+1);
sup = namespaceAntlr + sup;
}
// set up an array of all the rule names so the debugger can
// keep track of them only by number -- less to store in tree...
if (grammar.debuggingOutput) {
println("const char* "+grammar.getClassName()+"::_ruleNames[] = {");
tabs++;
Enumeration ids = grammar.rules.elements();
int ruleNum=0;
while ( ids.hasMoreElements() ) {
GrammarSymbol sym = (GrammarSymbol) ids.nextElement();
if ( sym instanceof RuleSymbol)
println("\""+((RuleSymbol)sym).getId()+"\",");
}
println("0");
tabs--;
println("};");
}
// Generate _initialize function
// disabled since it isn't used anymore..
// println("void " + grammar.getClassName() + "::_initialize(void)");
// println("{");
// tabs++;
// if debugging, set up arrays and call the user-overridable
// debugging setup method
// if ( grammar.debuggingOutput ) {
// println("setRuleNames(_ruleNames);");
// println("setSemPredNames(_semPredNames);");
// println("setupDebugging();");
// }
// tabs--;
// println("}");
if( noConstructors )
{
println("#if 0");
println("// constructor creation turned of with 'noConstructor' option");
}
// Generate parser class constructor from TokenBuffer
print(grammar.getClassName() + "::" + grammar.getClassName());
println("("+namespaceAntlr+"TokenBuffer& tokenBuf, int k)");
println(": " + sup + "(tokenBuf,k)");
println("{");
// tabs++;
// println("_initialize();");
// tabs--;
println("}");
println("");
print(grammar.getClassName() + "::" + grammar.getClassName());
println("("+namespaceAntlr+"TokenBuffer& tokenBuf)");
println(": " + sup + "(tokenBuf," + grammar.maxk + ")");
println("{");
// tabs++;
// println("_initialize();");
// tabs--;
println("}");
println("");
// Generate parser class constructor from TokenStream
print(grammar.getClassName() + "::" + grammar.getClassName());
println("("+namespaceAntlr+"TokenStream& lexer, int k)");
println(": " + sup + "(lexer,k)");
println("{");
// tabs++;
// println("_initialize();");
// tabs--;
println("}");
println("");
print(grammar.getClassName() + "::" + grammar.getClassName());
println("("+namespaceAntlr+"TokenStream& lexer)");
println(": " + sup + "(lexer," + grammar.maxk + ")");
println("{");
// tabs++;
// println("_initialize();");
// tabs--;
println("}");
println("");
print(grammar.getClassName() + "::" + grammar.getClassName());
println("(const "+namespaceAntlr+"ParserSharedInputState& state)");
println(": " + sup + "(state," + grammar.maxk + ")");
println("{");
// tabs++;
// println("_initialize();");
// tabs--;
println("}");
println("");
if( noConstructors )
{
println("// constructor creation turned of with 'noConstructor' option");
println("#endif");
}
astTypes = new Vector();
// Generate code for each rule in the grammar
Enumeration ids = grammar.rules.elements();
int ruleNum=0;
while ( ids.hasMoreElements() ) {
GrammarSymbol sym = (GrammarSymbol) ids.nextElement();
if ( sym instanceof RuleSymbol) {
RuleSymbol rs = (RuleSymbol)sym;
genRule(rs, rs.references.size()==0, ruleNum++, grammar.getClassName() + "::");
}
exitIfError();
}
genInitFactory( g );
// Generate the token names
genTokenStrings(grammar.getClassName() + "::");
// Generate the bitsets used throughout the grammar
genBitsets(bitsetsUsed, grammar.tokenManager.maxTokenType(), grammar.getClassName() + "::" );
// Generate the semantic predicate map for debugging
if (grammar.debuggingOutput)
genSemPredMap(grammar.getClassName() + "::");
// Close class definition
println("");
println("");
if (nameSpace != null)
nameSpace.emitClosures(currentOutput);
// Close the parser output stream
currentOutput.close();
currentOutput = null;
| public void | genBody(persistence.antlr.TreeWalkerGrammar g)
// Open the output stream for the parser and set the currentOutput
outputFile = grammar.getClassName() + ".cpp";
outputLine = 1;
currentOutput = antlrTool.openOutputFile(outputFile);
//SAS: changed for proper text file io
genAST = grammar.buildAST;
tabs = 0;
// Generate the header common to all output files.
genHeader(outputFile);
printHeaderAction(preIncludeCpp);
// Generate header for the parser
println("#include \"" + grammar.getClassName() + ".hpp\"");
println("#include <antlr/Token.hpp>");
println("#include <antlr/AST.hpp>");
println("#include <antlr/NoViableAltException.hpp>");
println("#include <antlr/MismatchedTokenException.hpp>");
println("#include <antlr/SemanticException.hpp>");
println("#include <antlr/BitSet.hpp>");
printHeaderAction(postIncludeCpp);
if (nameSpace != null)
nameSpace.emitDeclarations(currentOutput);
// Output the user-defined parser premamble
printAction(grammar.preambleAction);
// Generate parser class definition
String sup = null;
if ( grammar.superClass!=null ) {
sup = grammar.superClass;
}
else {
sup = grammar.getSuperClass();
if (sup.lastIndexOf('.") != -1)
sup = sup.substring(sup.lastIndexOf('.")+1);
sup = namespaceAntlr + sup;
}
if( noConstructors )
{
println("#if 0");
println("// constructor creation turned of with 'noConstructor' option");
}
// Generate default parser class constructor
println(grammar.getClassName() + "::" + grammar.getClassName() + "()");
println("\t: "+namespaceAntlr+"TreeParser() {");
tabs++;
// println("setTokenNames(_tokenNames);");
tabs--;
println("}");
if( noConstructors )
{
println("// constructor creation turned of with 'noConstructor' option");
println("#endif");
}
println("");
astTypes = new Vector();
// Generate code for each rule in the grammar
Enumeration ids = grammar.rules.elements();
int ruleNum=0;
String ruleNameInits = "";
while ( ids.hasMoreElements() ) {
GrammarSymbol sym = (GrammarSymbol) ids.nextElement();
if ( sym instanceof RuleSymbol) {
RuleSymbol rs = (RuleSymbol)sym;
genRule(rs, rs.references.size()==0, ruleNum++, grammar.getClassName() + "::");
}
exitIfError();
}
// Generate the ASTFactory initialization function
genInitFactory( grammar );
// Generate the token names
genTokenStrings(grammar.getClassName() + "::");
// Generate the bitsets used throughout the grammar
genBitsets(bitsetsUsed, grammar.tokenManager.maxTokenType(), grammar.getClassName() + "::" );
// Close class definition
println("");
println("");
if (nameSpace != null)
nameSpace.emitClosures(currentOutput);
// Close the parser output stream
currentOutput.close();
currentOutput = null;
| protected void | genCases(persistence.antlr.collections.impl.BitSet p)Generate a series of case statements that implement a BitSet test.
if ( DEBUG_CODE_GENERATOR || DEBUG_CPP_CODE_GENERATOR ) System.out.println("genCases("+p+")");
int[] elems;
elems = p.toArray();
// Wrap cases four-per-line for lexer, one-per-line for parser
int wrap = 1; //(grammar instanceof LexerGrammar) ? 4 : 1;
int j=1;
boolean startOfLine = true;
for (int i = 0; i < elems.length; i++) {
if (j==1) {
print("");
} else {
_print(" ");
}
_print("case " + getValueString(elems[i]) + ":");
if (j==wrap) {
_println("");
startOfLine = true;
j=1;
}
else {
j++;
startOfLine = false;
}
}
if (!startOfLine) {
_println("");
}
| public persistence.antlr.CppBlockFinishingInfo | genCommonBlock(persistence.antlr.AlternativeBlock blk, boolean noTestForSingle)Generate common code for a block of alternatives; return a postscript
that needs to be generated at the end of the block. Other routines
may append else-clauses and such for error checking before the postfix
is generated.
If the grammar is a lexer, then generate alternatives in an order where
alternatives requiring deeper lookahead are generated first, and
EOF in the lookahead set reduces the depth of the lookahead.
int nIF=0;
boolean createdLL1Switch = false;
int closingBracesOfIFSequence = 0;
CppBlockFinishingInfo finishingInfo = new CppBlockFinishingInfo();
if ( DEBUG_CODE_GENERATOR || DEBUG_CPP_CODE_GENERATOR ) System.out.println("genCommonBlk("+blk+")");
// Save the AST generation state, and set it to that of the block
boolean savegenAST = genAST;
genAST = genAST && blk.getAutoGen();
boolean oldsaveTest = saveText;
saveText = saveText && blk.getAutoGen();
// Is this block inverted? If so, generate special-case code
if ( blk.not &&
analyzer.subruleCanBeInverted(blk, grammar instanceof LexerGrammar) )
{
Lookahead p = analyzer.look(1, blk);
// Variable assignment for labeled elements
if (blk.getLabel() != null && syntacticPredLevel == 0) {
println(blk.getLabel() + " = " + lt1Value + ";");
}
// AST
genElementAST(blk);
String astArgs="";
if (grammar instanceof TreeWalkerGrammar) {
if( usingCustomAST )
astArgs=namespaceAntlr+"RefAST"+"(_t),";
else
astArgs="_t,";
}
// match the bitset for the alternative
println("match(" + astArgs + getBitsetName(markBitsetForGen(p.fset)) + ");");
// tack on tree cursor motion if doing a tree walker
if (grammar instanceof TreeWalkerGrammar)
{
println("_t = _t->getNextSibling();");
}
return finishingInfo;
}
// Special handling for single alt
if (blk.getAlternatives().size() == 1)
{
Alternative alt = blk.getAlternativeAt(0);
// Generate a warning if there is a synPred for single alt.
if (alt.synPred != null)
{
antlrTool.warning(
"Syntactic predicate superfluous for single alternative",
grammar.getFilename(),
blk.getAlternativeAt(0).synPred.getLine(),
blk.getAlternativeAt(0).synPred.getColumn()
);
}
if (noTestForSingle)
{
if (alt.semPred != null)
{
// Generate validating predicate
genSemPred(alt.semPred, blk.line);
}
genAlt(alt, blk);
return finishingInfo;
}
}
// count number of simple LL(1) cases; only do switch for
// many LL(1) cases (no preds, no end of token refs)
// We don't care about exit paths for (...)*, (...)+
// because we don't explicitly have a test for them
// as an alt in the loop.
//
// Also, we now count how many unicode lookahead sets
// there are--they must be moved to DEFAULT or ELSE
// clause.
int nLL1 = 0;
for (int i=0; i<blk.getAlternatives().size(); i++)
{
Alternative a = blk.getAlternativeAt(i);
if ( suitableForCaseExpression(a) )
nLL1++;
}
// do LL(1) cases
if ( nLL1 >= makeSwitchThreshold )
{
// Determine the name of the item to be compared
String testExpr = lookaheadString(1);
createdLL1Switch = true;
// when parsing trees, convert null to valid tree node with NULL lookahead
if ( grammar instanceof TreeWalkerGrammar )
{
println("if (_t == "+labeledElementASTInit+" )");
tabs++;
println("_t = ASTNULL;");
tabs--;
}
println("switch ( "+testExpr+") {");
for (int i=0; i<blk.alternatives.size(); i++)
{
Alternative alt = blk.getAlternativeAt(i);
// ignore any non-LL(1) alts, predicated alts or end-of-token alts
// or end-of-token alts for case expressions
if ( !suitableForCaseExpression(alt) )
{
continue;
}
Lookahead p = alt.cache[1];
if (p.fset.degree() == 0 && !p.containsEpsilon())
{
antlrTool.warning("Alternate omitted due to empty prediction set",
grammar.getFilename(),
alt.head.getLine(), alt.head.getColumn());
}
else
{
genCases(p.fset);
println("{");
tabs++;
genAlt(alt, blk);
println("break;");
tabs--;
println("}");
}
}
println("default:");
tabs++;
}
// do non-LL(1) and nondeterministic cases
// This is tricky in the lexer, because of cases like:
// STAR : '*' ;
// ASSIGN_STAR : "*=";
// Since nextToken is generated without a loop, then the STAR will
// have end-of-token as it's lookahead set for LA(2). So, we must generate the
// alternatives containing trailing end-of-token in their lookahead sets *after*
// the alternatives without end-of-token. This implements the usual
// lexer convention that longer matches come before shorter ones, e.g.
// "*=" matches ASSIGN_STAR not STAR
//
// For non-lexer grammars, this does not sort the alternates by depth
// Note that alts whose lookahead is purely end-of-token at k=1 end up
// as default or else clauses.
int startDepth = (grammar instanceof LexerGrammar) ? grammar.maxk : 0;
for (int altDepth = startDepth; altDepth >= 0; altDepth--) {
if ( DEBUG_CODE_GENERATOR || DEBUG_CPP_CODE_GENERATOR ) System.out.println("checking depth "+altDepth);
for (int i=0; i<blk.alternatives.size(); i++) {
Alternative alt = blk.getAlternativeAt(i);
if ( DEBUG_CODE_GENERATOR || DEBUG_CPP_CODE_GENERATOR ) System.out.println("genAlt: "+i);
// if we made a switch above, ignore what we already took care
// of. Specifically, LL(1) alts with no preds
// that do not have end-of-token in their prediction set
if ( createdLL1Switch &&
suitableForCaseExpression(alt) )
{
if ( DEBUG_CODE_GENERATOR || DEBUG_CPP_CODE_GENERATOR )
System.out.println("ignoring alt because it was in the switch");
continue;
}
String e;
boolean unpredicted = false;
if (grammar instanceof LexerGrammar) {
// Calculate the "effective depth" of the alt, which is the max
// depth at which cache[depth]!=end-of-token
int effectiveDepth = alt.lookaheadDepth;
if (effectiveDepth == GrammarAnalyzer.NONDETERMINISTIC)
{
// use maximum lookahead
effectiveDepth = grammar.maxk;
}
while ( effectiveDepth >= 1 &&
alt.cache[effectiveDepth].containsEpsilon() )
{
effectiveDepth--;
}
// Ignore alts whose effective depth is other than the ones we
// are generating for this iteration.
if (effectiveDepth != altDepth)
{
if ( DEBUG_CODE_GENERATOR || DEBUG_CPP_CODE_GENERATOR )
System.out.println("ignoring alt because effectiveDepth!=altDepth;"+effectiveDepth+"!="+altDepth);
continue;
}
unpredicted = lookaheadIsEmpty(alt, effectiveDepth);
e = getLookaheadTestExpression(alt, effectiveDepth);
}
else
{
unpredicted = lookaheadIsEmpty(alt, grammar.maxk);
e = getLookaheadTestExpression(alt, grammar.maxk);
}
// Was it a big unicode range that forced unsuitability
// for a case expression?
if ( alt.cache[1].fset.degree() > caseSizeThreshold &&
suitableForCaseExpression(alt))
{
if ( nIF==0 )
{
// generate this only for the first if the elseif's
// are covered by this one
if ( grammar instanceof TreeWalkerGrammar ) {
println("if (_t == "+labeledElementASTInit+" )");
tabs++;
println("_t = ASTNULL;");
tabs--;
}
println("if " + e + " {");
}
else
println("else if " + e + " {");
}
else if (unpredicted &&
alt.semPred==null &&
alt.synPred==null)
{
// The alt has empty prediction set and no
// predicate to help out. if we have not
// generated a previous if, just put {...} around
// the end-of-token clause
if ( nIF==0 ) {
println("{");
}
else {
println("else {");
}
finishingInfo.needAnErrorClause = false;
}
else
{
// check for sem and syn preds
// Add any semantic predicate expression to the lookahead test
if ( alt.semPred != null ) {
// if debugging, wrap the evaluation of the predicate in a method
//
// translate $ and # references
ActionTransInfo tInfo = new ActionTransInfo();
String actionStr = processActionForSpecialSymbols(alt.semPred,
blk.line,
currentRule,
tInfo);
// ignore translation info...we don't need to do anything with it.
// call that will inform SemanticPredicateListeners of the
// result
if ( grammar.debuggingOutput &&
((grammar instanceof ParserGrammar) || (grammar instanceof LexerGrammar))
)
e = "("+e+"&& fireSemanticPredicateEvaluated(persistence.antlr.debug.SemanticPredicateEvent.PREDICTING,"+ //FIXME
addSemPred(charFormatter.escapeString(actionStr))+","+actionStr+"))";
else
e = "("+e+"&&("+actionStr +"))";
}
// Generate any syntactic predicates
if ( nIF>0 ) {
if ( alt.synPred != null ) {
println("else {");
tabs++;
genSynPred( alt.synPred, e );
closingBracesOfIFSequence++;
}
else {
println("else if " + e + " {");
}
}
else {
if ( alt.synPred != null ) {
genSynPred( alt.synPred, e );
}
else {
// when parsing trees, convert null to valid tree node
// with NULL lookahead.
if ( grammar instanceof TreeWalkerGrammar ) {
println("if (_t == "+labeledElementASTInit+" )");
tabs++;
println("_t = ASTNULL;");
tabs--;
}
println("if " + e + " {");
}
}
}
nIF++;
tabs++;
genAlt(alt, blk);
tabs--;
println("}");
}
}
String ps = "";
for (int i=1; i<=closingBracesOfIFSequence; i++) {
tabs--; // does JavaCodeGenerator need this?
ps+="}";
}
// Restore the AST generation state
genAST = savegenAST;
// restore save text state
saveText=oldsaveTest;
// Return the finishing info.
if ( createdLL1Switch ) {
tabs--;
finishingInfo.postscript = ps+"}";
finishingInfo.generatedSwitch = true;
finishingInfo.generatedAnIf = nIF>0;
//return new CppBlockFinishingInfo(ps+"}",true,nIF>0); // close up switch statement
}
else {
finishingInfo.postscript = ps;
finishingInfo.generatedSwitch = false;
finishingInfo.generatedAnIf = nIF>0;
//return new CppBlockFinishingInfo(ps, false,nIF>0);
}
return finishingInfo;
| private void | genElementAST(persistence.antlr.AlternativeElement el)Generate code to link an element reference into the AST
// handle case where you're not building trees, but are in tree walker.
// Just need to get labels set up.
if ( grammar instanceof TreeWalkerGrammar && !grammar.buildAST )
{
String elementRef;
String astName;
// Generate names and declarations of the AST variable(s)
if (el.getLabel() == null)
{
elementRef = lt1Value;
// Generate AST variables for unlabeled stuff
astName = "tmp" + astVarNumber + "_AST";
astVarNumber++;
// Map the generated AST variable in the alternate
mapTreeVariable(el, astName);
// Generate an "input" AST variable also
println(labeledElementASTType+" "+astName+"_in = "+elementRef+";");
}
return;
}
if (grammar.buildAST && syntacticPredLevel == 0)
{
boolean needASTDecl =
( genAST && (el.getLabel() != null ||
el.getAutoGenType() != GrammarElement.AUTO_GEN_BANG ));
// RK: if we have a grammar element always generate the decl
// since some guy can access it from an action and we can't
// peek ahead (well not without making a mess).
// I'd prefer taking this out.
if( el.getAutoGenType() != GrammarElement.AUTO_GEN_BANG &&
(el instanceof TokenRefElement) )
needASTDecl = true;
boolean doNoGuessTest =
( grammar.hasSyntacticPredicate && needASTDecl );
String elementRef;
String astNameBase;
// Generate names and declarations of the AST variable(s)
if (el.getLabel() != null)
{
// if the element is labeled use that name...
elementRef = el.getLabel();
astNameBase = el.getLabel();
}
else
{
// else generate a temporary name...
elementRef = lt1Value;
// Generate AST variables for unlabeled stuff
astNameBase = "tmp" + astVarNumber;
astVarNumber++;
}
// Generate the declaration if required.
if ( needASTDecl )
{
if ( el instanceof GrammarAtom )
{
GrammarAtom ga = (GrammarAtom)el;
if ( ga.getASTNodeType()!=null )
{
genASTDeclaration( el, astNameBase, "Ref"+ga.getASTNodeType() );
// println("Ref"+ga.getASTNodeType()+" " + astName + ";");
}
else
{
genASTDeclaration( el, astNameBase, labeledElementASTType );
// println(labeledElementASTType+" " + astName + " = "+labeledElementASTInit+";");
}
}
else
{
genASTDeclaration( el, astNameBase, labeledElementASTType );
// println(labeledElementASTType+" " + astName + " = "+labeledElementASTInit+";");
}
}
// for convenience..
String astName = astNameBase + "_AST";
// Map the generated AST variable in the alternate
mapTreeVariable(el, astName);
if (grammar instanceof TreeWalkerGrammar)
{
// Generate an "input" AST variable also
println(labeledElementASTType+" " + astName + "_in = "+labeledElementASTInit+";");
}
// Enclose actions with !guessing
if (doNoGuessTest) {
println("if ( inputState->guessing == 0 ) {");
tabs++;
}
// if something has a label assume it will be used
// so we must initialize the RefAST
if (el.getLabel() != null)
{
if ( el instanceof GrammarAtom )
{
println(astName + " = "+
getASTCreateString((GrammarAtom)el,elementRef) + ";");
}
else
{
println(astName + " = "+
getASTCreateString(elementRef) + ";");
}
}
// if it has no label but a declaration exists initialize it.
if( el.getLabel() == null && needASTDecl )
{
elementRef = lt1Value;
if ( el instanceof GrammarAtom )
{
println(astName + " = "+
getASTCreateString((GrammarAtom)el,elementRef) + ";");
}
else
{
println(astName + " = "+
getASTCreateString(elementRef) + ";");
}
// Map the generated AST variable in the alternate
if (grammar instanceof TreeWalkerGrammar)
{
// set "input" AST variable also
println(astName + "_in = " + elementRef + ";");
}
}
if (genAST)
{
switch (el.getAutoGenType())
{
case GrammarElement.AUTO_GEN_NONE:
if( usingCustomAST ||
(el instanceof GrammarAtom &&
((GrammarAtom)el).getASTNodeType() != null) )
println("astFactory->addASTChild(currentAST, "+namespaceAntlr+"RefAST("+ astName + "));");
else
println("astFactory->addASTChild(currentAST, "+ astName + ");");
// println("astFactory.addASTChild(currentAST, "+namespaceAntlr+"RefAST(" + astName + "));");
break;
case GrammarElement.AUTO_GEN_CARET:
if( usingCustomAST ||
(el instanceof GrammarAtom &&
((GrammarAtom)el).getASTNodeType() != null) )
println("astFactory->makeASTRoot(currentAST, "+namespaceAntlr+"RefAST(" + astName + "));");
else
println("astFactory->makeASTRoot(currentAST, " + astName + ");");
break;
default:
break;
}
}
if (doNoGuessTest)
{
tabs--;
println("}");
}
}
| private void | genErrorCatchForElement(persistence.antlr.AlternativeElement el)Close the try block and generate catch phrases
if the element has a labeled handler in the rule
if (el.getLabel() == null) return;
String r = el.enclosingRuleName;
if ( grammar instanceof LexerGrammar ) {
r = CodeGenerator.encodeLexerRuleName(el.enclosingRuleName);
}
RuleSymbol rs = (RuleSymbol)grammar.getSymbol(r);
if (rs == null) {
antlrTool.panic("Enclosing rule not found!");
}
ExceptionSpec ex = rs.block.findExceptionSpec(el.getLabel());
if (ex != null) {
tabs--;
println("}");
genErrorHandler(ex);
}
| private void | genErrorHandler(persistence.antlr.ExceptionSpec ex)Generate the catch phrases for a user-specified error handler
// Each ExceptionHandler in the ExceptionSpec is a separate catch
for (int i = 0; i < ex.handlers.size(); i++)
{
ExceptionHandler handler = (ExceptionHandler)ex.handlers.elementAt(i);
// Generate catch phrase
println("catch (" + handler.exceptionTypeAndName.getText() + ") {");
tabs++;
if (grammar.hasSyntacticPredicate) {
println("if (inputState->guessing==0) {");
tabs++;
}
// When not guessing, execute user handler action
ActionTransInfo tInfo = new ActionTransInfo();
genLineNo(handler.action);
printAction(
processActionForSpecialSymbols( handler.action.getText(),
handler.action.getLine(),
currentRule, tInfo )
);
genLineNo2();
if (grammar.hasSyntacticPredicate)
{
tabs--;
println("} else {");
tabs++;
// When guessing, rethrow exception
println("throw;");
tabs--;
println("}");
}
// Close catch phrase
tabs--;
println("}");
}
| private void | genErrorTryForElement(persistence.antlr.AlternativeElement el)Generate a try { opening if the element has a labeled handler in the rule
if (el.getLabel() == null) return;
String r = el.enclosingRuleName;
if ( grammar instanceof LexerGrammar ) {
r = CodeGenerator.encodeLexerRuleName(el.enclosingRuleName);
}
RuleSymbol rs = (RuleSymbol)grammar.getSymbol(r);
if (rs == null) {
antlrTool.panic("Enclosing rule not found!");
}
ExceptionSpec ex = rs.block.findExceptionSpec(el.getLabel());
if (ex != null) {
println("try { // for error handling");
tabs++;
}
| protected void | genHeader(java.lang.String fileName)Generate a header that is common to all C++ files
println("/* $ANTLR "+antlrTool.version+": "+
"\""+antlrTool.fileMinusPath(antlrTool.grammarFile)+"\""+
" -> "+
"\""+fileName+"\"$ */");
| public void | genInclude(persistence.antlr.LexerGrammar g)
outputFile = grammar.getClassName() + ".hpp";
outputLine = 1;
currentOutput = antlrTool.openOutputFile(outputFile);
//SAS: changed for proper text file io
genAST = false; // no way to gen trees.
saveText = true; // save consumed characters.
tabs=0;
// Generate a guard wrapper
println("#ifndef INC_"+grammar.getClassName()+"_hpp_");
println("#define INC_"+grammar.getClassName()+"_hpp_");
println("");
printHeaderAction(preIncludeHpp);
println("#include <antlr/config.hpp>");
// Generate header common to all C++ output files
genHeader(outputFile);
// Generate header specific to lexer header file
println("#include <antlr/CommonToken.hpp>");
println("#include <antlr/InputBuffer.hpp>");
println("#include <antlr/BitSet.hpp>");
println("#include \"" + grammar.tokenManager.getName() + TokenTypesFileSuffix+".hpp\"");
// Find the name of the super class
String sup=null;
if ( grammar.superClass!=null ) {
sup = grammar.superClass;
println("\n// Include correct superclass header with a header statement for example:");
println("// header \"post_include_hpp\" {");
println("// #include \""+sup+".hpp\"");
println("// }");
println("// Or....");
println("// header {");
println("// #include \""+sup+".hpp\"");
println("// }\n");
}
else {
sup = grammar.getSuperClass();
if (sup.lastIndexOf('.") != -1)
sup = sup.substring(sup.lastIndexOf('.")+1);
println("#include <antlr/"+sup+".hpp>");
sup = namespaceAntlr + sup;
}
// Do not use printAction because we assume tabs==0
printHeaderAction(postIncludeHpp);
if (nameSpace != null)
nameSpace.emitDeclarations(currentOutput);
printHeaderAction("");
// print javadoc comment if any
if ( grammar.comment!=null ) {
_println(grammar.comment);
}
// Generate lexer class definition
print("class CUSTOM_API " + grammar.getClassName() + " : public " + sup);
println(", public " + grammar.tokenManager.getName() + TokenTypesFileSuffix);
Token tsuffix = (Token)grammar.options.get("classHeaderSuffix");
if ( tsuffix != null ) {
String suffix = StringUtils.stripFrontBack(tsuffix.getText(),"\"","\"");
if ( suffix != null ) {
print(", "+suffix); // must be an interface name for Java
}
}
println("{");
// Generate user-defined lexer class members
if (grammar.classMemberAction != null) {
genLineNo(grammar.classMemberAction);
print(
processActionForSpecialSymbols(grammar.classMemberAction.getText(),
grammar.classMemberAction.getLine(),
currentRule, null)
);
genLineNo2();
}
// Generate initLiterals() method
tabs=0;
println("private:");
tabs=1;
println("void initLiterals();");
// Generate getCaseSensitiveLiterals() method
tabs=0;
println("public:");
tabs=1;
println("bool getCaseSensitiveLiterals() const");
println("{");
tabs++;
println("return "+g.caseSensitiveLiterals + ";");
tabs--;
println("}");
// Make constructors public
tabs=0;
println("public:");
tabs=1;
if( noConstructors )
{
tabs = 0;
println("#if 0");
println("// constructor creation turned of with 'noConstructor' option");
tabs = 1;
}
// Generate the constructor from std::istream
println(grammar.getClassName() + "(" + namespaceStd + "istream& in);");
// Generate the constructor from InputBuffer
println(grammar.getClassName() + "("+namespaceAntlr+"InputBuffer& ib);");
println(grammar.getClassName() + "(const "+namespaceAntlr+"LexerSharedInputState& state);");
if( noConstructors )
{
tabs = 0;
println("// constructor creation turned of with 'noConstructor' option");
println("#endif");
tabs = 1;
}
// Generate nextToken() rule.
// nextToken() is a synthetic lexer rule that is the implicit OR of all
// user-defined lexer rules.
println(namespaceAntlr+"RefToken nextToken();");
// Generate code for each rule in the lexer
Enumeration ids = grammar.rules.elements();
while ( ids.hasMoreElements() ) {
RuleSymbol sym = (RuleSymbol) ids.nextElement();
// Don't generate the synthetic rules
if (!sym.getId().equals("mnextToken")) {
genRuleHeader(sym, false);
}
exitIfError();
}
// Make the rest private
tabs=0;
println("private:");
tabs=1;
// generate the rule name array for debugging
if ( grammar.debuggingOutput ) {
println("static const char* _ruleNames[];");
}
// Generate the semantic predicate map for debugging
if (grammar.debuggingOutput)
println("static const char* _semPredNames[];");
// Generate the bitsets used throughout the lexer
genBitsetsHeader(bitsetsUsed, ((LexerGrammar)grammar).charVocabulary.size());
tabs=0;
println("};");
println("");
if (nameSpace != null)
nameSpace.emitClosures(currentOutput);
// Generate a guard wrapper
println("#endif /*INC_"+grammar.getClassName()+"_hpp_*/");
// Close the lexer output stream
currentOutput.close();
currentOutput = null;
| public void | genInclude(persistence.antlr.ParserGrammar g)
// Open the output stream for the parser and set the currentOutput
outputFile = grammar.getClassName() + ".hpp";
outputLine = 1;
currentOutput = antlrTool.openOutputFile(outputFile);
//SAS: changed for proper text file io
genAST = grammar.buildAST;
tabs = 0;
// Generate a guard wrapper
println("#ifndef INC_"+grammar.getClassName()+"_hpp_");
println("#define INC_"+grammar.getClassName()+"_hpp_");
println("");
printHeaderAction(preIncludeHpp);
println("#include <antlr/config.hpp>");
// Generate the header common to all output files.
genHeader(outputFile);
// Generate header for the parser
println("#include <antlr/TokenStream.hpp>");
println("#include <antlr/TokenBuffer.hpp>");
println("#include \"" + grammar.tokenManager.getName() + TokenTypesFileSuffix+".hpp\"");
// Generate parser class definition
String sup=null;
if ( grammar.superClass!=null ) {
sup = grammar.superClass;
println("\n// Include correct superclass header with a header statement for example:");
println("// header \"post_include_hpp\" {");
println("// #include \""+sup+".hpp\"");
println("// }");
println("// Or....");
println("// header {");
println("// #include \""+sup+".hpp\"");
println("// }\n");
}
else {
sup = grammar.getSuperClass();
if (sup.lastIndexOf('.") != -1)
sup = sup.substring(sup.lastIndexOf('.")+1);
println("#include <antlr/"+sup+".hpp>");
sup = namespaceAntlr + sup;
}
println("");
// Do not use printAction because we assume tabs==0
printHeaderAction(postIncludeHpp);
if (nameSpace != null)
nameSpace.emitDeclarations(currentOutput);
printHeaderAction("");
// print javadoc comment if any
if ( grammar.comment!=null ) {
_println(grammar.comment);
}
// generate the actual class definition
print("class CUSTOM_API " + grammar.getClassName() + " : public " + sup);
println(", public " + grammar.tokenManager.getName() + TokenTypesFileSuffix);
Token tsuffix = (Token)grammar.options.get("classHeaderSuffix");
if ( tsuffix != null ) {
String suffix = StringUtils.stripFrontBack(tsuffix.getText(),"\"","\"");
if ( suffix != null )
print(", "+suffix); // must be an interface name for Java
}
println("{");
// set up an array of all the rule names so the debugger can
// keep track of them only by number -- less to store in tree...
if (grammar.debuggingOutput) {
println("public: static const char* _ruleNames[];");
}
// Generate user-defined parser class members
if (grammar.classMemberAction != null) {
genLineNo(grammar.classMemberAction.getLine());
print(
processActionForSpecialSymbols(grammar.classMemberAction.getText(),
grammar.classMemberAction.getLine(),
currentRule, null)
);
genLineNo2();
}
println("public:");
tabs = 1;
println("void initializeASTFactory( "+namespaceAntlr+"ASTFactory& factory );");
// println("// called from constructors");
// println("void _initialize( void );");
// Generate parser class constructor from TokenBuffer
tabs=0;
if( noConstructors )
{
println("#if 0");
println("// constructor creation turned of with 'noConstructor' option");
}
println("protected:");
tabs=1;
println(grammar.getClassName() + "("+namespaceAntlr+"TokenBuffer& tokenBuf, int k);");
tabs=0;
println("public:");
tabs=1;
println(grammar.getClassName() + "("+namespaceAntlr+"TokenBuffer& tokenBuf);");
// Generate parser class constructor from TokenStream
tabs=0;
println("protected:");
tabs=1;
println(grammar.getClassName()+"("+namespaceAntlr+"TokenStream& lexer, int k);");
tabs=0;
println("public:");
tabs=1;
println(grammar.getClassName()+"("+namespaceAntlr+"TokenStream& lexer);");
println(grammar.getClassName()+"(const "+namespaceAntlr+"ParserSharedInputState& state);");
if( noConstructors )
{
tabs = 0;
println("// constructor creation turned of with 'noConstructor' option");
println("#endif");
tabs = 1;
}
println("int getNumTokens() const");
println("{"); tabs++;
println("return "+grammar.getClassName()+"::NUM_TOKENS;");
tabs--; println("}");
println("const char* getTokenName( int type ) const");
println("{"); tabs++;
println("if( type > getNumTokens() ) return 0;");
println("return "+grammar.getClassName()+"::tokenNames[type];");
tabs--; println("}");
println("const char* const* getTokenNames() const");
println("{"); tabs++;
println("return "+grammar.getClassName()+"::tokenNames;");
tabs--; println("}");
// Generate code for each rule in the grammar
Enumeration ids = grammar.rules.elements();
while ( ids.hasMoreElements() ) {
GrammarSymbol sym = (GrammarSymbol) ids.nextElement();
if ( sym instanceof RuleSymbol) {
RuleSymbol rs = (RuleSymbol)sym;
genRuleHeader(rs, rs.references.size()==0);
}
exitIfError();
}
// RK: when we are using a custom ast override Parser::getAST to return
// the custom AST type. Ok, this does not work anymore with newer
// compilers gcc 3.2.x and up. The reference counter is probably
// getting in the way.
// So now we just patch the return type back to RefAST
tabs = 0; println("public:"); tabs = 1;
println(namespaceAntlr+"RefAST getAST()");
println("{");
if( usingCustomAST )
{
tabs++;
println("return "+namespaceAntlr+"RefAST(returnAST);");
tabs--;
}
else
{
tabs++;
println("return returnAST;");
tabs--;
}
println("}");
println("");
tabs=0; println("protected:"); tabs=1;
println(labeledElementASTType+" returnAST;");
// Make the rest private
tabs=0;
println("private:");
tabs=1;
// Generate the token names
println("static const char* tokenNames[];");
// and how many there are of them
_println("#ifndef NO_STATIC_CONSTS");
println("static const int NUM_TOKENS = "+grammar.tokenManager.getVocabulary().size()+";");
_println("#else");
println("enum {");
println("\tNUM_TOKENS = "+grammar.tokenManager.getVocabulary().size());
println("};");
_println("#endif");
// Generate the bitsets used throughout the grammar
genBitsetsHeader(bitsetsUsed, grammar.tokenManager.maxTokenType());
// Generate the semantic predicate map for debugging
if (grammar.debuggingOutput)
println("static const char* _semPredNames[];");
// Close class definition
tabs=0;
println("};");
println("");
if (nameSpace != null)
nameSpace.emitClosures(currentOutput);
// Generate a guard wrapper
println("#endif /*INC_"+grammar.getClassName()+"_hpp_*/");
// Close the parser output stream
currentOutput.close();
currentOutput = null;
| public void | genInclude(persistence.antlr.TreeWalkerGrammar g)
// Open the output stream for the parser and set the currentOutput
outputFile = grammar.getClassName() + ".hpp";
outputLine = 1;
currentOutput = antlrTool.openOutputFile(outputFile);
//SAS: changed for proper text file io
genAST = grammar.buildAST;
tabs = 0;
// Generate a guard wrapper
println("#ifndef INC_"+grammar.getClassName()+"_hpp_");
println("#define INC_"+grammar.getClassName()+"_hpp_");
println("");
printHeaderAction(preIncludeHpp);
println("#include <antlr/config.hpp>");
println("#include \"" + grammar.tokenManager.getName() + TokenTypesFileSuffix+".hpp\"");
// Generate the header common to all output files.
genHeader(outputFile);
// Find the name of the super class
String sup=null;
if ( grammar.superClass!=null ) {
sup = grammar.superClass;
println("\n// Include correct superclass header with a header statement for example:");
println("// header \"post_include_hpp\" {");
println("// #include \""+sup+".hpp\"");
println("// }");
println("// Or....");
println("// header {");
println("// #include \""+sup+".hpp\"");
println("// }\n");
}
else {
sup = grammar.getSuperClass();
if (sup.lastIndexOf('.") != -1)
sup = sup.substring(sup.lastIndexOf('.")+1);
println("#include <antlr/"+sup+".hpp>");
sup = namespaceAntlr + sup;
}
println("");
// Generate header for the parser
//
// Do not use printAction because we assume tabs==0
printHeaderAction(postIncludeHpp);
if (nameSpace != null)
nameSpace.emitDeclarations(currentOutput);
printHeaderAction("");
// print javadoc comment if any
if ( grammar.comment!=null ) {
_println(grammar.comment);
}
// Generate parser class definition
print("class CUSTOM_API " + grammar.getClassName() + " : public "+sup);
println(", public " + grammar.tokenManager.getName() + TokenTypesFileSuffix);
Token tsuffix = (Token)grammar.options.get("classHeaderSuffix");
if ( tsuffix != null ) {
String suffix = StringUtils.stripFrontBack(tsuffix.getText(),"\"","\"");
if ( suffix != null ) {
print(", "+suffix); // must be an interface name for Java
}
}
println("{");
// Generate user-defined parser class members
if (grammar.classMemberAction != null) {
genLineNo(grammar.classMemberAction.getLine());
print(
processActionForSpecialSymbols(grammar.classMemberAction.getText(),
grammar.classMemberAction.getLine(),
currentRule, null)
);
genLineNo2();
}
// Generate default parser class constructor
tabs=0;
println("public:");
if( noConstructors )
{
println("#if 0");
println("// constructor creation turned of with 'noConstructor' option");
}
tabs=1;
println(grammar.getClassName() + "();");
if( noConstructors )
{
tabs = 0;
println("#endif");
tabs = 1;
}
// Generate declaration for the initializeFactory method
println("static void initializeASTFactory( "+namespaceAntlr+"ASTFactory& factory );");
println("int getNumTokens() const");
println("{"); tabs++;
println("return "+grammar.getClassName()+"::NUM_TOKENS;");
tabs--; println("}");
println("const char* getTokenName( int type ) const");
println("{"); tabs++;
println("if( type > getNumTokens() ) return 0;");
println("return "+grammar.getClassName()+"::tokenNames[type];");
tabs--; println("}");
println("const char* const* getTokenNames() const");
println("{"); tabs++;
println("return "+grammar.getClassName()+"::tokenNames;");
tabs--; println("}");
// Generate code for each rule in the grammar
Enumeration ids = grammar.rules.elements();
String ruleNameInits = "";
while ( ids.hasMoreElements() ) {
GrammarSymbol sym = (GrammarSymbol) ids.nextElement();
if ( sym instanceof RuleSymbol) {
RuleSymbol rs = (RuleSymbol)sym;
genRuleHeader(rs, rs.references.size()==0);
}
exitIfError();
}
tabs = 0; println("public:"); tabs = 1;
println(namespaceAntlr+"RefAST getAST()");
println("{");
if( usingCustomAST )
{
tabs++;
println("return "+namespaceAntlr+"RefAST(returnAST);");
tabs--;
}
else
{
tabs++;
println("return returnAST;");
tabs--;
}
println("}");
println("");
tabs=0; println("protected:"); tabs=1;
println(labeledElementASTType+" returnAST;");
println(labeledElementASTType+" _retTree;");
// Make the rest private
tabs=0;
println("private:");
tabs=1;
// Generate the token names
println("static const char* tokenNames[];");
// and how many there are of them
_println("#ifndef NO_STATIC_CONSTS");
println("static const int NUM_TOKENS = "+grammar.tokenManager.getVocabulary().size()+";");
_println("#else");
println("enum {");
println("\tNUM_TOKENS = "+grammar.tokenManager.getVocabulary().size());
println("};");
_println("#endif");
// Generate the bitsets used throughout the grammar
genBitsetsHeader(bitsetsUsed, grammar.tokenManager.maxTokenType());
// Close class definition
tabs=0;
println("};");
println("");
if (nameSpace != null)
nameSpace.emitClosures(currentOutput);
// Generate a guard wrapper
println("#endif /*INC_"+grammar.getClassName()+"_hpp_*/");
// Close the parser output stream
currentOutput.close();
currentOutput = null;
| public void | genInitFactory(persistence.antlr.Grammar g)
// Generate the method to initialize an ASTFactory when we're
// building AST's
String param_name = "factory ";
if( ! g.buildAST )
param_name = "";
println("void "+ g.getClassName() + "::initializeASTFactory( "+namespaceAntlr+"ASTFactory& "+param_name+")");
println("{");
tabs++;
if( g.buildAST )
{
// print out elements collected...
Enumeration e = astTypes.elements();
while( e.hasMoreElements() )
println((String)e.nextElement());
println("factory.setMaxNodeType("+grammar.tokenManager.maxTokenType()+");");
}
tabs--;
println("}");
| public void | genLineNo(int line)Generate a #line or // line depending on options
if ( line == 0 ) {
line++;
}
if( genHashLines )
_println("#line "+line+" \""+antlrTool.fileMinusPath(antlrTool.grammarFile)+"\"");
| public void | genLineNo(persistence.antlr.GrammarElement el)Generate a #line or // line depending on options
if( el != null )
genLineNo(el.getLine());
| public void | genLineNo(persistence.antlr.Token t)Generate a #line or // line depending on options
if (t != null)
genLineNo(t.getLine());
| public void | genLineNo2()Generate a #line or // line depending on options
if( genHashLines )
{
_println("#line "+(outputLine+1)+" \""+outputFile+"\"");
}
| private void | genLiteralsTest()
println("_ttype = testLiteralsTable(_ttype);");
| private void | genLiteralsTestForPartialToken()
println("_ttype = testLiteralsTable(text.substr(_begin, text.length()-_begin),_ttype);");
| protected void | genMatch(persistence.antlr.collections.impl.BitSet b)
| protected void | genMatch(persistence.antlr.GrammarAtom atom)
if ( atom instanceof StringLiteralElement ) {
if ( grammar instanceof LexerGrammar ) {
genMatchUsingAtomText(atom);
}
else {
genMatchUsingAtomTokenType(atom);
}
}
else if ( atom instanceof CharLiteralElement ) {
if ( grammar instanceof LexerGrammar ) {
genMatchUsingAtomText(atom);
}
else {
antlrTool.error("cannot ref character literals in grammar: "+atom);
}
}
else if ( atom instanceof TokenRefElement ) {
genMatchUsingAtomTokenType(atom);
} else if (atom instanceof WildcardElement) {
gen((WildcardElement)atom);
}
| protected void | genMatchUsingAtomText(persistence.antlr.GrammarAtom atom)
// match() for trees needs the _t cursor
String astArgs="";
if (grammar instanceof TreeWalkerGrammar) {
if( usingCustomAST )
astArgs=namespaceAntlr+"RefAST"+"(_t),";
else
astArgs="_t,";
}
// if in lexer and ! on element, save buffer index to kill later
if ( grammar instanceof LexerGrammar && (!saveText||atom.getAutoGenType()==GrammarElement.AUTO_GEN_BANG) ) {
println("_saveIndex = text.length();");
}
print(atom.not ? "matchNot(" : "match(");
_print(astArgs);
// print out what to match
if (atom.atomText.equals("EOF")) {
// horrible hack to handle EOF case
_print(namespaceAntlr+"Token::EOF_TYPE");
}
else
{
if( grammar instanceof LexerGrammar ) // lexer needs special handling
{
String cppstring = convertJavaToCppString( atom.atomText );
_print(cppstring);
}
else
_print(atom.atomText);
}
_println(");");
if ( grammar instanceof LexerGrammar && (!saveText||atom.getAutoGenType()==GrammarElement.AUTO_GEN_BANG) ) {
println("text.erase(_saveIndex);"); // kill text atom put in buffer
}
| protected void | genMatchUsingAtomTokenType(persistence.antlr.GrammarAtom atom)
// match() for trees needs the _t cursor
String astArgs="";
if (grammar instanceof TreeWalkerGrammar) {
if( usingCustomAST )
astArgs=namespaceAntlr+"RefAST"+"(_t),";
else
astArgs="_t,";
}
// If the literal can be mangled, generate the symbolic constant instead
String s = astArgs + getValueString(atom.getType());
// matching
println( (atom.not ? "matchNot(" : "match(") + s + ");");
| public void | genNextToken()Generate the nextToken() rule.
nextToken() is a synthetic lexer rule that is the implicit OR of all
user-defined lexer rules.
// Are there any public rules? If not, then just generate a
// fake nextToken().
boolean hasPublicRules = false;
for (int i = 0; i < grammar.rules.size(); i++) {
RuleSymbol rs = (RuleSymbol)grammar.rules.elementAt(i);
if ( rs.isDefined() && rs.access.equals("public") ) {
hasPublicRules = true;
break;
}
}
if (!hasPublicRules) {
println("");
println(namespaceAntlr+"RefToken "+grammar.getClassName()+"::nextToken() { return "+namespaceAntlr+"RefToken(new "+namespaceAntlr+"CommonToken("+namespaceAntlr+"Token::EOF_TYPE, \"\")); }");
println("");
return;
}
// Create the synthesized nextToken() rule
RuleBlock nextTokenBlk = MakeGrammar.createNextTokenRule(grammar, grammar.rules, "nextToken");
// Define the nextToken rule symbol
RuleSymbol nextTokenRs = new RuleSymbol("mnextToken");
nextTokenRs.setDefined();
nextTokenRs.setBlock(nextTokenBlk);
nextTokenRs.access = "private";
grammar.define(nextTokenRs);
// Analyze the nextToken rule
boolean ok = grammar.theLLkAnalyzer.deterministic(nextTokenBlk);
// Generate the next token rule
String filterRule=null;
if ( ((LexerGrammar)grammar).filterMode ) {
filterRule = ((LexerGrammar)grammar).filterRule;
}
println("");
println(namespaceAntlr+"RefToken "+grammar.getClassName()+"::nextToken()");
println("{");
tabs++;
println(namespaceAntlr+"RefToken theRetToken;");
println("for (;;) {");
tabs++;
println(namespaceAntlr+"RefToken theRetToken;");
println("int _ttype = "+namespaceAntlr+"Token::INVALID_TYPE;");
if ( ((LexerGrammar)grammar).filterMode ) {
println("setCommitToPath(false);");
if ( filterRule!=null ) {
// Here's a good place to ensure that the filter rule actually exists
if ( !grammar.isDefined(CodeGenerator.encodeLexerRuleName(filterRule)) ) {
grammar.antlrTool.error("Filter rule "+filterRule+" does not exist in this lexer");
}
else {
RuleSymbol rs = (RuleSymbol)grammar.getSymbol(CodeGenerator.encodeLexerRuleName(filterRule));
if ( !rs.isDefined() ) {
grammar.antlrTool.error("Filter rule "+filterRule+" does not exist in this lexer");
}
else if ( rs.access.equals("public") ) {
grammar.antlrTool.error("Filter rule "+filterRule+" must be protected");
}
}
println("int _m;");
println("_m = mark();");
}
}
println("resetText();");
// Generate try around whole thing to trap scanner errors
println("try { // for lexical and char stream error handling");
tabs++;
// Test for public lexical rules with empty paths
for (int i=0; i<nextTokenBlk.getAlternatives().size(); i++) {
Alternative a = nextTokenBlk.getAlternativeAt(i);
if ( a.cache[1].containsEpsilon() ) {
antlrTool.warning("found optional path in nextToken()");
}
}
// Generate the block
String newline = System.getProperty("line.separator");
CppBlockFinishingInfo howToFinish = genCommonBlock(nextTokenBlk, false);
String errFinish = "if (LA(1)==EOF_CHAR)"+newline+
"\t\t\t\t{"+newline+"\t\t\t\t\tuponEOF();"+newline+
"\t\t\t\t\t_returnToken = makeToken("+namespaceAntlr+"Token::EOF_TYPE);"+
newline+"\t\t\t\t}";
errFinish += newline+"\t\t\t\t";
if ( ((LexerGrammar)grammar).filterMode ) {
if ( filterRule==null ) {
errFinish += "else {consume(); goto tryAgain;}";
}
else {
errFinish += "else {"+newline+
"\t\t\t\t\tcommit();"+newline+
"\t\t\t\t\ttry {m"+filterRule+"(false);}"+newline+
"\t\t\t\t\tcatch("+namespaceAntlr+"RecognitionException& e) {"+newline+
"\t\t\t\t\t // catastrophic failure"+newline+
"\t\t\t\t\t reportError(e);"+newline+
"\t\t\t\t\t consume();"+newline+
"\t\t\t\t\t}"+newline+
"\t\t\t\t\tgoto tryAgain;"+newline+
"\t\t\t\t}";
}
}
else {
errFinish += "else {"+throwNoViable+"}";
}
genBlockFinish(howToFinish, errFinish);
// at this point a valid token has been matched, undo "mark" that was done
if ( ((LexerGrammar)grammar).filterMode && filterRule!=null ) {
println("commit();");
}
// Generate literals test if desired
// make sure _ttype is set first; note _returnToken must be
// non-null as the rule was required to create it.
println("if ( !_returnToken )"+newline+
"\t\t\t\tgoto tryAgain; // found SKIP token"+newline);
println("_ttype = _returnToken->getType();");
if ( ((LexerGrammar)grammar).getTestLiterals()) {
genLiteralsTest();
}
// return token created by rule reference in switch
println("_returnToken->setType(_ttype);");
println("return _returnToken;");
// Close try block
tabs--;
println("}");
println("catch ("+namespaceAntlr+"RecognitionException& e) {");
tabs++;
if ( ((LexerGrammar)grammar).filterMode ) {
if ( filterRule==null ) {
println("if ( !getCommitToPath() ) {");
tabs++;
println("consume();");
println("goto tryAgain;");
tabs--;
println("}");
}
else {
println("if ( !getCommitToPath() ) {");
tabs++;
println("rewind(_m);");
println("resetText();");
println("try {m"+filterRule+"(false);}");
println("catch("+namespaceAntlr+"RecognitionException& ee) {");
println(" // horrendous failure: error in filter rule");
println(" reportError(ee);");
println(" consume();");
println("}");
// println("goto tryAgain;");
tabs--;
println("}");
println("else");
}
}
if ( nextTokenBlk.getDefaultErrorHandler() ) {
println("{");
tabs++;
println("reportError(e);");
println("consume();");
tabs--;
println("}");
}
else {
// pass on to invoking routine
tabs++;
println("throw "+namespaceAntlr+"TokenStreamRecognitionException(e);");
tabs--;
}
// close CharStreamException try
tabs--;
println("}");
println("catch ("+namespaceAntlr+"CharStreamIOException& csie) {");
println("\tthrow "+namespaceAntlr+"TokenStreamIOException(csie.io);");
println("}");
println("catch ("+namespaceAntlr+"CharStreamException& cse) {");
println("\tthrow "+namespaceAntlr+"TokenStreamException(cse.getMessage());");
println("}");
// close for-loop
_println("tryAgain:;");
tabs--;
println("}");
// close method nextToken
tabs--;
println("}");
println("");
| public void | genRule(persistence.antlr.RuleSymbol s, boolean startSymbol, int ruleNum, java.lang.String prefix)Gen a named rule block.
ASTs are generated for each element of an alternative unless
the rule or the alternative have a '!' modifier.
If an alternative defeats the default tree construction, it
must set _AST to the root of the returned AST.
Each alternative that does automatic tree construction, builds
up root and child list pointers in an ASTPair structure.
A rule finishes by setting the returnAST variable from the
ASTPair.
// tabs=1; // JavaCodeGenerator needs this
if ( DEBUG_CODE_GENERATOR || DEBUG_CPP_CODE_GENERATOR ) System.out.println("genRule("+ s.getId() +")");
if ( !s.isDefined() ) {
antlrTool.error("undefined rule: "+ s.getId());
return;
}
// Generate rule return type, name, arguments
RuleBlock rblk = s.getBlock();
currentRule = rblk;
currentASTResult = s.getId();
// clear list of declared ast variables..
declaredASTVariables.clear();
// Save the AST generation state, and set it to that of the rule
boolean savegenAST = genAST;
genAST = genAST && rblk.getAutoGen();
// boolean oldsaveTest = saveText;
saveText = rblk.getAutoGen();
// print javadoc comment if any
if ( s.comment!=null ) {
_println(s.comment);
}
// Gen method return type (note lexer return action set at rule creation)
if (rblk.returnAction != null)
{
// Has specified return value
_print(extractTypeOfAction(rblk.returnAction, rblk.getLine(), rblk.getColumn()) + " ");
} else {
// No specified return value
_print("void ");
}
// Gen method name
_print(prefix + s.getId() + "(");
// Additional rule parameters common to all rules for this grammar
_print(commonExtraParams);
if (commonExtraParams.length() != 0 && rblk.argAction != null ) {
_print(",");
}
// Gen arguments
if (rblk.argAction != null)
{
// Has specified arguments
_println("");
// FIXME: make argAction also a token? Hmmmmm
// genLineNo(rblk);
tabs++;
// Process arguments for default arguments
// newer gcc's don't accept these in two places (header/cpp)
//
// Old appraoch with StringBuffer gave trouble with gcj.
//
// RK: Actually this breaks with string default arguments containing
// a comma's or equal signs. Then again the old StringBuffer method
// suffered from the same.
String oldarg = rblk.argAction;
String newarg = "";
String comma = "";
int eqpos = oldarg.indexOf( '=" );
if( eqpos != -1 )
{
int cmpos = 0;
while( cmpos != -1 )
{
newarg = newarg + comma + oldarg.substring( 0, eqpos ).trim();
comma = ", ";
cmpos = oldarg.indexOf( ',", eqpos );
if( cmpos != -1 )
{
// cut off part we just handled
oldarg = oldarg.substring( cmpos+1 ).trim();
eqpos = oldarg.indexOf( '=" );
}
}
}
else
newarg = oldarg;
println( newarg );
// println(rblk.argAction);
tabs--;
print(") ");
// genLineNo2(); // gcc gives error on the brace... hope it works for the others too
} else {
// No specified arguments
_print(") ");
}
_println("{");
tabs++;
if (grammar.traceRules) {
if ( grammar instanceof TreeWalkerGrammar ) {
if ( usingCustomAST )
println("Tracer traceInOut(this,\""+ s.getId() +"\","+namespaceAntlr+"RefAST"+"(_t));");
else
println("Tracer traceInOut(this,\""+ s.getId() +"\",_t);");
}
else {
println("Tracer traceInOut(this, \""+ s.getId() +"\");");
}
}
// Convert return action to variable declaration
if (rblk.returnAction != null)
{
genLineNo(rblk);
println(rblk.returnAction + ";");
genLineNo2();
}
// print out definitions needed by rules for various grammar types
if (!commonLocalVars.equals(""))
println(commonLocalVars);
if ( grammar instanceof LexerGrammar ) {
// RK: why is this here? It seems not supported in the rest of the
// tool.
// lexer rule default return value is the rule's token name
// This is a horrible hack to support the built-in EOF lexer rule.
if (s.getId().equals("mEOF"))
println("_ttype = "+namespaceAntlr+"Token::EOF_TYPE;");
else
println("_ttype = "+ s.getId().substring(1)+";");
println("int _saveIndex;"); // used for element! (so we can kill text matched for element)
/*
println("boolean old_saveConsumedInput=saveConsumedInput;");
if ( !rblk.getAutoGen() ) { // turn off "save input" if ! on rule
println("saveConsumedInput=false;");
}
*/
}
// if debugging, write code to mark entry to the rule
if ( grammar.debuggingOutput)
if (grammar instanceof ParserGrammar)
println("fireEnterRule(" + ruleNum + ",0);");
else if (grammar instanceof LexerGrammar)
println("fireEnterRule(" + ruleNum + ",_ttype);");
// Generate trace code if desired
// if ( grammar.debuggingOutput || grammar.traceRules) {
// println("try { // debugging");
// tabs++;
// }
// Initialize AST variables
if (grammar instanceof TreeWalkerGrammar) {
// "Input" value for rule
// println(labeledElementASTType+" " + s.getId() + "_AST_in = "+labeledElementASTType+"(_t);");
println(labeledElementASTType+" " + s.getId() + "_AST_in = (_t == ASTNULL) ? "+labeledElementASTInit+" : _t;");
}
if (grammar.buildAST) {
// Parser member used to pass AST returns from rule invocations
println("returnAST = "+labeledElementASTInit+";");
// Tracks AST construction
println(namespaceAntlr+"ASTPair currentAST;"); // = new ASTPair();");
// User-settable return value for rule.
println(labeledElementASTType+" " + s.getId() + "_AST = "+labeledElementASTInit+";");
}
genBlockPreamble(rblk);
genBlockInitAction(rblk);
println("");
// Search for an unlabeled exception specification attached to the rule
ExceptionSpec unlabeledUserSpec = rblk.findExceptionSpec("");
// Generate try block around the entire rule for error handling
if (unlabeledUserSpec != null || rblk.getDefaultErrorHandler() ) {
println("try { // for error handling");
tabs++;
}
// Generate the alternatives
if ( rblk.alternatives.size()==1 )
{
// One alternative -- use simple form
Alternative alt = rblk.getAlternativeAt(0);
String pred = alt.semPred;
if ( pred!=null )
genSemPred(pred, currentRule.line);
if (alt.synPred != null) {
antlrTool.warning(
"Syntactic predicate ignored for single alternative",
grammar.getFilename(),
alt.synPred.getLine(),
alt.synPred.getColumn()
);
}
genAlt(alt, rblk);
}
else
{
// Multiple alternatives -- generate complex form
boolean ok = grammar.theLLkAnalyzer.deterministic(rblk);
CppBlockFinishingInfo howToFinish = genCommonBlock(rblk, false);
genBlockFinish(howToFinish, throwNoViable);
}
// Generate catch phrase for error handling
if (unlabeledUserSpec != null || rblk.getDefaultErrorHandler() ) {
// Close the try block
tabs--;
println("}");
}
// Generate user-defined or default catch phrases
if (unlabeledUserSpec != null)
{
genErrorHandler(unlabeledUserSpec);
}
else if (rblk.getDefaultErrorHandler())
{
// Generate default catch phrase
println("catch (" + exceptionThrown + "& ex) {");
tabs++;
// Generate code to handle error if not guessing
if (grammar.hasSyntacticPredicate) {
println("if( inputState->guessing == 0 ) {");
tabs++;
}
println("reportError(ex);");
if ( !(grammar instanceof TreeWalkerGrammar) )
{
// Generate code to consume until token in k==1 follow set
Lookahead follow = grammar.theLLkAnalyzer.FOLLOW(1, rblk.endNode);
String followSetName = getBitsetName(markBitsetForGen(follow.fset));
println("consume();");
println("consumeUntil(" + followSetName + ");");
}
else
{
// Just consume one token
println("if ( _t != "+labeledElementASTInit+" )");
tabs++;
println("_t = _t->getNextSibling();");
tabs--;
}
if (grammar.hasSyntacticPredicate)
{
tabs--;
// When guessing, rethrow exception
println("} else {");
tabs++;
println("throw;");
tabs--;
println("}");
}
// Close catch phrase
tabs--;
println("}");
}
// Squirrel away the AST "return" value
if (grammar.buildAST) {
println("returnAST = " + s.getId() + "_AST;");
}
// Set return tree value for tree walkers
if ( grammar instanceof TreeWalkerGrammar ) {
println("_retTree = _t;");
}
// Generate literals test for lexer rules so marked
if (rblk.getTestLiterals()) {
if ( s.access.equals("protected") ) {
genLiteralsTestForPartialToken();
}
else {
genLiteralsTest();
}
}
// if doing a lexer rule, dump code to create token if necessary
if ( grammar instanceof LexerGrammar ) {
println("if ( _createToken && _token=="+namespaceAntlr+"nullToken && _ttype!="+namespaceAntlr+"Token::SKIP ) {");
println(" _token = makeToken(_ttype);");
println(" _token->setText(text.substr(_begin, text.length()-_begin));");
println("}");
println("_returnToken = _token;");
// It should be easy for an optimizing compiler to realize this does nothing
// but it avoids the warning about the variable being unused.
println("_saveIndex=0;");
}
// Gen the return statement if there is one (lexer has hard-wired return action)
if (rblk.returnAction != null) {
println("return " + extractIdOfAction(rblk.returnAction, rblk.getLine(), rblk.getColumn()) + ";");
}
// if ( grammar.debuggingOutput || grammar.traceRules) {
//// tabs--;
//// println("} finally { // debugging");
//// tabs++;
//
// // Generate trace code if desired
// if ( grammar.debuggingOutput)
// if (grammar instanceof ParserGrammar)
// println("fireExitRule(" + ruleNum + ",0);");
// else if (grammar instanceof LexerGrammar)
// println("fireExitRule(" + ruleNum + ",_ttype);");
//
//// if (grammar.traceRules) {
//// if ( grammar instanceof TreeWalkerGrammar ) {
//// println("traceOut(\""+ s.getId() +"\",_t);");
//// }
//// else {
//// println("traceOut(\""+ s.getId() +"\");");
//// }
//// }
////
//// tabs--;
//// println("}");
// }
tabs--;
println("}");
println("");
// Restore the AST generation state
genAST = savegenAST;
// restore char save state
// saveText = oldsaveTest;
| public void | genRuleHeader(persistence.antlr.RuleSymbol s, boolean startSymbol)
tabs=1;
if ( DEBUG_CODE_GENERATOR || DEBUG_CPP_CODE_GENERATOR ) System.out.println("genRuleHeader("+ s.getId() +")");
if ( !s.isDefined() ) {
antlrTool.error("undefined rule: "+ s.getId());
return;
}
// Generate rule return type, name, arguments
RuleBlock rblk = s.getBlock();
currentRule = rblk;
currentASTResult = s.getId();
// Save the AST generation state, and set it to that of the rule
boolean savegenAST = genAST;
genAST = genAST && rblk.getAutoGen();
// boolean oldsaveTest = saveText;
saveText = rblk.getAutoGen();
// Gen method access
print(s.access + ": ");
// Gen method return type (note lexer return action set at rule creation)
if (rblk.returnAction != null)
{
// Has specified return value
_print(extractTypeOfAction(rblk.returnAction, rblk.getLine(), rblk.getColumn()) + " ");
} else {
// No specified return value
_print("void ");
}
// Gen method name
_print(s.getId() + "(");
// Additional rule parameters common to all rules for this grammar
_print(commonExtraParams);
if (commonExtraParams.length() != 0 && rblk.argAction != null ) {
_print(",");
}
// Gen arguments
if (rblk.argAction != null)
{
// Has specified arguments
_println("");
tabs++;
println(rblk.argAction);
tabs--;
print(")");
} else {
// No specified arguments
_print(")");
}
_println(";");
tabs--;
// Restore the AST generation state
genAST = savegenAST;
// restore char save state
// saveText = oldsaveTest;
| protected void | genSemPred(java.lang.String pred, int line)
// translate $ and # references
ActionTransInfo tInfo = new ActionTransInfo();
pred = processActionForSpecialSymbols(pred, line, currentRule, tInfo);
// ignore translation info...we don't need to do anything with it.
String escapedPred = charFormatter.escapeString(pred);
// if debugging, wrap the semantic predicate evaluation in a method
// that can tell SemanticPredicateListeners the result
if (grammar.debuggingOutput && ((grammar instanceof ParserGrammar) ||
(grammar instanceof LexerGrammar)))
pred = "fireSemanticPredicateEvaluated(persistence.antlr.debug.SemanticPredicateEvent.VALIDATING," //FIXME
+ addSemPred(escapedPred) + "," + pred + ")";
println("if (!(" + pred + "))");
tabs++;
println("throw "+namespaceAntlr+"SemanticException(\"" + escapedPred + "\");");
tabs--;
| protected void | genSemPredMap(java.lang.String prefix)Write an array of Strings which are the semantic predicate
expressions. The debugger will reference them by number only
Enumeration e = semPreds.elements();
println("const char* " + prefix + "_semPredNames[] = {");
tabs++;
while(e.hasMoreElements())
println("\""+e.nextElement()+"\",");
println("0");
tabs--;
println("};");
| protected void | genSynPred(persistence.antlr.SynPredBlock blk, java.lang.String lookaheadExpr)
if ( DEBUG_CODE_GENERATOR || DEBUG_CPP_CODE_GENERATOR ) System.out.println("gen=>("+blk+")");
// Dump synpred result variable
println("bool synPredMatched" + blk.ID + " = false;");
// Gen normal lookahead test
println("if (" + lookaheadExpr + ") {");
tabs++;
// Save input state
if ( grammar instanceof TreeWalkerGrammar ) {
println(labeledElementType + " __t" + blk.ID + " = _t;");
}
else {
println("int _m" + blk.ID + " = mark();");
}
// Once inside the try, assume synpred works unless exception caught
println("synPredMatched" + blk.ID + " = true;");
println("inputState->guessing++;");
// if debugging, tell listeners that a synpred has started
if (grammar.debuggingOutput && ((grammar instanceof ParserGrammar) ||
(grammar instanceof LexerGrammar))) {
println("fireSyntacticPredicateStarted();");
}
syntacticPredLevel++;
println("try {");
tabs++;
gen((AlternativeBlock)blk); // gen code to test predicate
tabs--;
//println("System.out.println(\"pred "+blk+" succeeded\");");
println("}");
println("catch (" + exceptionThrown + "& pe) {");
tabs++;
println("synPredMatched"+blk.ID+" = false;");
//println("System.out.println(\"pred "+blk+" failed\");");
tabs--;
println("}");
// Restore input state
if ( grammar instanceof TreeWalkerGrammar ) {
println("_t = __t"+blk.ID+";");
}
else {
println("rewind(_m"+blk.ID+");");
}
println("inputState->guessing--;");
// if debugging, tell listeners how the synpred turned out
if (grammar.debuggingOutput && ((grammar instanceof ParserGrammar) ||
(grammar instanceof LexerGrammar))) {
println("if (synPredMatched" + blk.ID +")");
println(" fireSyntacticPredicateSucceeded();");
println("else");
println(" fireSyntacticPredicateFailed();");
}
syntacticPredLevel--;
tabs--;
// Close lookahead test
println("}");
// Test synpred result
println("if ( synPredMatched"+blk.ID+" ) {");
| public void | genTokenStrings(java.lang.String prefix)Generate a static array containing the names of the tokens,
indexed by the token type values. This static array is used
to format error messages so that the token identifers or literal
strings are displayed instead of the token numbers.
If a lexical rule has a paraphrase, use it rather than the
token label.
// Generate a string for each token. This creates a static
// array of Strings indexed by token type.
// println("");
println("const char* " + prefix + "tokenNames[] = {");
tabs++;
// Walk the token vocabulary and generate a Vector of strings
// from the tokens.
Vector v = grammar.tokenManager.getVocabulary();
for (int i = 0; i < v.size(); i++)
{
String s = (String)v.elementAt(i);
if (s == null)
{
s = "<"+String.valueOf(i)+">";
}
if ( !s.startsWith("\"") && !s.startsWith("<") ) {
TokenSymbol ts = (TokenSymbol)grammar.tokenManager.getTokenSymbol(s);
if ( ts!=null && ts.getParaphrase()!=null ) {
s = StringUtils.stripFrontBack(ts.getParaphrase(), "\"", "\"");
}
}
print(charFormatter.literalString(s));
_println(",");
}
println("0");
// Close the string array initailizer
tabs--;
println("};");
| protected void | genTokenTypes(persistence.antlr.TokenManager tm)Generate the token types C++ file
// Open the token output header file and set the currentOutput stream
outputFile = tm.getName() + TokenTypesFileSuffix+".hpp";
outputLine = 1;
currentOutput = antlrTool.openOutputFile(outputFile);
//SAS: changed for proper text file io
tabs = 0;
// Generate a guard wrapper
println("#ifndef INC_"+tm.getName()+TokenTypesFileSuffix+"_hpp_");
println("#define INC_"+tm.getName()+TokenTypesFileSuffix+"_hpp_");
println("");
if (nameSpace != null)
nameSpace.emitDeclarations(currentOutput);
// Generate the header common to all C++ files
genHeader(outputFile);
// Encapsulate the definitions in an interface. This can be done
// because they are all constants.
println("");
println("#ifndef CUSTOM_API");
println("# define CUSTOM_API");
println("#endif");
println("");
// In the case that the .hpp is included from C source (flexLexer!)
// we just turn things into a plain enum
println("#ifdef __cplusplus");
println("struct CUSTOM_API " + tm.getName() + TokenTypesFileSuffix+" {");
println("#endif");
tabs++;
println("enum {");
tabs++;
// Generate a definition for each token type
Vector v = tm.getVocabulary();
// Do special tokens manually
println("EOF_ = " + Token.EOF_TYPE + ",");
// Move the other special token to the end, so we can solve
// the superfluous comma problem easily
for (int i = Token.MIN_USER_TYPE; i < v.size(); i++) {
String s = (String)v.elementAt(i);
if (s != null) {
if ( s.startsWith("\"") ) {
// a string literal
StringLiteralSymbol sl = (StringLiteralSymbol)tm.getTokenSymbol(s);
if ( sl==null ) {
antlrTool.panic("String literal "+s+" not in symbol table");
}
else if ( sl.label != null ) {
println(sl.label + " = " + i + ",");
}
else {
String mangledName = mangleLiteral(s);
if (mangledName != null) {
// We were able to create a meaningful mangled token name
println(mangledName + " = " + i + ",");
// if no label specified, make the label equal to the mangled name
sl.label = mangledName;
}
else {
println("// " + s + " = " + i);
}
}
}
else if ( !s.startsWith("<") ) {
println(s + " = " + i + ",");
}
}
}
// Moved from above
println("NULL_TREE_LOOKAHEAD = " + Token.NULL_TREE_LOOKAHEAD);
// Close the enum
tabs--;
println("};");
// Close the interface
tabs--;
println("#ifdef __cplusplus");
println("};");
println("#endif");
if (nameSpace != null)
nameSpace.emitClosures(currentOutput);
// Generate a guard wrapper
println("#endif /*INC_"+tm.getName()+TokenTypesFileSuffix+"_hpp_*/");
// Close the tokens output file
currentOutput.close();
currentOutput = null;
exitIfError();
| public java.lang.String | getASTCreateString(persistence.antlr.collections.impl.Vector v)Get a string for an expression to generate creation of an AST subtree.
if (v.size() == 0) {
return "";
}
StringBuffer buf = new StringBuffer();
// the labeledElementASTType here can probably be a cast or nothing
// in the case of ! usingCustomAST
buf.append(labeledElementASTType+
"(astFactory->make((new "+namespaceAntlr+
"ASTArray("+v.size()+"))");
for (int i = 0; i < v.size(); i++) {
buf.append("->add("+ v.elementAt(i) + ")");
}
buf.append("))");
return buf.toString();
| public java.lang.String | getASTCreateString(persistence.antlr.GrammarAtom atom, java.lang.String str)Get a string for an expression to generate creating of an AST node
if ( atom!=null && atom.getASTNodeType() != null ) {
// this atom is using a heterogeneous AST type.
// make note of the factory needed to generate it..
// later this is inserted into the initializeFactory method.
astTypes.appendElement("factory.registerFactory("+
atom.getType() + ", \""+atom.getASTNodeType()+
"\", "+atom.getASTNodeType()+"::factory);");
// after above init the factory knows what to generate...
return "astFactory->create("+str+")";
}
else
{
// FIXME: This is *SO* ugly! but it will have to do for now...
// 2.7.2 will have better I hope
// this is due to the usage of getASTCreateString from inside
// actions/cpp/action.g
boolean is_constructor = false;
if( str.indexOf(',") != -1 )
is_constructor = grammar.tokenManager.tokenDefined(str.substring(0,str.indexOf(',")));
// System.out.println("getAstCreateString(as): "+str+" "+grammar.tokenManager.tokenDefined(str));
if( usingCustomAST &&
(grammar instanceof TreeWalkerGrammar) &&
!(grammar.tokenManager.tokenDefined(str) ) &&
! is_constructor )
return "astFactory->create("+namespaceAntlr+"RefAST("+str+"))";
else
return "astFactory->create("+str+")";
}
| public java.lang.String | getASTCreateString(java.lang.String str)Get a string for an expression to generate creating of an AST node
// System.out.println("getAstCreateString(str): "+str+" "+grammar.tokenManager.tokenDefined(str));
if( usingCustomAST )
return labeledElementASTType+"(astFactory->create("+namespaceAntlr+"RefAST("+str+")))";
else
return "astFactory->create("+str+")";
| protected java.lang.String | getLookaheadTestExpression(persistence.antlr.Lookahead[] look, int k)
StringBuffer e = new StringBuffer(100);
boolean first = true;
e.append("(");
for (int i = 1; i <= k; i++) {
BitSet p = look[i].fset;
if (!first) {
e.append(") && (");
}
first = false;
// Syn preds can yield <end-of-syn-pred> (epsilon) lookahead.
// There is no way to predict what that token would be. Just
// allow anything instead.
if (look[i].containsEpsilon()) {
e.append("true");
} else {
e.append(getLookaheadTestTerm(i, p));
}
}
e.append(")");
return e.toString();
| protected java.lang.String | getLookaheadTestExpression(persistence.antlr.Alternative alt, int maxDepth)Generate a lookahead test expression for an alternate. This
will be a series of tests joined by '&&' and enclosed by '()',
the number of such tests being determined by the depth of the lookahead.
int depth = alt.lookaheadDepth;
if ( depth == GrammarAnalyzer.NONDETERMINISTIC ) {
// if the decision is nondeterministic, do the best we can: LL(k)
// any predicates that are around will be generated later.
depth = grammar.maxk;
}
if ( maxDepth==0 ) {
// empty lookahead can result from alt with sem pred
// that can see end of token. E.g., A : {pred}? ('a')? ;
return "true";
}
/*
boolean first = true;
for (int i=1; i<=depth && i<=maxDepth; i++) {
BitSet p = alt.cache[i].fset;
if (!first) {
e.append(") && (");
}
first = false;
// Syn preds can yield <end-of-syn-pred> (epsilon) lookahead.
// There is no way to predict what that token would be. Just
// allow anything instead.
if ( alt.cache[i].containsEpsilon() ) {
e.append("true");
}
else {
e.append(getLookaheadTestTerm(i, p));
}
}
e.append(")");
*/
return "(" + getLookaheadTestExpression(alt.cache,depth) + ")";
| protected java.lang.String | getLookaheadTestTerm(int k, persistence.antlr.collections.impl.BitSet p)Generate a depth==1 lookahead test expression given the BitSet.
This may be one of:
1) a series of 'x==X||' tests
2) a range test using >= && <= where possible,
3) a bitset membership test for complex comparisons
// Determine the name of the item to be compared
String ts = lookaheadString(k);
// Generate a range expression if possible
int[] elems = p.toArray();
if (elementsAreRange(elems)) {
return getRangeExpression(k, elems);
}
// Generate a bitset membership test if possible
StringBuffer e;
int degree = p.degree();
if ( degree == 0 ) {
return "true";
}
if (degree >= bitsetTestThreshold) {
int bitsetIdx = markBitsetForGen(p);
return getBitsetName(bitsetIdx) + ".member(" + ts + ")";
}
// Otherwise, generate the long-winded series of "x==X||" tests
e = new StringBuffer();
for (int i = 0; i < elems.length; i++) {
// Get the compared-to item (token or character value)
String cs = getValueString(elems[i]);
// Generate the element comparison
if( i > 0 ) e.append(" || ");
e.append(ts);
e.append(" == ");
e.append(cs);
}
return e.toString();
| public java.lang.String | getRangeExpression(int k, int[] elems)Return an expression for testing a contiguous renage of elements
if (!elementsAreRange(elems)) {
antlrTool.panic("getRangeExpression called with non-range");
}
int begin = elems[0];
int end = elems[elems.length-1];
return
"(" + lookaheadString(k) + " >= " + getValueString(begin) + " && " +
lookaheadString(k) + " <= " + getValueString(end) + ")";
| private java.lang.String | getValueString(int value)getValueString: get a string representation of a token or char value
String cs;
if ( grammar instanceof LexerGrammar ) {
cs = charFormatter.literalChar(value);
}
else
{
TokenSymbol ts = grammar.tokenManager.getTokenSymbolAt(value);
if ( ts == null ) {
return ""+value; // return token type as string
// tool.panic("vocabulary for token type " + value + " is null");
}
String tId = ts.getId();
if ( ts instanceof StringLiteralSymbol ) {
// if string literal, use predefined label if any
// if no predefined, try to mangle into LITERAL_xxx.
// if can't mangle, use int value as last resort
StringLiteralSymbol sl = (StringLiteralSymbol)ts;
String label = sl.getLabel();
if ( label!=null ) {
cs = label;
}
else {
cs = mangleLiteral(tId);
if (cs == null) {
cs = String.valueOf(value);
}
}
}
else {
if ( tId.equals("EOF") )
cs = namespaceAntlr+"Token::EOF_TYPE";
else
cs = tId;
}
}
return cs;
| protected boolean | lookaheadIsEmpty(persistence.antlr.Alternative alt, int maxDepth)Is the lookahead for this alt empty?
int depth = alt.lookaheadDepth;
if ( depth == GrammarAnalyzer.NONDETERMINISTIC ) {
depth = grammar.maxk;
}
for (int i=1; i<=depth && i<=maxDepth; i++) {
BitSet p = alt.cache[i].fset;
if (p.degree() != 0) {
return false;
}
}
return true;
| private java.lang.String | lookaheadString(int k)
if (grammar instanceof TreeWalkerGrammar) {
return "_t->getType()";
}
return "LA(" + k + ")";
| private java.lang.String | mangleLiteral(java.lang.String s)Mangle a string literal into a meaningful token name. This is
only possible for literals that are all characters. The resulting
mangled literal name is literalsPrefix with the text of the literal
appended.
String mangled = antlrTool.literalsPrefix;
for (int i = 1; i < s.length()-1; i++) {
if (!Character.isLetter(s.charAt(i)) &&
s.charAt(i) != '_") {
return null;
}
mangled += s.charAt(i);
}
if ( antlrTool.upperCaseMangledLiterals ) {
mangled = mangled.toUpperCase();
}
return mangled;
| public java.lang.String | mapTreeId(java.lang.String idParam, persistence.antlr.ActionTransInfo transInfo)Map an identifier to it's corresponding tree-node variable.
This is context-sensitive, depending on the rule and alternative
being generated
// if not in an action of a rule, nothing to map.
if ( currentRule==null ) return idParam;
// System.out.print("mapTreeId: "+idParam+" "+currentRule.getRuleName()+" ");
boolean in_var = false;
String id = idParam;
if (grammar instanceof TreeWalkerGrammar)
{
// RK: hmmm this seems odd. If buildAST is false it translates
// #rulename_in to 'rulename_in' else to 'rulename_AST_in' which indeed
// exists. disabling for now.. and hope it doesn't blow up somewhere.
if ( !grammar.buildAST )
{
in_var = true;
// System.out.println("in_var1");
}
// If the id ends with "_in", then map it to the input variable
// else
if (id.length() > 3 && id.lastIndexOf("_in") == id.length()-3)
{
// Strip off the "_in"
id = id.substring(0, id.length()-3);
in_var = true;
// System.out.println("in_var2");
}
}
// System.out.print(in_var+"\t");
// Check the rule labels. If id is a label, then the output
// variable is label_AST, and the input variable is plain label.
for (int i = 0; i < currentRule.labeledElements.size(); i++)
{
AlternativeElement elt = (AlternativeElement)currentRule.labeledElements.elementAt(i);
if (elt.getLabel().equals(id))
{
// if( in_var )
// System.out.println("returning (vec) "+(in_var ? id : id + "_AST"));
return in_var ? id : id + "_AST";
}
}
// Failing that, check the id-to-variable map for the alternative.
// If the id is in the map, then output variable is the name in the
// map, and input variable is name_in
String s = (String)treeVariableMap.get(id);
if (s != null)
{
if (s == NONUNIQUE)
{
// if( in_var )
// System.out.println("returning null (nonunique)");
// There is more than one element with this id
antlrTool.error("Ambiguous reference to AST element "+id+
" in rule "+currentRule.getRuleName());
return null;
}
else if (s.equals(currentRule.getRuleName()))
{
// a recursive call to the enclosing rule is
// ambiguous with the rule itself.
// if( in_var )
// System.out.println("returning null (rulename)");
antlrTool.error("Ambiguous reference to AST element "+id+
" in rule "+currentRule.getRuleName());
return null;
}
else
{
// if( in_var )
// System.out.println("returning "+(in_var?s+"_in":s));
return in_var ? s + "_in" : s;
}
}
// System.out.println("Last check: "+id+" == "+currentRule.getRuleName());
// Failing that, check the rule name itself. Output variable
// is rule_AST; input variable is rule_AST_in (treeparsers).
if( id.equals(currentRule.getRuleName()) )
{
String r = in_var ? id + "_AST_in" : id + "_AST";
if ( transInfo!=null ) {
if ( !in_var ) {
transInfo.refRuleRoot = r;
}
}
// if( in_var )
// System.out.println("returning (r) "+r);
return r;
}
else
{
// if( in_var )
// System.out.println("returning (last) "+id);
// id does not map to anything -- return itself.
return id;
}
| private void | mapTreeVariable(persistence.antlr.AlternativeElement e, java.lang.String name)Given an element and the name of an associated AST variable,
create a mapping between the element "name" and the variable name.
// For tree elements, defer to the root
if (e instanceof TreeElement) {
mapTreeVariable( ((TreeElement)e).root, name);
return;
}
// Determine the name of the element, if any, for mapping purposes
String elName = null;
// Don't map labeled items
if (e.getLabel() == null) {
if (e instanceof TokenRefElement) {
// use the token id
elName = ((TokenRefElement)e).atomText;
}
else if (e instanceof RuleRefElement) {
// use the rule name
elName = ((RuleRefElement)e).targetRule;
}
}
// Add the element to the tree variable map if it has a name
if (elName != null) {
if (treeVariableMap.get(elName) != null) {
// Name is already in the map -- mark it as duplicate
treeVariableMap.remove(elName);
treeVariableMap.put(elName, NONUNIQUE);
}
else {
treeVariableMap.put(elName, name);
}
}
| private java.lang.String | normalizeStringOrChar(java.lang.String text)
// check to see if the text is a single character
if (text.startsWith("'")) {
// assume it also ends with '
return charFormatter.literalChar(ANTLRLexer.tokenTypeForCharLiteral(text));
}
else
{
// must be string literal strip of the quotes so
// they won't get quoted
return "\""+charFormatter.escapeString(StringUtils.stripFrontBack(text,"\"","\""))+"\"";
}
| public void | printAction(persistence.antlr.Token t)Print an action stored in a token surrounded by #line stuff
if (t != null)
{
genLineNo(t.getLine());
printTabs();
_printAction(processActionForSpecialSymbols(t.getText(), t.getLine(),
null, null) );
genLineNo2();
}
| public void | printHeaderAction(java.lang.String name)Print a header action by #line stuff also process any tree construction
Token a = (persistence.antlr.Token)behavior.headerActions.get(name);
if (a != null)
{
genLineNo(a.getLine());
println(processActionForSpecialSymbols(a.getText(), a.getLine(),
null, null) );
genLineNo2();
}
| protected void | println(java.lang.String s)Output tab indent followed by a String followed by newline,
to the currentOutput stream. Ignored if string is null.
if (s != null) {
printTabs();
outputLine += countLines(s)+1;
currentOutput.println(s);
}
| protected java.lang.String | processActionForSpecialSymbols(java.lang.String actionStr, int line, persistence.antlr.RuleBlock currentRule, persistence.antlr.ActionTransInfo tInfo)Lexically process tree-specifiers in the action.
This will replace #id and #(...) with the appropriate
function calls and/or variables.
if ( actionStr==null || actionStr.length()==0 )
return null;
// The action trans info tells us (at the moment) whether an
// assignment was done to the rule's tree root.
if (grammar==null)
return actionStr;
if ((grammar.buildAST && actionStr.indexOf('#") != -1) ||
grammar instanceof TreeWalkerGrammar ||
((grammar instanceof LexerGrammar ||
grammar instanceof ParserGrammar)
&& actionStr.indexOf('$") != -1) )
{
// Create a lexer to read an action and return the translated version
persistence.antlr.actions.cpp.ActionLexer lexer =
new persistence.antlr.actions.cpp.ActionLexer(actionStr, currentRule, this, tInfo);
lexer.setLineOffset(line);
lexer.setFilename(grammar.getFilename());
lexer.setTool(antlrTool);
try {
lexer.mACTION(true);
actionStr = lexer.getTokenObject().getText();
// System.out.println("action translated: "+actionStr);
// System.out.println("trans info is "+tInfo);
}
catch (RecognitionException ex) {
lexer.reportError(ex);
return actionStr;
}
catch (TokenStreamException tex) {
antlrTool.panic("Error reading action:"+actionStr);
return actionStr;
}
catch (CharStreamException io) {
antlrTool.panic("Error reading action:"+actionStr);
return actionStr;
}
}
return actionStr;
| public java.lang.String | processStringForASTConstructor(java.lang.String str)Process a string for an simple expression for use in xx/action.g
it is used to cast simple tokens/references to the right type for
the generated language. Basically called for every element in
the vector to getASTCreateString(vector V)
if( usingCustomAST &&
((grammar instanceof TreeWalkerGrammar) ||
(grammar instanceof ParserGrammar)) &&
!(grammar.tokenManager.tokenDefined(str) ) )
{
// System.out.println("processStringForASTConstructor: "+str+" with cast");
return namespaceAntlr+"RefAST("+str+")";
}
else
{
// System.out.println("processStringForASTConstructor: "+str);
return str;
}
| private void | setupGrammarParameters(persistence.antlr.Grammar g)
if (g instanceof ParserGrammar ||
g instanceof LexerGrammar ||
g instanceof TreeWalkerGrammar
)
{
/* RK: options also have to be added to Grammar.java and for options
* on the file level entries have to be defined in
* DefineGrammarSymbols.java and passed around via 'globals' in
* antlrTool.java
*/
if( antlrTool.nameSpace != null )
nameSpace = antlrTool.nameSpace;
if( antlrTool.namespaceStd != null )
namespaceStd = fixNameSpaceOption(antlrTool.namespaceStd);
if( antlrTool.namespaceAntlr != null )
namespaceAntlr = fixNameSpaceOption(antlrTool.namespaceAntlr);
genHashLines = antlrTool.genHashLines;
/* let grammar level options override filelevel ones...
*/
if( g.hasOption("namespace") ) {
Token t = g.getOption("namespace");
if( t != null ) {
nameSpace = new NameSpace(t.getText());
}
}
if( g.hasOption("namespaceAntlr") ) {
Token t = g.getOption("namespaceAntlr");
if( t != null ) {
String ns = StringUtils.stripFrontBack(t.getText(),"\"","\"");
if ( ns != null ) {
if( ns.length() > 2 &&
!ns.substring(ns.length()-2, ns.length()).equals("::") )
ns += "::";
namespaceAntlr = ns;
}
}
}
if( g.hasOption("namespaceStd") ) {
Token t = g.getOption("namespaceStd");
if( t != null ) {
String ns = StringUtils.stripFrontBack(t.getText(),"\"","\"");
if ( ns != null ) {
if( ns.length() > 2 &&
!ns.substring(ns.length()-2, ns.length()).equals("::") )
ns += "::";
namespaceStd = ns;
}
}
}
if( g.hasOption("genHashLines") ) {
Token t = g.getOption("genHashLines");
if( t != null ) {
String val = StringUtils.stripFrontBack(t.getText(),"\"","\"");
genHashLines = val.equals("true");
}
}
noConstructors = antlrTool.noConstructors; // get the default
if( g.hasOption("noConstructors") ) {
Token t = g.getOption("noConstructors");
if( (t != null) && !(t.getText().equals("true") || t.getText().equals("false")))
antlrTool.error("noConstructors option must be true or false", antlrTool.getGrammarFile(), t.getLine(), t.getColumn());
noConstructors = t.getText().equals("true");
}
}
if (g instanceof ParserGrammar) {
labeledElementASTType = namespaceAntlr+"RefAST";
labeledElementASTInit = namespaceAntlr+"nullAST";
if ( g.hasOption("ASTLabelType") ) {
Token tsuffix = g.getOption("ASTLabelType");
if ( tsuffix != null ) {
String suffix = StringUtils.stripFrontBack(tsuffix.getText(),"\"","\"");
if ( suffix != null ) {
usingCustomAST = true;
labeledElementASTType = suffix;
labeledElementASTInit = suffix+"("+namespaceAntlr+"nullAST)";
}
}
}
labeledElementType = namespaceAntlr+"RefToken ";
labeledElementInit = namespaceAntlr+"nullToken";
commonExtraArgs = "";
commonExtraParams = "";
commonLocalVars = "";
lt1Value = "LT(1)";
exceptionThrown = namespaceAntlr+"RecognitionException";
throwNoViable = "throw "+namespaceAntlr+"NoViableAltException(LT(1), getFilename());";
}
else if (g instanceof LexerGrammar) {
labeledElementType = "char ";
labeledElementInit = "'\\0'";
commonExtraArgs = "";
commonExtraParams = "bool _createToken";
commonLocalVars = "int _ttype; "+namespaceAntlr+"RefToken _token; int _begin=text.length();";
lt1Value = "LA(1)";
exceptionThrown = namespaceAntlr+"RecognitionException";
throwNoViable = "throw "+namespaceAntlr+"NoViableAltForCharException(LA(1), getFilename(), getLine(), getColumn());";
}
else if (g instanceof TreeWalkerGrammar) {
labeledElementInit = namespaceAntlr+"nullAST";
labeledElementASTInit = namespaceAntlr+"nullAST";
labeledElementASTType = namespaceAntlr+"RefAST";
labeledElementType = namespaceAntlr+"RefAST";
commonExtraParams = namespaceAntlr+"RefAST _t";
throwNoViable = "throw "+namespaceAntlr+"NoViableAltException(_t);";
lt1Value = "_t";
if ( g.hasOption("ASTLabelType") ) {
Token tsuffix = g.getOption("ASTLabelType");
if ( tsuffix != null ) {
String suffix = StringUtils.stripFrontBack(tsuffix.getText(),"\"","\"");
if ( suffix != null ) {
usingCustomAST = true;
labeledElementASTType = suffix;
labeledElementType = suffix;
labeledElementInit = suffix+"("+namespaceAntlr+"nullAST)";
labeledElementASTInit = labeledElementInit;
commonExtraParams = suffix+" _t";
throwNoViable = "throw "+namespaceAntlr+"NoViableAltException("+namespaceAntlr+"RefAST(_t));";
lt1Value = "_t";
}
}
}
if ( !g.hasOption("ASTLabelType") ) {
g.setOption("ASTLabelType", new Token(ANTLRTokenTypes.STRING_LITERAL,namespaceAntlr+"RefAST"));
}
commonExtraArgs = "_t";
commonLocalVars = "";
exceptionThrown = namespaceAntlr+"RecognitionException";
}
else {
antlrTool.panic("Unknown grammar type");
}
| private static boolean | suitableForCaseExpression(persistence.antlr.Alternative a)
return a.lookaheadDepth == 1 &&
a.semPred == null &&
!a.cache[1].containsEpsilon() &&
a.cache[1].fset.degree()<=caseSizeThreshold;
|
|