AffineTransformpublic class AffineTransform extends Object implements Cloneable, SerializableThe AffineTransform class represents a 2D affine transform
that performs a linear mapping from 2D coordinates to other 2D
coordinates that preserves the "straightness" and
"parallelness" of lines. Affine transformations can be constructed
using sequences of translations, scales, flips, rotations, and shears.
Such a coordinate transformation can be represented by a 3 row by
3 column matrix with an implied last row of [ 0 0 1 ]. This matrix
transforms source coordinates {@code (x,y)} into
destination coordinates {@code (x',y')} by considering
them to be a column vector and multiplying the coordinate vector
by the matrix according to the following process:
[ x'] [ m00 m01 m02 ] [ x ] [ m00x + m01y + m02 ]
[ y'] = [ m10 m11 m12 ] [ y ] = [ m10x + m11y + m12 ]
[ 1 ] [ 0 0 1 ] [ 1 ] [ 1 ]
Handling 90-Degree Rotations
In some variations of the rotate methods in the
AffineTransform class, a double-precision argument
specifies the angle of rotation in radians.
These methods have special handling for rotations of approximately
90 degrees (including multiples such as 180, 270, and 360 degrees),
so that the common case of quadrant rotation is handled more
efficiently.
This special handling can cause angles very close to multiples of
90 degrees to be treated as if they were exact multiples of
90 degrees.
For small multiples of 90 degrees the range of angles treated
as a quadrant rotation is approximately 0.00000121 degrees wide.
This section explains why such special care is needed and how
it is implemented.
Since 90 degrees is represented as PI/2 in radians,
and since PI is a transcendental (and therefore irrational) number,
it is not possible to exactly represent a multiple of 90 degrees as
an exact double precision value measured in radians.
As a result it is theoretically impossible to describe quadrant
rotations (90, 180, 270 or 360 degrees) using these values.
Double precision floating point values can get very close to
non-zero multiples of PI/2 but never close enough
for the sine or cosine to be exactly 0.0, 1.0 or -1.0.
The implementations of Math.sin() and
Math.cos() correspondingly never return 0.0
for any case other than Math.sin(0.0) .
These same implementations do, however, return exactly 1.0 and
-1.0 for some range of numbers around each multiple of 90
degrees since the correct answer is so close to 1.0 or -1.0 that
the double precision significand cannot represent the difference
as accurately as it can for numbers that are near 0.0.
The net result of these issues is that if the
Math.sin() and Math.cos() methods
are used to directly generate the values for the matrix modifications
during these radian-based rotation operations then the resulting
transform is never strictly classifiable as a quadrant rotation
even for a simple case like rotate(Math.PI/2.0) ,
due to minor variations in the matrix caused by the non-0.0 values
obtained for the sine and cosine.
If these transforms are not classified as quadrant rotations then
subsequent code which attempts to optimize further operations based
upon the type of the transform will be relegated to its most general
implementation.
Because quadrant rotations are fairly common,
this class should handle these cases reasonably quickly, both in
applying the rotations to the transform and in applying the resulting
transform to the coordinates.
To facilitate this optimal handling, the methods which take an angle
of rotation measured in radians attempt to detect angles that are
intended to be quadrant rotations and treat them as such.
These methods therefore treat an angle theta as a quadrant
rotation if either Math.sin(theta) or
Math.cos(theta) returns exactly 1.0 or -1.0.
As a rule of thumb, this property holds true for a range of
approximately 0.0000000211 radians (or 0.00000121 degrees) around
small multiples of Math.PI/2.0 . |
Fields Summary |
---|
private static final int | TYPE_UNKNOWN | public static final int | TYPE_IDENTITYThis constant indicates that the transform defined by this object
is an identity transform.
An identity transform is one in which the output coordinates are
always the same as the input coordinates.
If this transform is anything other than the identity transform,
the type will either be the constant GENERAL_TRANSFORM or a
combination of the appropriate flag bits for the various coordinate
conversions that this transform performs. | public static final int | TYPE_TRANSLATIONThis flag bit indicates that the transform defined by this object
performs a translation in addition to the conversions indicated
by other flag bits.
A translation moves the coordinates by a constant amount in x
and y without changing the length or angle of vectors. | public static final int | TYPE_UNIFORM_SCALEThis flag bit indicates that the transform defined by this object
performs a uniform scale in addition to the conversions indicated
by other flag bits.
A uniform scale multiplies the length of vectors by the same amount
in both the x and y directions without changing the angle between
vectors.
This flag bit is mutually exclusive with the TYPE_GENERAL_SCALE flag. | public static final int | TYPE_GENERAL_SCALEThis flag bit indicates that the transform defined by this object
performs a general scale in addition to the conversions indicated
by other flag bits.
A general scale multiplies the length of vectors by different
amounts in the x and y directions without changing the angle
between perpendicular vectors.
This flag bit is mutually exclusive with the TYPE_UNIFORM_SCALE flag. | public static final int | TYPE_MASK_SCALEThis constant is a bit mask for any of the scale flag bits. | public static final int | TYPE_FLIPThis flag bit indicates that the transform defined by this object
performs a mirror image flip about some axis which changes the
normally right handed coordinate system into a left handed
system in addition to the conversions indicated by other flag bits.
A right handed coordinate system is one where the positive X
axis rotates counterclockwise to overlay the positive Y axis
similar to the direction that the fingers on your right hand
curl when you stare end on at your thumb.
A left handed coordinate system is one where the positive X
axis rotates clockwise to overlay the positive Y axis similar
to the direction that the fingers on your left hand curl.
There is no mathematical way to determine the angle of the
original flipping or mirroring transformation since all angles
of flip are identical given an appropriate adjusting rotation. | public static final int | TYPE_QUADRANT_ROTATIONThis flag bit indicates that the transform defined by this object
performs a quadrant rotation by some multiple of 90 degrees in
addition to the conversions indicated by other flag bits.
A rotation changes the angles of vectors by the same amount
regardless of the original direction of the vector and without
changing the length of the vector.
This flag bit is mutually exclusive with the TYPE_GENERAL_ROTATION flag. | public static final int | TYPE_GENERAL_ROTATIONThis flag bit indicates that the transform defined by this object
performs a rotation by an arbitrary angle in addition to the
conversions indicated by other flag bits.
A rotation changes the angles of vectors by the same amount
regardless of the original direction of the vector and without
changing the length of the vector.
This flag bit is mutually exclusive with the
TYPE_QUADRANT_ROTATION flag. | public static final int | TYPE_MASK_ROTATIONThis constant is a bit mask for any of the rotation flag bits. | public static final int | TYPE_GENERAL_TRANSFORMThis constant indicates that the transform defined by this object
performs an arbitrary conversion of the input coordinates.
If this transform can be classified by any of the above constants,
the type will either be the constant TYPE_IDENTITY or a
combination of the appropriate flag bits for the various coordinate
conversions that this transform performs. | static final int | APPLY_IDENTITYThis constant is used for the internal state variable to indicate
that no calculations need to be performed and that the source
coordinates only need to be copied to their destinations to
complete the transformation equation of this transform. | static final int | APPLY_TRANSLATEThis constant is used for the internal state variable to indicate
that the translation components of the matrix (m02 and m12) need
to be added to complete the transformation equation of this transform. | static final int | APPLY_SCALEThis constant is used for the internal state variable to indicate
that the scaling components of the matrix (m00 and m11) need
to be factored in to complete the transformation equation of
this transform. If the APPLY_SHEAR bit is also set then it
indicates that the scaling components are not both 0.0. If the
APPLY_SHEAR bit is not also set then it indicates that the
scaling components are not both 1.0. If neither the APPLY_SHEAR
nor the APPLY_SCALE bits are set then the scaling components
are both 1.0, which means that the x and y components contribute
to the transformed coordinate, but they are not multiplied by
any scaling factor. | static final int | APPLY_SHEARThis constant is used for the internal state variable to indicate
that the shearing components of the matrix (m01 and m10) need
to be factored in to complete the transformation equation of this
transform. The presence of this bit in the state variable changes
the interpretation of the APPLY_SCALE bit as indicated in its
documentation. | private static final int | HI_SHIFT | private static final int | HI_IDENTITY | private static final int | HI_TRANSLATE | private static final int | HI_SCALE | private static final int | HI_SHEAR | double | m00The X coordinate scaling element of the 3x3
affine transformation matrix. | double | m10The Y coordinate shearing element of the 3x3
affine transformation matrix. | double | m01The X coordinate shearing element of the 3x3
affine transformation matrix. | double | m11The Y coordinate scaling element of the 3x3
affine transformation matrix. | double | m02The X coordinate of the translation element of the
3x3 affine transformation matrix. | double | m12The Y coordinate of the translation element of the
3x3 affine transformation matrix. | transient int | stateThis field keeps track of which components of the matrix need to
be applied when performing a transformation. | private transient int | typeThis field caches the current transformation type of the matrix. | private static final int[] | rot90conversion | private static final long | serialVersionUID |
Constructors Summary |
---|
private AffineTransform(double m00, double m10, double m01, double m11, double m02, double m12, int state)
this.m00 = m00;
this.m10 = m10;
this.m01 = m01;
this.m11 = m11;
this.m02 = m02;
this.m12 = m12;
this.state = state;
this.type = TYPE_UNKNOWN;
| public AffineTransform()Constructs a new AffineTransform representing the
Identity transformation.
m00 = m11 = 1.0;
// m01 = m10 = m02 = m12 = 0.0; /* Not needed. */
// state = APPLY_IDENTITY; /* Not needed. */
// type = TYPE_IDENTITY; /* Not needed. */
| public AffineTransform(AffineTransform Tx)Constructs a new AffineTransform that is a copy of
the specified AffineTransform object.
this.m00 = Tx.m00;
this.m10 = Tx.m10;
this.m01 = Tx.m01;
this.m11 = Tx.m11;
this.m02 = Tx.m02;
this.m12 = Tx.m12;
this.state = Tx.state;
this.type = Tx.type;
| public AffineTransform(float m00, float m10, float m01, float m11, float m02, float m12)Constructs a new AffineTransform from 6 floating point
values representing the 6 specifiable entries of the 3x3
transformation matrix.
this.m00 = m00;
this.m10 = m10;
this.m01 = m01;
this.m11 = m11;
this.m02 = m02;
this.m12 = m12;
updateState();
| public AffineTransform(float[] flatmatrix)Constructs a new AffineTransform from an array of
floating point values representing either the 4 non-translation
enries or the 6 specifiable entries of the 3x3 transformation
matrix. The values are retrieved from the array as
{ m00 m10 m01 m11 [m02 m12]}.
m00 = flatmatrix[0];
m10 = flatmatrix[1];
m01 = flatmatrix[2];
m11 = flatmatrix[3];
if (flatmatrix.length > 5) {
m02 = flatmatrix[4];
m12 = flatmatrix[5];
}
updateState();
| public AffineTransform(double m00, double m10, double m01, double m11, double m02, double m12)Constructs a new AffineTransform from 6 double
precision values representing the 6 specifiable entries of the 3x3
transformation matrix.
this.m00 = m00;
this.m10 = m10;
this.m01 = m01;
this.m11 = m11;
this.m02 = m02;
this.m12 = m12;
updateState();
| public AffineTransform(double[] flatmatrix)Constructs a new AffineTransform from an array of
double precision values representing either the 4 non-translation
entries or the 6 specifiable entries of the 3x3 transformation
matrix. The values are retrieved from the array as
{ m00 m10 m01 m11 [m02 m12]}.
m00 = flatmatrix[0];
m10 = flatmatrix[1];
m01 = flatmatrix[2];
m11 = flatmatrix[3];
if (flatmatrix.length > 5) {
m02 = flatmatrix[4];
m12 = flatmatrix[5];
}
updateState();
|
Methods Summary |
---|
private static double | _matround(double matval)
return Math.rint(matval * 1E15) / 1E15;
| private void | calculateType()This is the utility function to calculate the flag bits when
they have not been cached.
int ret = TYPE_IDENTITY;
boolean sgn0, sgn1;
double M0, M1, M2, M3;
updateState();
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
ret = TYPE_TRANSLATION;
/* NOBREAK */
case (APPLY_SHEAR | APPLY_SCALE):
if ((M0 = m00) * (M2 = m01) + (M3 = m10) * (M1 = m11) != 0) {
// Transformed unit vectors are not perpendicular...
this.type = TYPE_GENERAL_TRANSFORM;
return;
}
sgn0 = (M0 >= 0.0);
sgn1 = (M1 >= 0.0);
if (sgn0 == sgn1) {
// sgn(M0) == sgn(M1) therefore sgn(M2) == -sgn(M3)
// This is the "unflipped" (right-handed) state
if (M0 != M1 || M2 != -M3) {
ret |= (TYPE_GENERAL_ROTATION | TYPE_GENERAL_SCALE);
} else if (M0 * M1 - M2 * M3 != 1.0) {
ret |= (TYPE_GENERAL_ROTATION | TYPE_UNIFORM_SCALE);
} else {
ret |= TYPE_GENERAL_ROTATION;
}
} else {
// sgn(M0) == -sgn(M1) therefore sgn(M2) == sgn(M3)
// This is the "flipped" (left-handed) state
if (M0 != -M1 || M2 != M3) {
ret |= (TYPE_GENERAL_ROTATION |
TYPE_FLIP |
TYPE_GENERAL_SCALE);
} else if (M0 * M1 - M2 * M3 != 1.0) {
ret |= (TYPE_GENERAL_ROTATION |
TYPE_FLIP |
TYPE_UNIFORM_SCALE);
} else {
ret |= (TYPE_GENERAL_ROTATION | TYPE_FLIP);
}
}
break;
case (APPLY_SHEAR | APPLY_TRANSLATE):
ret = TYPE_TRANSLATION;
/* NOBREAK */
case (APPLY_SHEAR):
sgn0 = ((M0 = m01) >= 0.0);
sgn1 = ((M1 = m10) >= 0.0);
if (sgn0 != sgn1) {
// Different signs - simple 90 degree rotation
if (M0 != -M1) {
ret |= (TYPE_QUADRANT_ROTATION | TYPE_GENERAL_SCALE);
} else if (M0 != 1.0 && M0 != -1.0) {
ret |= (TYPE_QUADRANT_ROTATION | TYPE_UNIFORM_SCALE);
} else {
ret |= TYPE_QUADRANT_ROTATION;
}
} else {
// Same signs - 90 degree rotation plus an axis flip too
if (M0 == M1) {
ret |= (TYPE_QUADRANT_ROTATION |
TYPE_FLIP |
TYPE_UNIFORM_SCALE);
} else {
ret |= (TYPE_QUADRANT_ROTATION |
TYPE_FLIP |
TYPE_GENERAL_SCALE);
}
}
break;
case (APPLY_SCALE | APPLY_TRANSLATE):
ret = TYPE_TRANSLATION;
/* NOBREAK */
case (APPLY_SCALE):
sgn0 = ((M0 = m00) >= 0.0);
sgn1 = ((M1 = m11) >= 0.0);
if (sgn0 == sgn1) {
if (sgn0) {
// Both scaling factors non-negative - simple scale
// Note: APPLY_SCALE implies M0, M1 are not both 1
if (M0 == M1) {
ret |= TYPE_UNIFORM_SCALE;
} else {
ret |= TYPE_GENERAL_SCALE;
}
} else {
// Both scaling factors negative - 180 degree rotation
if (M0 != M1) {
ret |= (TYPE_QUADRANT_ROTATION | TYPE_GENERAL_SCALE);
} else if (M0 != -1.0) {
ret |= (TYPE_QUADRANT_ROTATION | TYPE_UNIFORM_SCALE);
} else {
ret |= TYPE_QUADRANT_ROTATION;
}
}
} else {
// Scaling factor signs different - flip about some axis
if (M0 == -M1) {
if (M0 == 1.0 || M0 == -1.0) {
ret |= TYPE_FLIP;
} else {
ret |= (TYPE_FLIP | TYPE_UNIFORM_SCALE);
}
} else {
ret |= (TYPE_FLIP | TYPE_GENERAL_SCALE);
}
}
break;
case (APPLY_TRANSLATE):
ret = TYPE_TRANSLATION;
break;
case (APPLY_IDENTITY):
break;
}
this.type = ret;
| public java.lang.Object | clone()Returns a copy of this AffineTransform object.
try {
return super.clone();
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError();
}
| public void | concatenate(java.awt.geom.AffineTransform Tx)Concatenates an AffineTransform Tx to
this AffineTransform Cx in the most commonly useful
way to provide a new user space
that is mapped to the former user space by Tx .
Cx is updated to perform the combined transformation.
Transforming a point p by the updated transform Cx' is
equivalent to first transforming p by Tx and then
transforming the result by the original transform Cx like this:
Cx'(p) = Cx(Tx(p))
In matrix notation, if this transform Cx is
represented by the matrix [this] and Tx is represented
by the matrix [Tx] then this method does the following:
[this] = [this] x [Tx]
double M0, M1;
double T00, T01, T10, T11;
double T02, T12;
int mystate = state;
int txstate = Tx.state;
switch ((txstate << HI_SHIFT) | mystate) {
/* ---------- Tx == IDENTITY cases ---------- */
case (HI_IDENTITY | APPLY_IDENTITY):
case (HI_IDENTITY | APPLY_TRANSLATE):
case (HI_IDENTITY | APPLY_SCALE):
case (HI_IDENTITY | APPLY_SCALE | APPLY_TRANSLATE):
case (HI_IDENTITY | APPLY_SHEAR):
case (HI_IDENTITY | APPLY_SHEAR | APPLY_TRANSLATE):
case (HI_IDENTITY | APPLY_SHEAR | APPLY_SCALE):
case (HI_IDENTITY | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
return;
/* ---------- this == IDENTITY cases ---------- */
case (HI_SHEAR | HI_SCALE | HI_TRANSLATE | APPLY_IDENTITY):
m01 = Tx.m01;
m10 = Tx.m10;
/* NOBREAK */
case (HI_SCALE | HI_TRANSLATE | APPLY_IDENTITY):
m00 = Tx.m00;
m11 = Tx.m11;
/* NOBREAK */
case (HI_TRANSLATE | APPLY_IDENTITY):
m02 = Tx.m02;
m12 = Tx.m12;
state = txstate;
type = Tx.type;
return;
case (HI_SHEAR | HI_SCALE | APPLY_IDENTITY):
m01 = Tx.m01;
m10 = Tx.m10;
/* NOBREAK */
case (HI_SCALE | APPLY_IDENTITY):
m00 = Tx.m00;
m11 = Tx.m11;
state = txstate;
type = Tx.type;
return;
case (HI_SHEAR | HI_TRANSLATE | APPLY_IDENTITY):
m02 = Tx.m02;
m12 = Tx.m12;
/* NOBREAK */
case (HI_SHEAR | APPLY_IDENTITY):
m01 = Tx.m01;
m10 = Tx.m10;
m00 = m11 = 0.0;
state = txstate;
type = Tx.type;
return;
/* ---------- Tx == TRANSLATE cases ---------- */
case (HI_TRANSLATE | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
case (HI_TRANSLATE | APPLY_SHEAR | APPLY_SCALE):
case (HI_TRANSLATE | APPLY_SHEAR | APPLY_TRANSLATE):
case (HI_TRANSLATE | APPLY_SHEAR):
case (HI_TRANSLATE | APPLY_SCALE | APPLY_TRANSLATE):
case (HI_TRANSLATE | APPLY_SCALE):
case (HI_TRANSLATE | APPLY_TRANSLATE):
translate(Tx.m02, Tx.m12);
return;
/* ---------- Tx == SCALE cases ---------- */
case (HI_SCALE | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
case (HI_SCALE | APPLY_SHEAR | APPLY_SCALE):
case (HI_SCALE | APPLY_SHEAR | APPLY_TRANSLATE):
case (HI_SCALE | APPLY_SHEAR):
case (HI_SCALE | APPLY_SCALE | APPLY_TRANSLATE):
case (HI_SCALE | APPLY_SCALE):
case (HI_SCALE | APPLY_TRANSLATE):
scale(Tx.m00, Tx.m11);
return;
/* ---------- Tx == SHEAR cases ---------- */
case (HI_SHEAR | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
case (HI_SHEAR | APPLY_SHEAR | APPLY_SCALE):
T01 = Tx.m01; T10 = Tx.m10;
M0 = m00;
m00 = m01 * T10;
m01 = M0 * T01;
M0 = m10;
m10 = m11 * T10;
m11 = M0 * T01;
type = TYPE_UNKNOWN;
return;
case (HI_SHEAR | APPLY_SHEAR | APPLY_TRANSLATE):
case (HI_SHEAR | APPLY_SHEAR):
m00 = m01 * Tx.m10;
m01 = 0.0;
m11 = m10 * Tx.m01;
m10 = 0.0;
state = mystate ^ (APPLY_SHEAR | APPLY_SCALE);
type = TYPE_UNKNOWN;
return;
case (HI_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
case (HI_SHEAR | APPLY_SCALE):
m01 = m00 * Tx.m01;
m00 = 0.0;
m10 = m11 * Tx.m10;
m11 = 0.0;
state = mystate ^ (APPLY_SHEAR | APPLY_SCALE);
type = TYPE_UNKNOWN;
return;
case (HI_SHEAR | APPLY_TRANSLATE):
m00 = 0.0;
m01 = Tx.m01;
m10 = Tx.m10;
m11 = 0.0;
state = APPLY_TRANSLATE | APPLY_SHEAR;
type = TYPE_UNKNOWN;
return;
}
// If Tx has more than one attribute, it is not worth optimizing
// all of those cases...
T00 = Tx.m00; T01 = Tx.m01; T02 = Tx.m02;
T10 = Tx.m10; T11 = Tx.m11; T12 = Tx.m12;
switch (mystate) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE):
state = mystate | txstate;
/* NOBREAK */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
M0 = m00;
M1 = m01;
m00 = T00 * M0 + T10 * M1;
m01 = T01 * M0 + T11 * M1;
m02 += T02 * M0 + T12 * M1;
M0 = m10;
M1 = m11;
m10 = T00 * M0 + T10 * M1;
m11 = T01 * M0 + T11 * M1;
m12 += T02 * M0 + T12 * M1;
type = TYPE_UNKNOWN;
return;
case (APPLY_SHEAR | APPLY_TRANSLATE):
case (APPLY_SHEAR):
M0 = m01;
m00 = T10 * M0;
m01 = T11 * M0;
m02 += T12 * M0;
M0 = m10;
m10 = T00 * M0;
m11 = T01 * M0;
m12 += T02 * M0;
break;
case (APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SCALE):
M0 = m00;
m00 = T00 * M0;
m01 = T01 * M0;
m02 += T02 * M0;
M0 = m11;
m10 = T10 * M0;
m11 = T11 * M0;
m12 += T12 * M0;
break;
case (APPLY_TRANSLATE):
m00 = T00;
m01 = T01;
m02 += T02;
m10 = T10;
m11 = T11;
m12 += T12;
state = txstate | APPLY_TRANSLATE;
type = TYPE_UNKNOWN;
return;
}
updateState();
| public java.awt.geom.AffineTransform | createInverse()Returns an AffineTransform object representing the
inverse transformation.
The inverse transform Tx' of this transform Tx
maps coordinates transformed by Tx back
to their original coordinates.
In other words, Tx'(Tx(p)) = p = Tx(Tx'(p)).
If this transform maps all coordinates onto a point or a line
then it will not have an inverse, since coordinates that do
not lie on the destination point or line will not have an inverse
mapping.
The getDeterminant method can be used to determine if this
transform has no inverse, in which case an exception will be
thrown if the createInverse method is called.
double det;
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
det = m00 * m11 - m01 * m10;
if (Math.abs(det) <= Double.MIN_VALUE) {
throw new NoninvertibleTransformException("Determinant is "+
det);
}
return new AffineTransform( m11 / det, -m10 / det,
-m01 / det, m00 / det,
(m01 * m12 - m11 * m02) / det,
(m10 * m02 - m00 * m12) / det,
(APPLY_SHEAR |
APPLY_SCALE |
APPLY_TRANSLATE));
case (APPLY_SHEAR | APPLY_SCALE):
det = m00 * m11 - m01 * m10;
if (Math.abs(det) <= Double.MIN_VALUE) {
throw new NoninvertibleTransformException("Determinant is "+
det);
}
return new AffineTransform( m11 / det, -m10 / det,
-m01 / det, m00 / det,
0.0, 0.0,
(APPLY_SHEAR | APPLY_SCALE));
case (APPLY_SHEAR | APPLY_TRANSLATE):
if (m01 == 0.0 || m10 == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
return new AffineTransform( 0.0, 1.0 / m01,
1.0 / m10, 0.0,
-m12 / m10, -m02 / m01,
(APPLY_SHEAR | APPLY_TRANSLATE));
case (APPLY_SHEAR):
if (m01 == 0.0 || m10 == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
return new AffineTransform(0.0, 1.0 / m01,
1.0 / m10, 0.0,
0.0, 0.0,
(APPLY_SHEAR));
case (APPLY_SCALE | APPLY_TRANSLATE):
if (m00 == 0.0 || m11 == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
return new AffineTransform( 1.0 / m00, 0.0,
0.0, 1.0 / m11,
-m02 / m00, -m12 / m11,
(APPLY_SCALE | APPLY_TRANSLATE));
case (APPLY_SCALE):
if (m00 == 0.0 || m11 == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
return new AffineTransform(1.0 / m00, 0.0,
0.0, 1.0 / m11,
0.0, 0.0,
(APPLY_SCALE));
case (APPLY_TRANSLATE):
return new AffineTransform( 1.0, 0.0,
0.0, 1.0,
-m02, -m12,
(APPLY_TRANSLATE));
case (APPLY_IDENTITY):
return new AffineTransform();
}
/* NOTREACHED */
| public java.awt.Shape | createTransformedShape(java.awt.Shape pSrc)Returns a new {@link Shape} object defined by the geometry of the
specified Shape after it has been transformed by
this transform.
if (pSrc == null) {
return null;
}
return new Path2D.Double(pSrc, this);
| public java.awt.geom.Point2D | deltaTransform(java.awt.geom.Point2D ptSrc, java.awt.geom.Point2D ptDst)Transforms the relative distance vector specified by
ptSrc and stores the result in ptDst .
A relative distance vector is transformed without applying the
translation components of the affine transformation matrix
using the following equations:
[ x' ] [ m00 m01 (m02) ] [ x ] [ m00x + m01y ]
[ y' ] = [ m10 m11 (m12) ] [ y ] = [ m10x + m11y ]
[ (1) ] [ (0) (0) ( 1 ) ] [ (1) ] [ (1) ]
If ptDst is null , a new
Point2D object is allocated and then the result of the
transform is stored in this object.
In either case, ptDst , which contains the
transformed point, is returned for convenience.
If ptSrc and ptDst are the same object,
the input point is correctly overwritten with the transformed
point.
if (ptDst == null) {
if (ptSrc instanceof Point2D.Double) {
ptDst = new Point2D.Double();
} else {
ptDst = new Point2D.Float();
}
}
// Copy source coords into local variables in case src == dst
double x = ptSrc.getX();
double y = ptSrc.getY();
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SHEAR | APPLY_SCALE):
ptDst.setLocation(x * m00 + y * m01, x * m10 + y * m11);
return ptDst;
case (APPLY_SHEAR | APPLY_TRANSLATE):
case (APPLY_SHEAR):
ptDst.setLocation(y * m01, x * m10);
return ptDst;
case (APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SCALE):
ptDst.setLocation(x * m00, y * m11);
return ptDst;
case (APPLY_TRANSLATE):
case (APPLY_IDENTITY):
ptDst.setLocation(x, y);
return ptDst;
}
/* NOTREACHED */
| public void | deltaTransform(double[] srcPts, int srcOff, double[] dstPts, int dstOff, int numPts)Transforms an array of relative distance vectors by this
transform.
A relative distance vector is transformed without applying the
translation components of the affine transformation matrix
using the following equations:
[ x' ] [ m00 m01 (m02) ] [ x ] [ m00x + m01y ]
[ y' ] = [ m10 m11 (m12) ] [ y ] = [ m10x + m11y ]
[ (1) ] [ (0) (0) ( 1 ) ] [ (1) ] [ (1) ]
The two coordinate array sections can be exactly the same or
can be overlapping sections of the same array without affecting the
validity of the results.
This method ensures that no source coordinates are
overwritten by a previous operation before they can be transformed.
The coordinates are stored in the arrays starting at the indicated
offset in the order [x0, y0, x1, y1, ..., xn, yn] .
double M00, M01, M10, M11; // For caching
if (dstPts == srcPts &&
dstOff > srcOff && dstOff < srcOff + numPts * 2)
{
// If the arrays overlap partially with the destination higher
// than the source and we transform the coordinates normally
// we would overwrite some of the later source coordinates
// with results of previous transformations.
// To get around this we use arraycopy to copy the points
// to their final destination with correct overwrite
// handling and then transform them in place in the new
// safer location.
System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2);
// srcPts = dstPts; // They are known to be equal.
srcOff = dstOff;
}
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SHEAR | APPLY_SCALE):
M00 = m00; M01 = m01;
M10 = m10; M11 = m11;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
double y = srcPts[srcOff++];
dstPts[dstOff++] = x * M00 + y * M01;
dstPts[dstOff++] = x * M10 + y * M11;
}
return;
case (APPLY_SHEAR | APPLY_TRANSLATE):
case (APPLY_SHEAR):
M01 = m01; M10 = m10;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
dstPts[dstOff++] = srcPts[srcOff++] * M01;
dstPts[dstOff++] = x * M10;
}
return;
case (APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SCALE):
M00 = m00; M11 = m11;
while (--numPts >= 0) {
dstPts[dstOff++] = srcPts[srcOff++] * M00;
dstPts[dstOff++] = srcPts[srcOff++] * M11;
}
return;
case (APPLY_TRANSLATE):
case (APPLY_IDENTITY):
if (srcPts != dstPts || srcOff != dstOff) {
System.arraycopy(srcPts, srcOff, dstPts, dstOff,
numPts * 2);
}
return;
}
/* NOTREACHED */
| public boolean | equals(java.lang.Object obj)Returns true if this AffineTransform
represents the same affine coordinate transform as the specified
argument.
if (!(obj instanceof AffineTransform)) {
return false;
}
AffineTransform a = (AffineTransform)obj;
return ((m00 == a.m00) && (m01 == a.m01) && (m02 == a.m02) &&
(m10 == a.m10) && (m11 == a.m11) && (m12 == a.m12));
| public double | getDeterminant()Returns the determinant of the matrix representation of the transform.
The determinant is useful both to determine if the transform can
be inverted and to get a single value representing the
combined X and Y scaling of the transform.
If the determinant is non-zero, then this transform is
invertible and the various methods that depend on the inverse
transform do not need to throw a
{@link NoninvertibleTransformException}.
If the determinant is zero then this transform can not be
inverted since the transform maps all input coordinates onto
a line or a point.
If the determinant is near enough to zero then inverse transform
operations might not carry enough precision to produce meaningful
results.
If this transform represents a uniform scale, as indicated by
the getType method then the determinant also
represents the square of the uniform scale factor by which all of
the points are expanded from or contracted towards the origin.
If this transform represents a non-uniform scale or more general
transform then the determinant is not likely to represent a
value useful for any purpose other than determining if inverse
transforms are possible.
Mathematically, the determinant is calculated using the formula:
| m00 m01 m02 |
| m10 m11 m12 | = m00 * m11 - m01 * m10
| 0 0 1 |
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SHEAR | APPLY_SCALE):
return m00 * m11 - m01 * m10;
case (APPLY_SHEAR | APPLY_TRANSLATE):
case (APPLY_SHEAR):
return -(m01 * m10);
case (APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SCALE):
return m00 * m11;
case (APPLY_TRANSLATE):
case (APPLY_IDENTITY):
return 1.0;
}
| public void | getMatrix(double[] flatmatrix)Retrieves the 6 specifiable values in the 3x3 affine transformation
matrix and places them into an array of double precisions values.
The values are stored in the array as
{ m00 m10 m01 m11 m02 m12 }.
An array of 4 doubles can also be specified, in which case only the
first four elements representing the non-transform
parts of the array are retrieved and the values are stored into
the array as { m00 m10 m01 m11 }
flatmatrix[0] = m00;
flatmatrix[1] = m10;
flatmatrix[2] = m01;
flatmatrix[3] = m11;
if (flatmatrix.length > 5) {
flatmatrix[4] = m02;
flatmatrix[5] = m12;
}
| public static java.awt.geom.AffineTransform | getQuadrantRotateInstance(int numquadrants)Returns a transform that rotates coordinates by the specified
number of quadrants.
This operation is equivalent to calling:
AffineTransform.getRotateInstance(numquadrants * Math.PI / 2.0);
Rotating by a positive number of quadrants rotates points on
the positive X axis toward the positive Y axis.
AffineTransform Tx = new AffineTransform();
Tx.setToQuadrantRotation(numquadrants);
return Tx;
| public static java.awt.geom.AffineTransform | getQuadrantRotateInstance(int numquadrants, double anchorx, double anchory)Returns a transform that rotates coordinates by the specified
number of quadrants around the specified anchor point.
This operation is equivalent to calling:
AffineTransform.getRotateInstance(numquadrants * Math.PI / 2.0,
anchorx, anchory);
Rotating by a positive number of quadrants rotates points on
the positive X axis toward the positive Y axis.
AffineTransform Tx = new AffineTransform();
Tx.setToQuadrantRotation(numquadrants, anchorx, anchory);
return Tx;
| public static java.awt.geom.AffineTransform | getRotateInstance(double theta, double anchorx, double anchory)Returns a transform that rotates coordinates around an anchor point.
This operation is equivalent to translating the coordinates so
that the anchor point is at the origin (S1), then rotating them
about the new origin (S2), and finally translating so that the
intermediate origin is restored to the coordinates of the original
anchor point (S3).
This operation is equivalent to the following sequence of calls:
AffineTransform Tx = new AffineTransform();
Tx.translate(anchorx, anchory); // S3: final translation
Tx.rotate(theta); // S2: rotate around anchor
Tx.translate(-anchorx, -anchory); // S1: translate anchor to origin
The matrix representing the returned transform is:
[ cos(theta) -sin(theta) x-x*cos+y*sin ]
[ sin(theta) cos(theta) y-x*sin-y*cos ]
[ 0 0 1 ]
Rotating by a positive angle theta rotates points on the positive
X axis toward the positive Y axis.
Note also the discussion of
Handling 90-Degree Rotations
above.
AffineTransform Tx = new AffineTransform();
Tx.setToRotation(theta, anchorx, anchory);
return Tx;
| public static java.awt.geom.AffineTransform | getRotateInstance(double vecx, double vecy)Returns a transform that rotates coordinates according to
a rotation vector.
All coordinates rotate about the origin by the same amount.
The amount of rotation is such that coordinates along the former
positive X axis will subsequently align with the vector pointing
from the origin to the specified vector coordinates.
If both vecx and vecy are 0.0,
an identity transform is returned.
This operation is equivalent to calling:
AffineTransform.getRotateInstance(Math.atan2(vecy, vecx));
AffineTransform Tx = new AffineTransform();
Tx.setToRotation(vecx, vecy);
return Tx;
| public static java.awt.geom.AffineTransform | getRotateInstance(double vecx, double vecy, double anchorx, double anchory)Returns a transform that rotates coordinates around an anchor
point accordinate to a rotation vector.
All coordinates rotate about the specified anchor coordinates
by the same amount.
The amount of rotation is such that coordinates along the former
positive X axis will subsequently align with the vector pointing
from the origin to the specified vector coordinates.
If both vecx and vecy are 0.0,
an identity transform is returned.
This operation is equivalent to calling:
AffineTransform.getRotateInstance(Math.atan2(vecy, vecx),
anchorx, anchory);
AffineTransform Tx = new AffineTransform();
Tx.setToRotation(vecx, vecy, anchorx, anchory);
return Tx;
| public static java.awt.geom.AffineTransform | getRotateInstance(double theta)Returns a transform representing a rotation transformation.
The matrix representing the returned transform is:
[ cos(theta) -sin(theta) 0 ]
[ sin(theta) cos(theta) 0 ]
[ 0 0 1 ]
Rotating by a positive angle theta rotates points on the positive
X axis toward the positive Y axis.
Note also the discussion of
Handling 90-Degree Rotations
above.
AffineTransform Tx = new AffineTransform();
Tx.setToRotation(theta);
return Tx;
| public static java.awt.geom.AffineTransform | getScaleInstance(double sx, double sy)Returns a transform representing a scaling transformation.
The matrix representing the returned transform is:
[ sx 0 0 ]
[ 0 sy 0 ]
[ 0 0 1 ]
AffineTransform Tx = new AffineTransform();
Tx.setToScale(sx, sy);
return Tx;
| public double | getScaleX()Returns the X coordinate scaling element (m00) of the 3x3
affine transformation matrix.
return m00;
| public double | getScaleY()Returns the Y coordinate scaling element (m11) of the 3x3
affine transformation matrix.
return m11;
| public static java.awt.geom.AffineTransform | getShearInstance(double shx, double shy)Returns a transform representing a shearing transformation.
The matrix representing the returned transform is:
[ 1 shx 0 ]
[ shy 1 0 ]
[ 0 0 1 ]
AffineTransform Tx = new AffineTransform();
Tx.setToShear(shx, shy);
return Tx;
| public double | getShearX()Returns the X coordinate shearing element (m01) of the 3x3
affine transformation matrix.
return m01;
| public double | getShearY()Returns the Y coordinate shearing element (m10) of the 3x3
affine transformation matrix.
return m10;
| public static java.awt.geom.AffineTransform | getTranslateInstance(double tx, double ty)Returns a transform representing a translation transformation.
The matrix representing the returned transform is:
[ 1 0 tx ]
[ 0 1 ty ]
[ 0 0 1 ]
AffineTransform Tx = new AffineTransform();
Tx.setToTranslation(tx, ty);
return Tx;
| public double | getTranslateX()Returns the X coordinate of the translation element (m02) of the
3x3 affine transformation matrix.
return m02;
| public double | getTranslateY()Returns the Y coordinate of the translation element (m12) of the
3x3 affine transformation matrix.
return m12;
| public int | getType()Retrieves the flag bits describing the conversion properties of
this transform.
The return value is either one of the constants TYPE_IDENTITY
or TYPE_GENERAL_TRANSFORM, or a combination of the
appriopriate flag bits.
A valid combination of flag bits is an exclusive OR operation
that can combine
the TYPE_TRANSLATION flag bit
in addition to either of the
TYPE_UNIFORM_SCALE or TYPE_GENERAL_SCALE flag bits
as well as either of the
TYPE_QUADRANT_ROTATION or TYPE_GENERAL_ROTATION flag bits.
if (type == TYPE_UNKNOWN) {
calculateType();
}
return type;
| public int | hashCode()Returns the hashcode for this transform.
long bits = Double.doubleToLongBits(m00);
bits = bits * 31 + Double.doubleToLongBits(m01);
bits = bits * 31 + Double.doubleToLongBits(m02);
bits = bits * 31 + Double.doubleToLongBits(m10);
bits = bits * 31 + Double.doubleToLongBits(m11);
bits = bits * 31 + Double.doubleToLongBits(m12);
return (((int) bits) ^ ((int) (bits >> 32)));
| public java.awt.geom.Point2D | inverseTransform(java.awt.geom.Point2D ptSrc, java.awt.geom.Point2D ptDst)Inverse transforms the specified ptSrc and stores the
result in ptDst .
If ptDst is null , a new
Point2D object is allocated and then the result of the
transform is stored in this object.
In either case, ptDst , which contains the transformed
point, is returned for convenience.
If ptSrc and ptDst are the same
object, the input point is correctly overwritten with the
transformed point.
if (ptDst == null) {
if (ptSrc instanceof Point2D.Double) {
ptDst = new Point2D.Double();
} else {
ptDst = new Point2D.Float();
}
}
// Copy source coords into local variables in case src == dst
double x = ptSrc.getX();
double y = ptSrc.getY();
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
x -= m02;
y -= m12;
/* NOBREAK */
case (APPLY_SHEAR | APPLY_SCALE):
double det = m00 * m11 - m01 * m10;
if (Math.abs(det) <= Double.MIN_VALUE) {
throw new NoninvertibleTransformException("Determinant is "+
det);
}
ptDst.setLocation((x * m11 - y * m01) / det,
(y * m00 - x * m10) / det);
return ptDst;
case (APPLY_SHEAR | APPLY_TRANSLATE):
x -= m02;
y -= m12;
/* NOBREAK */
case (APPLY_SHEAR):
if (m01 == 0.0 || m10 == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
ptDst.setLocation(y / m10, x / m01);
return ptDst;
case (APPLY_SCALE | APPLY_TRANSLATE):
x -= m02;
y -= m12;
/* NOBREAK */
case (APPLY_SCALE):
if (m00 == 0.0 || m11 == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
ptDst.setLocation(x / m00, y / m11);
return ptDst;
case (APPLY_TRANSLATE):
ptDst.setLocation(x - m02, y - m12);
return ptDst;
case (APPLY_IDENTITY):
ptDst.setLocation(x, y);
return ptDst;
}
/* NOTREACHED */
| public void | inverseTransform(double[] srcPts, int srcOff, double[] dstPts, int dstOff, int numPts)Inverse transforms an array of double precision coordinates by
this transform.
The two coordinate array sections can be exactly the same or
can be overlapping sections of the same array without affecting the
validity of the results.
This method ensures that no source coordinates are
overwritten by a previous operation before they can be transformed.
The coordinates are stored in the arrays starting at the specified
offset in the order [x0, y0, x1, y1, ..., xn, yn] .
double M00, M01, M02, M10, M11, M12; // For caching
double det;
if (dstPts == srcPts &&
dstOff > srcOff && dstOff < srcOff + numPts * 2)
{
// If the arrays overlap partially with the destination higher
// than the source and we transform the coordinates normally
// we would overwrite some of the later source coordinates
// with results of previous transformations.
// To get around this we use arraycopy to copy the points
// to their final destination with correct overwrite
// handling and then transform them in place in the new
// safer location.
System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2);
// srcPts = dstPts; // They are known to be equal.
srcOff = dstOff;
}
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
M00 = m00; M01 = m01; M02 = m02;
M10 = m10; M11 = m11; M12 = m12;
det = M00 * M11 - M01 * M10;
if (Math.abs(det) <= Double.MIN_VALUE) {
throw new NoninvertibleTransformException("Determinant is "+
det);
}
while (--numPts >= 0) {
double x = srcPts[srcOff++] - M02;
double y = srcPts[srcOff++] - M12;
dstPts[dstOff++] = (x * M11 - y * M01) / det;
dstPts[dstOff++] = (y * M00 - x * M10) / det;
}
return;
case (APPLY_SHEAR | APPLY_SCALE):
M00 = m00; M01 = m01;
M10 = m10; M11 = m11;
det = M00 * M11 - M01 * M10;
if (Math.abs(det) <= Double.MIN_VALUE) {
throw new NoninvertibleTransformException("Determinant is "+
det);
}
while (--numPts >= 0) {
double x = srcPts[srcOff++];
double y = srcPts[srcOff++];
dstPts[dstOff++] = (x * M11 - y * M01) / det;
dstPts[dstOff++] = (y * M00 - x * M10) / det;
}
return;
case (APPLY_SHEAR | APPLY_TRANSLATE):
M01 = m01; M02 = m02;
M10 = m10; M12 = m12;
if (M01 == 0.0 || M10 == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
while (--numPts >= 0) {
double x = srcPts[srcOff++] - M02;
dstPts[dstOff++] = (srcPts[srcOff++] - M12) / M10;
dstPts[dstOff++] = x / M01;
}
return;
case (APPLY_SHEAR):
M01 = m01; M10 = m10;
if (M01 == 0.0 || M10 == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
while (--numPts >= 0) {
double x = srcPts[srcOff++];
dstPts[dstOff++] = srcPts[srcOff++] / M10;
dstPts[dstOff++] = x / M01;
}
return;
case (APPLY_SCALE | APPLY_TRANSLATE):
M00 = m00; M02 = m02;
M11 = m11; M12 = m12;
if (M00 == 0.0 || M11 == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
while (--numPts >= 0) {
dstPts[dstOff++] = (srcPts[srcOff++] - M02) / M00;
dstPts[dstOff++] = (srcPts[srcOff++] - M12) / M11;
}
return;
case (APPLY_SCALE):
M00 = m00; M11 = m11;
if (M00 == 0.0 || M11 == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
while (--numPts >= 0) {
dstPts[dstOff++] = srcPts[srcOff++] / M00;
dstPts[dstOff++] = srcPts[srcOff++] / M11;
}
return;
case (APPLY_TRANSLATE):
M02 = m02; M12 = m12;
while (--numPts >= 0) {
dstPts[dstOff++] = srcPts[srcOff++] - M02;
dstPts[dstOff++] = srcPts[srcOff++] - M12;
}
return;
case (APPLY_IDENTITY):
if (srcPts != dstPts || srcOff != dstOff) {
System.arraycopy(srcPts, srcOff, dstPts, dstOff,
numPts * 2);
}
return;
}
/* NOTREACHED */
| public void | invert()Sets this transform to the inverse of itself.
The inverse transform Tx' of this transform Tx
maps coordinates transformed by Tx back
to their original coordinates.
In other words, Tx'(Tx(p)) = p = Tx(Tx'(p)).
If this transform maps all coordinates onto a point or a line
then it will not have an inverse, since coordinates that do
not lie on the destination point or line will not have an inverse
mapping.
The getDeterminant method can be used to determine if this
transform has no inverse, in which case an exception will be
thrown if the invert method is called.
double M00, M01, M02;
double M10, M11, M12;
double det;
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
M00 = m00; M01 = m01; M02 = m02;
M10 = m10; M11 = m11; M12 = m12;
det = M00 * M11 - M01 * M10;
if (Math.abs(det) <= Double.MIN_VALUE) {
throw new NoninvertibleTransformException("Determinant is "+
det);
}
m00 = M11 / det;
m10 = -M10 / det;
m01 = -M01 / det;
m11 = M00 / det;
m02 = (M01 * M12 - M11 * M02) / det;
m12 = (M10 * M02 - M00 * M12) / det;
break;
case (APPLY_SHEAR | APPLY_SCALE):
M00 = m00; M01 = m01;
M10 = m10; M11 = m11;
det = M00 * M11 - M01 * M10;
if (Math.abs(det) <= Double.MIN_VALUE) {
throw new NoninvertibleTransformException("Determinant is "+
det);
}
m00 = M11 / det;
m10 = -M10 / det;
m01 = -M01 / det;
m11 = M00 / det;
// m02 = 0.0;
// m12 = 0.0;
break;
case (APPLY_SHEAR | APPLY_TRANSLATE):
M01 = m01; M02 = m02;
M10 = m10; M12 = m12;
if (M01 == 0.0 || M10 == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
// m00 = 0.0;
m10 = 1.0 / M01;
m01 = 1.0 / M10;
// m11 = 0.0;
m02 = -M12 / M10;
m12 = -M02 / M01;
break;
case (APPLY_SHEAR):
M01 = m01;
M10 = m10;
if (M01 == 0.0 || M10 == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
// m00 = 0.0;
m10 = 1.0 / M01;
m01 = 1.0 / M10;
// m11 = 0.0;
// m02 = 0.0;
// m12 = 0.0;
break;
case (APPLY_SCALE | APPLY_TRANSLATE):
M00 = m00; M02 = m02;
M11 = m11; M12 = m12;
if (M00 == 0.0 || M11 == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
m00 = 1.0 / M00;
// m10 = 0.0;
// m01 = 0.0;
m11 = 1.0 / M11;
m02 = -M02 / M00;
m12 = -M12 / M11;
break;
case (APPLY_SCALE):
M00 = m00;
M11 = m11;
if (M00 == 0.0 || M11 == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
m00 = 1.0 / M00;
// m10 = 0.0;
// m01 = 0.0;
m11 = 1.0 / M11;
// m02 = 0.0;
// m12 = 0.0;
break;
case (APPLY_TRANSLATE):
// m00 = 1.0;
// m10 = 0.0;
// m01 = 0.0;
// m11 = 1.0;
m02 = -m02;
m12 = -m12;
break;
case (APPLY_IDENTITY):
// m00 = 1.0;
// m10 = 0.0;
// m01 = 0.0;
// m11 = 1.0;
// m02 = 0.0;
// m12 = 0.0;
break;
}
| public boolean | isIdentity()Returns true if this AffineTransform is
an identity transform.
return (state == APPLY_IDENTITY || (getType() == TYPE_IDENTITY));
| public void | preConcatenate(java.awt.geom.AffineTransform Tx)Concatenates an AffineTransform Tx to
this AffineTransform Cx
in a less commonly used way such that Tx modifies the
coordinate transformation relative to the absolute pixel
space rather than relative to the existing user space.
Cx is updated to perform the combined transformation.
Transforming a point p by the updated transform Cx' is
equivalent to first transforming p by the original transform
Cx and then transforming the result by
Tx like this:
Cx'(p) = Tx(Cx(p))
In matrix notation, if this transform Cx
is represented by the matrix [this] and Tx is
represented by the matrix [Tx] then this method does the
following:
[this] = [Tx] x [this]
double M0, M1;
double T00, T01, T10, T11;
double T02, T12;
int mystate = state;
int txstate = Tx.state;
switch ((txstate << HI_SHIFT) | mystate) {
case (HI_IDENTITY | APPLY_IDENTITY):
case (HI_IDENTITY | APPLY_TRANSLATE):
case (HI_IDENTITY | APPLY_SCALE):
case (HI_IDENTITY | APPLY_SCALE | APPLY_TRANSLATE):
case (HI_IDENTITY | APPLY_SHEAR):
case (HI_IDENTITY | APPLY_SHEAR | APPLY_TRANSLATE):
case (HI_IDENTITY | APPLY_SHEAR | APPLY_SCALE):
case (HI_IDENTITY | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
// Tx is IDENTITY...
return;
case (HI_TRANSLATE | APPLY_IDENTITY):
case (HI_TRANSLATE | APPLY_SCALE):
case (HI_TRANSLATE | APPLY_SHEAR):
case (HI_TRANSLATE | APPLY_SHEAR | APPLY_SCALE):
// Tx is TRANSLATE, this has no TRANSLATE
m02 = Tx.m02;
m12 = Tx.m12;
state = mystate | APPLY_TRANSLATE;
type |= TYPE_TRANSLATION;
return;
case (HI_TRANSLATE | APPLY_TRANSLATE):
case (HI_TRANSLATE | APPLY_SCALE | APPLY_TRANSLATE):
case (HI_TRANSLATE | APPLY_SHEAR | APPLY_TRANSLATE):
case (HI_TRANSLATE | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
// Tx is TRANSLATE, this has one too
m02 = m02 + Tx.m02;
m12 = m12 + Tx.m12;
return;
case (HI_SCALE | APPLY_TRANSLATE):
case (HI_SCALE | APPLY_IDENTITY):
// Only these two existing states need a new state
state = mystate | APPLY_SCALE;
/* NOBREAK */
case (HI_SCALE | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
case (HI_SCALE | APPLY_SHEAR | APPLY_SCALE):
case (HI_SCALE | APPLY_SHEAR | APPLY_TRANSLATE):
case (HI_SCALE | APPLY_SHEAR):
case (HI_SCALE | APPLY_SCALE | APPLY_TRANSLATE):
case (HI_SCALE | APPLY_SCALE):
// Tx is SCALE, this is anything
T00 = Tx.m00;
T11 = Tx.m11;
if ((mystate & APPLY_SHEAR) != 0) {
m01 = m01 * T00;
m10 = m10 * T11;
if ((mystate & APPLY_SCALE) != 0) {
m00 = m00 * T00;
m11 = m11 * T11;
}
} else {
m00 = m00 * T00;
m11 = m11 * T11;
}
if ((mystate & APPLY_TRANSLATE) != 0) {
m02 = m02 * T00;
m12 = m12 * T11;
}
type = TYPE_UNKNOWN;
return;
case (HI_SHEAR | APPLY_SHEAR | APPLY_TRANSLATE):
case (HI_SHEAR | APPLY_SHEAR):
mystate = mystate | APPLY_SCALE;
/* NOBREAK */
case (HI_SHEAR | APPLY_TRANSLATE):
case (HI_SHEAR | APPLY_IDENTITY):
case (HI_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
case (HI_SHEAR | APPLY_SCALE):
state = mystate ^ APPLY_SHEAR;
/* NOBREAK */
case (HI_SHEAR | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
case (HI_SHEAR | APPLY_SHEAR | APPLY_SCALE):
// Tx is SHEAR, this is anything
T01 = Tx.m01;
T10 = Tx.m10;
M0 = m00;
m00 = m10 * T01;
m10 = M0 * T10;
M0 = m01;
m01 = m11 * T01;
m11 = M0 * T10;
M0 = m02;
m02 = m12 * T01;
m12 = M0 * T10;
type = TYPE_UNKNOWN;
return;
}
// If Tx has more than one attribute, it is not worth optimizing
// all of those cases...
T00 = Tx.m00; T01 = Tx.m01; T02 = Tx.m02;
T10 = Tx.m10; T11 = Tx.m11; T12 = Tx.m12;
switch (mystate) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
M0 = m02;
M1 = m12;
T02 += M0 * T00 + M1 * T01;
T12 += M0 * T10 + M1 * T11;
/* NOBREAK */
case (APPLY_SHEAR | APPLY_SCALE):
m02 = T02;
m12 = T12;
M0 = m00;
M1 = m10;
m00 = M0 * T00 + M1 * T01;
m10 = M0 * T10 + M1 * T11;
M0 = m01;
M1 = m11;
m01 = M0 * T00 + M1 * T01;
m11 = M0 * T10 + M1 * T11;
break;
case (APPLY_SHEAR | APPLY_TRANSLATE):
M0 = m02;
M1 = m12;
T02 += M0 * T00 + M1 * T01;
T12 += M0 * T10 + M1 * T11;
/* NOBREAK */
case (APPLY_SHEAR):
m02 = T02;
m12 = T12;
M0 = m10;
m00 = M0 * T01;
m10 = M0 * T11;
M0 = m01;
m01 = M0 * T00;
m11 = M0 * T10;
break;
case (APPLY_SCALE | APPLY_TRANSLATE):
M0 = m02;
M1 = m12;
T02 += M0 * T00 + M1 * T01;
T12 += M0 * T10 + M1 * T11;
/* NOBREAK */
case (APPLY_SCALE):
m02 = T02;
m12 = T12;
M0 = m00;
m00 = M0 * T00;
m10 = M0 * T10;
M0 = m11;
m01 = M0 * T01;
m11 = M0 * T11;
break;
case (APPLY_TRANSLATE):
M0 = m02;
M1 = m12;
T02 += M0 * T00 + M1 * T01;
T12 += M0 * T10 + M1 * T11;
/* NOBREAK */
case (APPLY_IDENTITY):
m02 = T02;
m12 = T12;
m00 = T00;
m10 = T10;
m01 = T01;
m11 = T11;
state = mystate | txstate;
type = TYPE_UNKNOWN;
return;
}
updateState();
| public void | quadrantRotate(int numquadrants)Concatenates this transform with a transform that rotates
coordinates by the specified number of quadrants.
This is equivalent to calling:
rotate(numquadrants * Math.PI / 2.0);
Rotating by a positive number of quadrants rotates points on
the positive X axis toward the positive Y axis.
switch (numquadrants & 3) {
case 0:
break;
case 1:
rotate90();
break;
case 2:
rotate180();
break;
case 3:
rotate270();
break;
}
| public void | quadrantRotate(int numquadrants, double anchorx, double anchory)Concatenates this transform with a transform that rotates
coordinates by the specified number of quadrants around
the specified anchor point.
This method is equivalent to calling:
rotate(numquadrants * Math.PI / 2.0, anchorx, anchory);
Rotating by a positive number of quadrants rotates points on
the positive X axis toward the positive Y axis.
switch (numquadrants & 3) {
case 0:
return;
case 1:
m02 += anchorx * (m00 - m01) + anchory * (m01 + m00);
m12 += anchorx * (m10 - m11) + anchory * (m11 + m10);
rotate90();
break;
case 2:
m02 += anchorx * (m00 + m00) + anchory * (m01 + m01);
m12 += anchorx * (m10 + m10) + anchory * (m11 + m11);
rotate180();
break;
case 3:
m02 += anchorx * (m00 + m01) + anchory * (m01 - m00);
m12 += anchorx * (m10 + m11) + anchory * (m11 - m10);
rotate270();
break;
}
if (m02 == 0.0 && m12 == 0.0) {
state &= ~APPLY_TRANSLATE;
} else {
state |= APPLY_TRANSLATE;
}
| private void | readObject(java.io.ObjectInputStream s)
s.defaultReadObject();
updateState();
| public void | rotate(double theta)Concatenates this transform with a rotation transformation.
This is equivalent to calling concatenate(R), where R is an
AffineTransform represented by the following matrix:
[ cos(theta) -sin(theta) 0 ]
[ sin(theta) cos(theta) 0 ]
[ 0 0 1 ]
Rotating by a positive angle theta rotates points on the positive
X axis toward the positive Y axis.
Note also the discussion of
Handling 90-Degree Rotations
above.
double sin = Math.sin(theta);
if (sin == 1.0) {
rotate90();
} else if (sin == -1.0) {
rotate270();
} else {
double cos = Math.cos(theta);
if (cos == -1.0) {
rotate180();
} else if (cos != 1.0) {
double M0, M1;
M0 = m00;
M1 = m01;
m00 = cos * M0 + sin * M1;
m01 = -sin * M0 + cos * M1;
M0 = m10;
M1 = m11;
m10 = cos * M0 + sin * M1;
m11 = -sin * M0 + cos * M1;
updateState();
}
}
| public void | rotate(double theta, double anchorx, double anchory)Concatenates this transform with a transform that rotates
coordinates around an anchor point.
This operation is equivalent to translating the coordinates so
that the anchor point is at the origin (S1), then rotating them
about the new origin (S2), and finally translating so that the
intermediate origin is restored to the coordinates of the original
anchor point (S3).
This operation is equivalent to the following sequence of calls:
translate(anchorx, anchory); // S3: final translation
rotate(theta); // S2: rotate around anchor
translate(-anchorx, -anchory); // S1: translate anchor to origin
Rotating by a positive angle theta rotates points on the positive
X axis toward the positive Y axis.
Note also the discussion of
Handling 90-Degree Rotations
above.
// REMIND: Simple for now - optimize later
translate(anchorx, anchory);
rotate(theta);
translate(-anchorx, -anchory);
| public void | rotate(double vecx, double vecy)Concatenates this transform with a transform that rotates
coordinates according to a rotation vector.
All coordinates rotate about the origin by the same amount.
The amount of rotation is such that coordinates along the former
positive X axis will subsequently align with the vector pointing
from the origin to the specified vector coordinates.
If both vecx and vecy are 0.0,
no additional rotation is added to this transform.
This operation is equivalent to calling:
rotate(Math.atan2(vecy, vecx));
if (vecy == 0.0) {
if (vecx < 0.0) {
rotate180();
}
// If vecx > 0.0 - no rotation
// If vecx == 0.0 - undefined rotation - treat as no rotation
} else if (vecx == 0.0) {
if (vecy > 0.0) {
rotate90();
} else { // vecy must be < 0.0
rotate270();
}
} else {
double len = Math.sqrt(vecx * vecx + vecy * vecy);
double sin = vecy / len;
double cos = vecx / len;
double M0, M1;
M0 = m00;
M1 = m01;
m00 = cos * M0 + sin * M1;
m01 = -sin * M0 + cos * M1;
M0 = m10;
M1 = m11;
m10 = cos * M0 + sin * M1;
m11 = -sin * M0 + cos * M1;
updateState();
}
| public void | rotate(double vecx, double vecy, double anchorx, double anchory)Concatenates this transform with a transform that rotates
coordinates around an anchor point according to a rotation
vector.
All coordinates rotate about the specified anchor coordinates
by the same amount.
The amount of rotation is such that coordinates along the former
positive X axis will subsequently align with the vector pointing
from the origin to the specified vector coordinates.
If both vecx and vecy are 0.0,
the transform is not modified in any way.
This method is equivalent to calling:
rotate(Math.atan2(vecy, vecx), anchorx, anchory);
// REMIND: Simple for now - optimize later
translate(anchorx, anchory);
rotate(vecx, vecy);
translate(-anchorx, -anchory);
| private final void | rotate180()
m00 = -m00;
m11 = -m11;
int state = this.state;
if ((state & (APPLY_SHEAR)) != 0) {
// If there was a shear, then this rotation has no
// effect on the state.
m01 = -m01;
m10 = -m10;
} else {
// No shear means the SCALE state may toggle when
// m00 and m11 are negated.
if (m00 == 1.0 && m11 == 1.0) {
this.state = state & ~APPLY_SCALE;
} else {
this.state = state | APPLY_SCALE;
}
}
type = TYPE_UNKNOWN;
| private final void | rotate270()
double M0 = m00;
m00 = -m01;
m01 = M0;
M0 = m10;
m10 = -m11;
m11 = M0;
int state = rot90conversion[this.state];
if ((state & (APPLY_SHEAR | APPLY_SCALE)) == APPLY_SCALE &&
m00 == 1.0 && m11 == 1.0)
{
state -= APPLY_SCALE;
}
this.state = state;
type = TYPE_UNKNOWN;
| private final void | rotate90()
double M0 = m00;
m00 = m01;
m01 = -M0;
M0 = m10;
m10 = m11;
m11 = -M0;
int state = rot90conversion[this.state];
if ((state & (APPLY_SHEAR | APPLY_SCALE)) == APPLY_SCALE &&
m00 == 1.0 && m11 == 1.0)
{
state -= APPLY_SCALE;
}
this.state = state;
type = TYPE_UNKNOWN;
| public void | scale(double sx, double sy)Concatenates this transform with a scaling transformation.
This is equivalent to calling concatenate(S), where S is an
AffineTransform represented by the following matrix:
[ sx 0 0 ]
[ 0 sy 0 ]
[ 0 0 1 ]
int state = this.state;
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SHEAR | APPLY_SCALE):
m00 *= sx;
m11 *= sy;
/* NOBREAK */
case (APPLY_SHEAR | APPLY_TRANSLATE):
case (APPLY_SHEAR):
m01 *= sy;
m10 *= sx;
if (m01 == 0 && m10 == 0) {
state &= APPLY_TRANSLATE;
if (m00 == 1.0 && m11 == 1.0) {
this.type = (state == APPLY_IDENTITY
? TYPE_IDENTITY
: TYPE_TRANSLATION);
} else {
state |= APPLY_SCALE;
this.type = TYPE_UNKNOWN;
}
this.state = state;
}
return;
case (APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SCALE):
m00 *= sx;
m11 *= sy;
if (m00 == 1.0 && m11 == 1.0) {
this.state = (state &= APPLY_TRANSLATE);
this.type = (state == APPLY_IDENTITY
? TYPE_IDENTITY
: TYPE_TRANSLATION);
} else {
this.type = TYPE_UNKNOWN;
}
return;
case (APPLY_TRANSLATE):
case (APPLY_IDENTITY):
m00 = sx;
m11 = sy;
if (sx != 1.0 || sy != 1.0) {
this.state = state | APPLY_SCALE;
this.type = TYPE_UNKNOWN;
}
return;
}
| public void | setToIdentity()Resets this transform to the Identity transform.
m00 = m11 = 1.0;
m10 = m01 = m02 = m12 = 0.0;
state = APPLY_IDENTITY;
type = TYPE_IDENTITY;
| public void | setToQuadrantRotation(int numquadrants)Sets this transform to a rotation transformation that rotates
coordinates by the specified number of quadrants.
This operation is equivalent to calling:
setToRotation(numquadrants * Math.PI / 2.0);
Rotating by a positive number of quadrants rotates points on
the positive X axis toward the positive Y axis.
switch (numquadrants & 3) {
case 0:
m00 = 1.0;
m10 = 0.0;
m01 = 0.0;
m11 = 1.0;
m02 = 0.0;
m12 = 0.0;
state = APPLY_IDENTITY;
type = TYPE_IDENTITY;
break;
case 1:
m00 = 0.0;
m10 = 1.0;
m01 = -1.0;
m11 = 0.0;
m02 = 0.0;
m12 = 0.0;
state = APPLY_SHEAR;
type = TYPE_QUADRANT_ROTATION;
break;
case 2:
m00 = -1.0;
m10 = 0.0;
m01 = 0.0;
m11 = -1.0;
m02 = 0.0;
m12 = 0.0;
state = APPLY_SCALE;
type = TYPE_QUADRANT_ROTATION;
break;
case 3:
m00 = 0.0;
m10 = -1.0;
m01 = 1.0;
m11 = 0.0;
m02 = 0.0;
m12 = 0.0;
state = APPLY_SHEAR;
type = TYPE_QUADRANT_ROTATION;
break;
}
| public void | setToQuadrantRotation(int numquadrants, double anchorx, double anchory)Sets this transform to a translated rotation transformation
that rotates coordinates by the specified number of quadrants
around the specified anchor point.
This operation is equivalent to calling:
setToRotation(numquadrants * Math.PI / 2.0, anchorx, anchory);
Rotating by a positive number of quadrants rotates points on
the positive X axis toward the positive Y axis.
switch (numquadrants & 3) {
case 0:
m00 = 1.0;
m10 = 0.0;
m01 = 0.0;
m11 = 1.0;
m02 = 0.0;
m12 = 0.0;
state = APPLY_IDENTITY;
type = TYPE_IDENTITY;
break;
case 1:
m00 = 0.0;
m10 = 1.0;
m01 = -1.0;
m11 = 0.0;
m02 = anchorx + anchory;
m12 = anchory - anchorx;
if (m02 == 0.0 && m12 == 0.0) {
state = APPLY_SHEAR;
type = TYPE_QUADRANT_ROTATION;
} else {
state = APPLY_SHEAR | APPLY_TRANSLATE;
type = TYPE_QUADRANT_ROTATION | TYPE_TRANSLATION;
}
break;
case 2:
m00 = -1.0;
m10 = 0.0;
m01 = 0.0;
m11 = -1.0;
m02 = anchorx + anchorx;
m12 = anchory + anchory;
if (m02 == 0.0 && m12 == 0.0) {
state = APPLY_SCALE;
type = TYPE_QUADRANT_ROTATION;
} else {
state = APPLY_SCALE | APPLY_TRANSLATE;
type = TYPE_QUADRANT_ROTATION | TYPE_TRANSLATION;
}
break;
case 3:
m00 = 0.0;
m10 = -1.0;
m01 = 1.0;
m11 = 0.0;
m02 = anchorx - anchory;
m12 = anchory + anchorx;
if (m02 == 0.0 && m12 == 0.0) {
state = APPLY_SHEAR;
type = TYPE_QUADRANT_ROTATION;
} else {
state = APPLY_SHEAR | APPLY_TRANSLATE;
type = TYPE_QUADRANT_ROTATION | TYPE_TRANSLATION;
}
break;
}
| public void | setToRotation(double theta)Sets this transform to a rotation transformation.
The matrix representing this transform becomes:
[ cos(theta) -sin(theta) 0 ]
[ sin(theta) cos(theta) 0 ]
[ 0 0 1 ]
Rotating by a positive angle theta rotates points on the positive
X axis toward the positive Y axis.
Note also the discussion of
Handling 90-Degree Rotations
above.
double sin = Math.sin(theta);
double cos;
if (sin == 1.0 || sin == -1.0) {
cos = 0.0;
state = APPLY_SHEAR;
type = TYPE_QUADRANT_ROTATION;
} else {
cos = Math.cos(theta);
if (cos == -1.0) {
sin = 0.0;
state = APPLY_SCALE;
type = TYPE_QUADRANT_ROTATION;
} else if (cos == 1.0) {
sin = 0.0;
state = APPLY_IDENTITY;
type = TYPE_IDENTITY;
} else {
state = APPLY_SHEAR | APPLY_SCALE;
type = TYPE_GENERAL_ROTATION;
}
}
m00 = cos;
m10 = sin;
m01 = -sin;
m11 = cos;
m02 = 0.0;
m12 = 0.0;
| public void | setToRotation(double theta, double anchorx, double anchory)Sets this transform to a translated rotation transformation.
This operation is equivalent to translating the coordinates so
that the anchor point is at the origin (S1), then rotating them
about the new origin (S2), and finally translating so that the
intermediate origin is restored to the coordinates of the original
anchor point (S3).
This operation is equivalent to the following sequence of calls:
setToTranslation(anchorx, anchory); // S3: final translation
rotate(theta); // S2: rotate around anchor
translate(-anchorx, -anchory); // S1: translate anchor to origin
The matrix representing this transform becomes:
[ cos(theta) -sin(theta) x-x*cos+y*sin ]
[ sin(theta) cos(theta) y-x*sin-y*cos ]
[ 0 0 1 ]
Rotating by a positive angle theta rotates points on the positive
X axis toward the positive Y axis.
Note also the discussion of
Handling 90-Degree Rotations
above.
setToRotation(theta);
double sin = m10;
double oneMinusCos = 1.0 - m00;
m02 = anchorx * oneMinusCos + anchory * sin;
m12 = anchory * oneMinusCos - anchorx * sin;
if (m02 != 0.0 || m12 != 0.0) {
state |= APPLY_TRANSLATE;
type |= TYPE_TRANSLATION;
}
| public void | setToRotation(double vecx, double vecy)Sets this transform to a rotation transformation that rotates
coordinates according to a rotation vector.
All coordinates rotate about the origin by the same amount.
The amount of rotation is such that coordinates along the former
positive X axis will subsequently align with the vector pointing
from the origin to the specified vector coordinates.
If both vecx and vecy are 0.0,
the transform is set to an identity transform.
This operation is equivalent to calling:
setToRotation(Math.atan2(vecy, vecx));
double sin, cos;
if (vecy == 0) {
sin = 0.0;
if (vecx < 0.0) {
cos = -1.0;
state = APPLY_SCALE;
type = TYPE_QUADRANT_ROTATION;
} else {
cos = 1.0;
state = APPLY_IDENTITY;
type = TYPE_IDENTITY;
}
} else if (vecx == 0) {
cos = 0.0;
sin = (vecy > 0.0) ? 1.0 : -1.0;
state = APPLY_SHEAR;
type = TYPE_QUADRANT_ROTATION;
} else {
double len = Math.sqrt(vecx * vecx + vecy * vecy);
cos = vecx / len;
sin = vecy / len;
state = APPLY_SHEAR | APPLY_SCALE;
type = TYPE_GENERAL_ROTATION;
}
m00 = cos;
m10 = sin;
m01 = -sin;
m11 = cos;
m02 = 0.0;
m12 = 0.0;
| public void | setToRotation(double vecx, double vecy, double anchorx, double anchory)Sets this transform to a rotation transformation that rotates
coordinates around an anchor point according to a rotation
vector.
All coordinates rotate about the specified anchor coordinates
by the same amount.
The amount of rotation is such that coordinates along the former
positive X axis will subsequently align with the vector pointing
from the origin to the specified vector coordinates.
If both vecx and vecy are 0.0,
the transform is set to an identity transform.
This operation is equivalent to calling:
setToTranslation(Math.atan2(vecy, vecx), anchorx, anchory);
setToRotation(vecx, vecy);
double sin = m10;
double oneMinusCos = 1.0 - m00;
m02 = anchorx * oneMinusCos + anchory * sin;
m12 = anchory * oneMinusCos - anchorx * sin;
if (m02 != 0.0 || m12 != 0.0) {
state |= APPLY_TRANSLATE;
type |= TYPE_TRANSLATION;
}
| public void | setToScale(double sx, double sy)Sets this transform to a scaling transformation.
The matrix representing this transform becomes:
[ sx 0 0 ]
[ 0 sy 0 ]
[ 0 0 1 ]
m00 = sx;
m10 = 0.0;
m01 = 0.0;
m11 = sy;
m02 = 0.0;
m12 = 0.0;
if (sx != 1.0 || sy != 1.0) {
state = APPLY_SCALE;
type = TYPE_UNKNOWN;
} else {
state = APPLY_IDENTITY;
type = TYPE_IDENTITY;
}
| public void | setToShear(double shx, double shy)Sets this transform to a shearing transformation.
The matrix representing this transform becomes:
[ 1 shx 0 ]
[ shy 1 0 ]
[ 0 0 1 ]
m00 = 1.0;
m01 = shx;
m10 = shy;
m11 = 1.0;
m02 = 0.0;
m12 = 0.0;
if (shx != 0.0 || shy != 0.0) {
state = (APPLY_SHEAR | APPLY_SCALE);
type = TYPE_UNKNOWN;
} else {
state = APPLY_IDENTITY;
type = TYPE_IDENTITY;
}
| public void | setToTranslation(double tx, double ty)Sets this transform to a translation transformation.
The matrix representing this transform becomes:
[ 1 0 tx ]
[ 0 1 ty ]
[ 0 0 1 ]
m00 = 1.0;
m10 = 0.0;
m01 = 0.0;
m11 = 1.0;
m02 = tx;
m12 = ty;
if (tx != 0.0 || ty != 0.0) {
state = APPLY_TRANSLATE;
type = TYPE_TRANSLATION;
} else {
state = APPLY_IDENTITY;
type = TYPE_IDENTITY;
}
| public void | setTransform(java.awt.geom.AffineTransform Tx)Sets this transform to a copy of the transform in the specified
AffineTransform object.
this.m00 = Tx.m00;
this.m10 = Tx.m10;
this.m01 = Tx.m01;
this.m11 = Tx.m11;
this.m02 = Tx.m02;
this.m12 = Tx.m12;
this.state = Tx.state;
this.type = Tx.type;
| public void | setTransform(double m00, double m10, double m01, double m11, double m02, double m12)Sets this transform to the matrix specified by the 6
double precision values.
this.m00 = m00;
this.m10 = m10;
this.m01 = m01;
this.m11 = m11;
this.m02 = m02;
this.m12 = m12;
updateState();
| public void | shear(double shx, double shy)Concatenates this transform with a shearing transformation.
This is equivalent to calling concatenate(SH), where SH is an
AffineTransform represented by the following matrix:
[ 1 shx 0 ]
[ shy 1 0 ]
[ 0 0 1 ]
int state = this.state;
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SHEAR | APPLY_SCALE):
double M0, M1;
M0 = m00;
M1 = m01;
m00 = M0 + M1 * shy;
m01 = M0 * shx + M1;
M0 = m10;
M1 = m11;
m10 = M0 + M1 * shy;
m11 = M0 * shx + M1;
updateState();
return;
case (APPLY_SHEAR | APPLY_TRANSLATE):
case (APPLY_SHEAR):
m00 = m01 * shy;
m11 = m10 * shx;
if (m00 != 0.0 || m11 != 0.0) {
this.state = state | APPLY_SCALE;
}
this.type = TYPE_UNKNOWN;
return;
case (APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SCALE):
m01 = m00 * shx;
m10 = m11 * shy;
if (m01 != 0.0 || m10 != 0.0) {
this.state = state | APPLY_SHEAR;
}
this.type = TYPE_UNKNOWN;
return;
case (APPLY_TRANSLATE):
case (APPLY_IDENTITY):
m01 = shx;
m10 = shy;
if (m01 != 0.0 || m10 != 0.0) {
this.state = state | APPLY_SCALE | APPLY_SHEAR;
this.type = TYPE_UNKNOWN;
}
return;
}
| private void | stateError()
throw new InternalError("missing case in transform state switch");
| public java.lang.String | toString()Returns a String that represents the value of this
{@link Object}.
return ("AffineTransform[["
+ _matround(m00) + ", "
+ _matround(m01) + ", "
+ _matround(m02) + "], ["
+ _matround(m10) + ", "
+ _matround(m11) + ", "
+ _matround(m12) + "]]");
| public java.awt.geom.Point2D | transform(java.awt.geom.Point2D ptSrc, java.awt.geom.Point2D ptDst)Transforms the specified ptSrc and stores the result
in ptDst .
If ptDst is null , a new {@link Point2D}
object is allocated and then the result of the transformation is
stored in this object.
In either case, ptDst , which contains the
transformed point, is returned for convenience.
If ptSrc and ptDst are the same
object, the input point is correctly overwritten with
the transformed point.
if (ptDst == null) {
if (ptSrc instanceof Point2D.Double) {
ptDst = new Point2D.Double();
} else {
ptDst = new Point2D.Float();
}
}
// Copy source coords into local variables in case src == dst
double x = ptSrc.getX();
double y = ptSrc.getY();
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
ptDst.setLocation(x * m00 + y * m01 + m02,
x * m10 + y * m11 + m12);
return ptDst;
case (APPLY_SHEAR | APPLY_SCALE):
ptDst.setLocation(x * m00 + y * m01, x * m10 + y * m11);
return ptDst;
case (APPLY_SHEAR | APPLY_TRANSLATE):
ptDst.setLocation(y * m01 + m02, x * m10 + m12);
return ptDst;
case (APPLY_SHEAR):
ptDst.setLocation(y * m01, x * m10);
return ptDst;
case (APPLY_SCALE | APPLY_TRANSLATE):
ptDst.setLocation(x * m00 + m02, y * m11 + m12);
return ptDst;
case (APPLY_SCALE):
ptDst.setLocation(x * m00, y * m11);
return ptDst;
case (APPLY_TRANSLATE):
ptDst.setLocation(x + m02, y + m12);
return ptDst;
case (APPLY_IDENTITY):
ptDst.setLocation(x, y);
return ptDst;
}
/* NOTREACHED */
| public void | transform(java.awt.geom.Point2D[] ptSrc, int srcOff, java.awt.geom.Point2D[] ptDst, int dstOff, int numPts)Transforms an array of point objects by this transform.
If any element of the ptDst array is
null , a new Point2D object is allocated
and stored into that element before storing the results of the
transformation.
Note that this method does not take any precautions to
avoid problems caused by storing results into Point2D
objects that will be used as the source for calculations
further down the source array.
This method does guarantee that if a specified Point2D
object is both the source and destination for the same single point
transform operation then the results will not be stored until
the calculations are complete to avoid storing the results on
top of the operands.
If, however, the destination Point2D object for one
operation is the same object as the source Point2D
object for another operation further down the source array then
the original coordinates in that point are overwritten before
they can be converted.
int state = this.state;
while (--numPts >= 0) {
// Copy source coords into local variables in case src == dst
Point2D src = ptSrc[srcOff++];
double x = src.getX();
double y = src.getY();
Point2D dst = ptDst[dstOff++];
if (dst == null) {
if (src instanceof Point2D.Double) {
dst = new Point2D.Double();
} else {
dst = new Point2D.Float();
}
ptDst[dstOff - 1] = dst;
}
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
dst.setLocation(x * m00 + y * m01 + m02,
x * m10 + y * m11 + m12);
break;
case (APPLY_SHEAR | APPLY_SCALE):
dst.setLocation(x * m00 + y * m01, x * m10 + y * m11);
break;
case (APPLY_SHEAR | APPLY_TRANSLATE):
dst.setLocation(y * m01 + m02, x * m10 + m12);
break;
case (APPLY_SHEAR):
dst.setLocation(y * m01, x * m10);
break;
case (APPLY_SCALE | APPLY_TRANSLATE):
dst.setLocation(x * m00 + m02, y * m11 + m12);
break;
case (APPLY_SCALE):
dst.setLocation(x * m00, y * m11);
break;
case (APPLY_TRANSLATE):
dst.setLocation(x + m02, y + m12);
break;
case (APPLY_IDENTITY):
dst.setLocation(x, y);
break;
}
}
/* NOTREACHED */
| public void | transform(float[] srcPts, int srcOff, float[] dstPts, int dstOff, int numPts)Transforms an array of floating point coordinates by this transform.
The two coordinate array sections can be exactly the same or
can be overlapping sections of the same array without affecting the
validity of the results.
This method ensures that no source coordinates are overwritten by a
previous operation before they can be transformed.
The coordinates are stored in the arrays starting at the specified
offset in the order [x0, y0, x1, y1, ..., xn, yn] .
double M00, M01, M02, M10, M11, M12; // For caching
if (dstPts == srcPts &&
dstOff > srcOff && dstOff < srcOff + numPts * 2)
{
// If the arrays overlap partially with the destination higher
// than the source and we transform the coordinates normally
// we would overwrite some of the later source coordinates
// with results of previous transformations.
// To get around this we use arraycopy to copy the points
// to their final destination with correct overwrite
// handling and then transform them in place in the new
// safer location.
System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2);
// srcPts = dstPts; // They are known to be equal.
srcOff = dstOff;
}
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
M00 = m00; M01 = m01; M02 = m02;
M10 = m10; M11 = m11; M12 = m12;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
double y = srcPts[srcOff++];
dstPts[dstOff++] = (float) (M00 * x + M01 * y + M02);
dstPts[dstOff++] = (float) (M10 * x + M11 * y + M12);
}
return;
case (APPLY_SHEAR | APPLY_SCALE):
M00 = m00; M01 = m01;
M10 = m10; M11 = m11;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
double y = srcPts[srcOff++];
dstPts[dstOff++] = (float) (M00 * x + M01 * y);
dstPts[dstOff++] = (float) (M10 * x + M11 * y);
}
return;
case (APPLY_SHEAR | APPLY_TRANSLATE):
M01 = m01; M02 = m02;
M10 = m10; M12 = m12;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
dstPts[dstOff++] = (float) (M01 * srcPts[srcOff++] + M02);
dstPts[dstOff++] = (float) (M10 * x + M12);
}
return;
case (APPLY_SHEAR):
M01 = m01; M10 = m10;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
dstPts[dstOff++] = (float) (M01 * srcPts[srcOff++]);
dstPts[dstOff++] = (float) (M10 * x);
}
return;
case (APPLY_SCALE | APPLY_TRANSLATE):
M00 = m00; M02 = m02;
M11 = m11; M12 = m12;
while (--numPts >= 0) {
dstPts[dstOff++] = (float) (M00 * srcPts[srcOff++] + M02);
dstPts[dstOff++] = (float) (M11 * srcPts[srcOff++] + M12);
}
return;
case (APPLY_SCALE):
M00 = m00; M11 = m11;
while (--numPts >= 0) {
dstPts[dstOff++] = (float) (M00 * srcPts[srcOff++]);
dstPts[dstOff++] = (float) (M11 * srcPts[srcOff++]);
}
return;
case (APPLY_TRANSLATE):
M02 = m02; M12 = m12;
while (--numPts >= 0) {
dstPts[dstOff++] = (float) (srcPts[srcOff++] + M02);
dstPts[dstOff++] = (float) (srcPts[srcOff++] + M12);
}
return;
case (APPLY_IDENTITY):
if (srcPts != dstPts || srcOff != dstOff) {
System.arraycopy(srcPts, srcOff, dstPts, dstOff,
numPts * 2);
}
return;
}
/* NOTREACHED */
| public void | transform(double[] srcPts, int srcOff, double[] dstPts, int dstOff, int numPts)Transforms an array of double precision coordinates by this transform.
The two coordinate array sections can be exactly the same or
can be overlapping sections of the same array without affecting the
validity of the results.
This method ensures that no source coordinates are
overwritten by a previous operation before they can be transformed.
The coordinates are stored in the arrays starting at the indicated
offset in the order [x0, y0, x1, y1, ..., xn, yn] .
double M00, M01, M02, M10, M11, M12; // For caching
if (dstPts == srcPts &&
dstOff > srcOff && dstOff < srcOff + numPts * 2)
{
// If the arrays overlap partially with the destination higher
// than the source and we transform the coordinates normally
// we would overwrite some of the later source coordinates
// with results of previous transformations.
// To get around this we use arraycopy to copy the points
// to their final destination with correct overwrite
// handling and then transform them in place in the new
// safer location.
System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2);
// srcPts = dstPts; // They are known to be equal.
srcOff = dstOff;
}
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
M00 = m00; M01 = m01; M02 = m02;
M10 = m10; M11 = m11; M12 = m12;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
double y = srcPts[srcOff++];
dstPts[dstOff++] = M00 * x + M01 * y + M02;
dstPts[dstOff++] = M10 * x + M11 * y + M12;
}
return;
case (APPLY_SHEAR | APPLY_SCALE):
M00 = m00; M01 = m01;
M10 = m10; M11 = m11;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
double y = srcPts[srcOff++];
dstPts[dstOff++] = M00 * x + M01 * y;
dstPts[dstOff++] = M10 * x + M11 * y;
}
return;
case (APPLY_SHEAR | APPLY_TRANSLATE):
M01 = m01; M02 = m02;
M10 = m10; M12 = m12;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
dstPts[dstOff++] = M01 * srcPts[srcOff++] + M02;
dstPts[dstOff++] = M10 * x + M12;
}
return;
case (APPLY_SHEAR):
M01 = m01; M10 = m10;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
dstPts[dstOff++] = M01 * srcPts[srcOff++];
dstPts[dstOff++] = M10 * x;
}
return;
case (APPLY_SCALE | APPLY_TRANSLATE):
M00 = m00; M02 = m02;
M11 = m11; M12 = m12;
while (--numPts >= 0) {
dstPts[dstOff++] = M00 * srcPts[srcOff++] + M02;
dstPts[dstOff++] = M11 * srcPts[srcOff++] + M12;
}
return;
case (APPLY_SCALE):
M00 = m00; M11 = m11;
while (--numPts >= 0) {
dstPts[dstOff++] = M00 * srcPts[srcOff++];
dstPts[dstOff++] = M11 * srcPts[srcOff++];
}
return;
case (APPLY_TRANSLATE):
M02 = m02; M12 = m12;
while (--numPts >= 0) {
dstPts[dstOff++] = srcPts[srcOff++] + M02;
dstPts[dstOff++] = srcPts[srcOff++] + M12;
}
return;
case (APPLY_IDENTITY):
if (srcPts != dstPts || srcOff != dstOff) {
System.arraycopy(srcPts, srcOff, dstPts, dstOff,
numPts * 2);
}
return;
}
/* NOTREACHED */
| public void | transform(float[] srcPts, int srcOff, double[] dstPts, int dstOff, int numPts)Transforms an array of floating point coordinates by this transform
and stores the results into an array of doubles.
The coordinates are stored in the arrays starting at the specified
offset in the order [x0, y0, x1, y1, ..., xn, yn] .
double M00, M01, M02, M10, M11, M12; // For caching
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
M00 = m00; M01 = m01; M02 = m02;
M10 = m10; M11 = m11; M12 = m12;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
double y = srcPts[srcOff++];
dstPts[dstOff++] = M00 * x + M01 * y + M02;
dstPts[dstOff++] = M10 * x + M11 * y + M12;
}
return;
case (APPLY_SHEAR | APPLY_SCALE):
M00 = m00; M01 = m01;
M10 = m10; M11 = m11;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
double y = srcPts[srcOff++];
dstPts[dstOff++] = M00 * x + M01 * y;
dstPts[dstOff++] = M10 * x + M11 * y;
}
return;
case (APPLY_SHEAR | APPLY_TRANSLATE):
M01 = m01; M02 = m02;
M10 = m10; M12 = m12;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
dstPts[dstOff++] = M01 * srcPts[srcOff++] + M02;
dstPts[dstOff++] = M10 * x + M12;
}
return;
case (APPLY_SHEAR):
M01 = m01; M10 = m10;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
dstPts[dstOff++] = M01 * srcPts[srcOff++];
dstPts[dstOff++] = M10 * x;
}
return;
case (APPLY_SCALE | APPLY_TRANSLATE):
M00 = m00; M02 = m02;
M11 = m11; M12 = m12;
while (--numPts >= 0) {
dstPts[dstOff++] = M00 * srcPts[srcOff++] + M02;
dstPts[dstOff++] = M11 * srcPts[srcOff++] + M12;
}
return;
case (APPLY_SCALE):
M00 = m00; M11 = m11;
while (--numPts >= 0) {
dstPts[dstOff++] = M00 * srcPts[srcOff++];
dstPts[dstOff++] = M11 * srcPts[srcOff++];
}
return;
case (APPLY_TRANSLATE):
M02 = m02; M12 = m12;
while (--numPts >= 0) {
dstPts[dstOff++] = srcPts[srcOff++] + M02;
dstPts[dstOff++] = srcPts[srcOff++] + M12;
}
return;
case (APPLY_IDENTITY):
while (--numPts >= 0) {
dstPts[dstOff++] = srcPts[srcOff++];
dstPts[dstOff++] = srcPts[srcOff++];
}
return;
}
/* NOTREACHED */
| public void | transform(double[] srcPts, int srcOff, float[] dstPts, int dstOff, int numPts)Transforms an array of double precision coordinates by this transform
and stores the results into an array of floats.
The coordinates are stored in the arrays starting at the specified
offset in the order [x0, y0, x1, y1, ..., xn, yn] .
double M00, M01, M02, M10, M11, M12; // For caching
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
M00 = m00; M01 = m01; M02 = m02;
M10 = m10; M11 = m11; M12 = m12;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
double y = srcPts[srcOff++];
dstPts[dstOff++] = (float) (M00 * x + M01 * y + M02);
dstPts[dstOff++] = (float) (M10 * x + M11 * y + M12);
}
return;
case (APPLY_SHEAR | APPLY_SCALE):
M00 = m00; M01 = m01;
M10 = m10; M11 = m11;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
double y = srcPts[srcOff++];
dstPts[dstOff++] = (float) (M00 * x + M01 * y);
dstPts[dstOff++] = (float) (M10 * x + M11 * y);
}
return;
case (APPLY_SHEAR | APPLY_TRANSLATE):
M01 = m01; M02 = m02;
M10 = m10; M12 = m12;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
dstPts[dstOff++] = (float) (M01 * srcPts[srcOff++] + M02);
dstPts[dstOff++] = (float) (M10 * x + M12);
}
return;
case (APPLY_SHEAR):
M01 = m01; M10 = m10;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
dstPts[dstOff++] = (float) (M01 * srcPts[srcOff++]);
dstPts[dstOff++] = (float) (M10 * x);
}
return;
case (APPLY_SCALE | APPLY_TRANSLATE):
M00 = m00; M02 = m02;
M11 = m11; M12 = m12;
while (--numPts >= 0) {
dstPts[dstOff++] = (float) (M00 * srcPts[srcOff++] + M02);
dstPts[dstOff++] = (float) (M11 * srcPts[srcOff++] + M12);
}
return;
case (APPLY_SCALE):
M00 = m00; M11 = m11;
while (--numPts >= 0) {
dstPts[dstOff++] = (float) (M00 * srcPts[srcOff++]);
dstPts[dstOff++] = (float) (M11 * srcPts[srcOff++]);
}
return;
case (APPLY_TRANSLATE):
M02 = m02; M12 = m12;
while (--numPts >= 0) {
dstPts[dstOff++] = (float) (srcPts[srcOff++] + M02);
dstPts[dstOff++] = (float) (srcPts[srcOff++] + M12);
}
return;
case (APPLY_IDENTITY):
while (--numPts >= 0) {
dstPts[dstOff++] = (float) (srcPts[srcOff++]);
dstPts[dstOff++] = (float) (srcPts[srcOff++]);
}
return;
}
/* NOTREACHED */
| public void | translate(double tx, double ty)Concatenates this transform with a translation transformation.
This is equivalent to calling concatenate(T), where T is an
AffineTransform represented by the following matrix:
[ 1 0 tx ]
[ 0 1 ty ]
[ 0 0 1 ]
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
m02 = tx * m00 + ty * m01 + m02;
m12 = tx * m10 + ty * m11 + m12;
if (m02 == 0.0 && m12 == 0.0) {
state = APPLY_SHEAR | APPLY_SCALE;
if (type != TYPE_UNKNOWN) {
type -= TYPE_TRANSLATION;
}
}
return;
case (APPLY_SHEAR | APPLY_SCALE):
m02 = tx * m00 + ty * m01;
m12 = tx * m10 + ty * m11;
if (m02 != 0.0 || m12 != 0.0) {
state = APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE;
type |= TYPE_TRANSLATION;
}
return;
case (APPLY_SHEAR | APPLY_TRANSLATE):
m02 = ty * m01 + m02;
m12 = tx * m10 + m12;
if (m02 == 0.0 && m12 == 0.0) {
state = APPLY_SHEAR;
if (type != TYPE_UNKNOWN) {
type -= TYPE_TRANSLATION;
}
}
return;
case (APPLY_SHEAR):
m02 = ty * m01;
m12 = tx * m10;
if (m02 != 0.0 || m12 != 0.0) {
state = APPLY_SHEAR | APPLY_TRANSLATE;
type |= TYPE_TRANSLATION;
}
return;
case (APPLY_SCALE | APPLY_TRANSLATE):
m02 = tx * m00 + m02;
m12 = ty * m11 + m12;
if (m02 == 0.0 && m12 == 0.0) {
state = APPLY_SCALE;
if (type != TYPE_UNKNOWN) {
type -= TYPE_TRANSLATION;
}
}
return;
case (APPLY_SCALE):
m02 = tx * m00;
m12 = ty * m11;
if (m02 != 0.0 || m12 != 0.0) {
state = APPLY_SCALE | APPLY_TRANSLATE;
type |= TYPE_TRANSLATION;
}
return;
case (APPLY_TRANSLATE):
m02 = tx + m02;
m12 = ty + m12;
if (m02 == 0.0 && m12 == 0.0) {
state = APPLY_IDENTITY;
type = TYPE_IDENTITY;
}
return;
case (APPLY_IDENTITY):
m02 = tx;
m12 = ty;
if (tx != 0.0 || ty != 0.0) {
state = APPLY_TRANSLATE;
type = TYPE_TRANSLATION;
}
return;
}
| void | updateState()Manually recalculates the state of the transform when the matrix
changes too much to predict the effects on the state.
The following table specifies what the various settings of the
state field say about the values of the corresponding matrix
element fields.
Note that the rules governing the SCALE fields are slightly
different depending on whether the SHEAR flag is also set.
SCALE SHEAR TRANSLATE
m00/m11 m01/m10 m02/m12
IDENTITY 1.0 0.0 0.0
TRANSLATE (TR) 1.0 0.0 not both 0.0
SCALE (SC) not both 1.0 0.0 0.0
TR | SC not both 1.0 0.0 not both 0.0
SHEAR (SH) 0.0 not both 0.0 0.0
TR | SH 0.0 not both 0.0 not both 0.0
SC | SH not both 0.0 not both 0.0 0.0
TR | SC | SH not both 0.0 not both 0.0 not both 0.0
if (m01 == 0.0 && m10 == 0.0) {
if (m00 == 1.0 && m11 == 1.0) {
if (m02 == 0.0 && m12 == 0.0) {
state = APPLY_IDENTITY;
type = TYPE_IDENTITY;
} else {
state = APPLY_TRANSLATE;
type = TYPE_TRANSLATION;
}
} else {
if (m02 == 0.0 && m12 == 0.0) {
state = APPLY_SCALE;
type = TYPE_UNKNOWN;
} else {
state = (APPLY_SCALE | APPLY_TRANSLATE);
type = TYPE_UNKNOWN;
}
}
} else {
if (m00 == 0.0 && m11 == 0.0) {
if (m02 == 0.0 && m12 == 0.0) {
state = APPLY_SHEAR;
type = TYPE_UNKNOWN;
} else {
state = (APPLY_SHEAR | APPLY_TRANSLATE);
type = TYPE_UNKNOWN;
}
} else {
if (m02 == 0.0 && m12 == 0.0) {
state = (APPLY_SHEAR | APPLY_SCALE);
type = TYPE_UNKNOWN;
} else {
state = (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE);
type = TYPE_UNKNOWN;
}
}
}
| private void | writeObject(java.io.ObjectOutputStream s)
s.defaultWriteObject();
|
|