Methods Summary |
---|
private static void | addAll(java.util.Collection c, java.lang.reflect.Field[] o)
for (int i = 0; i < o.length; i++) {
c.add(o[i]);
}
|
private static java.lang.String | argumentTypesToString(java.lang.Class[] argTypes)
StringBuilder buf = new StringBuilder();
buf.append("(");
if (argTypes != null) {
for (int i = 0; i < argTypes.length; i++) {
if (i > 0) {
buf.append(", ");
}
Class c = argTypes[i];
buf.append((c == null) ? "null" : c.getName());
}
}
buf.append(")");
return buf.toString();
|
private static boolean | arrayContentsEq(java.lang.Object[] a1, java.lang.Object[] a2)
if (a1 == null) {
return a2 == null || a2.length == 0;
}
if (a2 == null) {
return a1.length == 0;
}
if (a1.length != a2.length) {
return false;
}
for (int i = 0; i < a1.length; i++) {
if (a1[i] != a2[i]) {
return false;
}
}
return true;
|
public java.lang.Class | asSubclass(java.lang.Class clazz)Casts this Class object to represent a subclass of the class
represented by the specified class object. Checks that that the cast
is valid, and throws a ClassCastException if it is not. If
this method succeeds, it always returns a reference to this class object.
This method is useful when a client needs to "narrow" the type of
a Class object to pass it to an API that restricts the
Class objects that it is willing to accept. A cast would
generate a compile-time warning, as the correctness of the cast
could not be checked at runtime (because generic types are implemented
by erasure).
if (clazz.isAssignableFrom(this))
return (Class<? extends U>) this;
else
throw new ClassCastException(this.toString());
|
public T | cast(java.lang.Object obj)Casts an object to the class or interface represented
by this Class object.
if (obj != null && !isInstance(obj))
throw new ClassCastException();
return (T) obj;
|
private static void | checkInitted()
if (initted) return;
AccessController.doPrivileged(new PrivilegedAction() {
public Object run() {
// Tests to ensure the system properties table is fully
// initialized. This is needed because reflection code is
// called very early in the initialization process (before
// command-line arguments have been parsed and therefore
// these user-settable properties installed.) We assume that
// if System.out is non-null then the System class has been
// fully initialized and that the bulk of the startup code
// has been run.
if (System.out == null) {
// java.lang.System not yet fully initialized
return null;
}
String val =
System.getProperty("sun.reflect.noCaches");
if (val != null && val.equals("true")) {
useCaches = false;
}
initted = true;
return null;
}
});
|
private void | checkMemberAccess(int which, java.lang.ClassLoader ccl)
SecurityManager s = System.getSecurityManager();
if (s != null) {
s.checkMemberAccess(this, which);
ClassLoader cl = getClassLoader0();
if ((ccl != null) && (ccl != cl) &&
((cl == null) || !cl.isAncestor(ccl))) {
String name = this.getName();
int i = name.lastIndexOf('.");
if (i != -1) {
s.checkPackageAccess(name.substring(0, i));
}
}
}
|
private void | clearCachesOnClassRedefinition()
// Clears cached values that might possibly have been obsoleted by
// a class redefinition.
if (lastRedefinedCount != classRedefinedCount) {
declaredFields = publicFields = declaredPublicFields = null;
declaredMethods = publicMethods = declaredPublicMethods = null;
declaredConstructors = publicConstructors = null;
annotations = declaredAnnotations = null;
// Use of "volatile" (and synchronization by caller in the case
// of annotations) ensures that no thread sees the update to
// lastRedefinedCount before seeing the caches cleared.
// We do not guard against brief windows during which multiple
// threads might redundantly work to fill an empty cache.
lastRedefinedCount = classRedefinedCount;
}
|
private static java.lang.reflect.Constructor[] | copyConstructors(java.lang.reflect.Constructor[] arg)
Constructor[] out = new Constructor[arg.length];
ReflectionFactory fact = getReflectionFactory();
for (int i = 0; i < arg.length; i++) {
out[i] = fact.copyConstructor(arg[i]);
}
return out;
|
private static java.lang.reflect.Field[] | copyFields(java.lang.reflect.Field[] arg)
Field[] out = new Field[arg.length];
ReflectionFactory fact = getReflectionFactory();
for (int i = 0; i < arg.length; i++) {
out[i] = fact.copyField(arg[i]);
}
return out;
|
private static java.lang.reflect.Method[] | copyMethods(java.lang.reflect.Method[] arg)
Method[] out = new Method[arg.length];
ReflectionFactory fact = getReflectionFactory();
for (int i = 0; i < arg.length; i++) {
out[i] = fact.copyMethod(arg[i]);
}
return out;
|
public boolean | desiredAssertionStatus()Returns the assertion status that would be assigned to this
class if it were to be initialized at the time this method is invoked.
If this class has had its assertion status set, the most recent
setting will be returned; otherwise, if any package default assertion
status pertains to this class, the most recent setting for the most
specific pertinent package default assertion status is returned;
otherwise, if this class is not a system class (i.e., it has a
class loader) its class loader's default assertion status is returned;
otherwise, the system class default assertion status is returned.
Few programmers will have any need for this method; it is provided
for the benefit of the JRE itself. (It allows a class to determine at
the time that it is initialized whether assertions should be enabled.)
Note that this method is not guaranteed to return the actual
assertion status that was (or will be) associated with the specified
class when it was (or will be) initialized.
ClassLoader loader = getClassLoader();
// If the loader is null this is a system class, so ask the VM
if (loader == null)
return desiredAssertionStatus0(this);
synchronized(loader) {
// If the classloader has been initialized with
// the assertion directives, ask it. Otherwise,
// ask the VM.
return (loader.classAssertionStatus == null ?
desiredAssertionStatus0(this) :
loader.desiredAssertionStatus(getName()));
}
|
private static native boolean | desiredAssertionStatus0(java.lang.Class clazz)
|
java.util.Map | enumConstantDirectory()Returns a map from simple name to enum constant. This package-private
method is used internally by Enum to implement
public static > T valueOf(Class, String)
efficiently. Note that the map is returned by this method is
created lazily on first use. Typically it won't ever get created.
if (enumConstantDirectory == null) {
T[] universe = getEnumConstantsShared();
if (universe == null)
throw new IllegalArgumentException(
getName() + " is not an enum type");
Map<String, T> m = new HashMap<String, T>(2 * universe.length);
for (T constant : universe)
m.put(((Enum)constant).name(), constant);
enumConstantDirectory = m;
}
return enumConstantDirectory;
|
public static java.lang.Class | forName(java.lang.String className)Returns the Class object associated with the class or
interface with the given string name. Invoking this method is
equivalent to:
Class.forName(className, true, currentLoader)
where currentLoader denotes the defining class loader of
the current class.
For example, the following code fragment returns the
runtime Class descriptor for the class named
java.lang.Thread :
Class t = Class.forName("java.lang.Thread")
A call to forName("X") causes the class named
X to be initialized.
return forName0(className, true, ClassLoader.getCallerClassLoader());
|
public static java.lang.Class | forName(java.lang.String name, boolean initialize, java.lang.ClassLoader loader)Returns the Class object associated with the class or
interface with the given string name, using the given class loader.
Given the fully qualified name for a class or interface (in the same
format returned by getName ) this method attempts to
locate, load, and link the class or interface. The specified class
loader is used to load the class or interface. If the parameter
loader is null, the class is loaded through the bootstrap
class loader. The class is initialized only if the
initialize parameter is true and if it has
not been initialized earlier.
If name denotes a primitive type or void, an attempt
will be made to locate a user-defined class in the unnamed package whose
name is name . Therefore, this method cannot be used to
obtain any of the Class objects representing primitive
types or void.
If name denotes an array class, the component type of
the array class is loaded but not initialized.
For example, in an instance method the expression:
Class.forName("Foo")
is equivalent to:
Class.forName("Foo", true, this.getClass().getClassLoader())
Note that this method throws errors related to loading, linking or
initializing as specified in Sections 12.2, 12.3 and 12.4 of The
Java Language Specification.
Note that this method does not check whether the requested class
is accessible to its caller.
If the loader is null , and a security
manager is present, and the caller's class loader is not null, then this
method calls the security manager's checkPermission method
with a RuntimePermission("getClassLoader") permission to
ensure it's ok to access the bootstrap class loader.
if (loader == null) {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
ClassLoader ccl = ClassLoader.getCallerClassLoader();
if (ccl != null) {
sm.checkPermission(
SecurityConstants.GET_CLASSLOADER_PERMISSION);
}
}
}
return forName0(name, initialize, loader);
|
private static native java.lang.Class | forName0(java.lang.String name, boolean initialize, java.lang.ClassLoader loader)Called after security checks have been made.
|
public A | getAnnotation(java.lang.Class annotationClass)
if (annotationClass == null)
throw new NullPointerException();
initAnnotationsIfNecessary();
return (A) annotations.get(annotationClass);
|
sun.reflect.annotation.AnnotationType | getAnnotationType()
return annotationType;
|
public java.lang.annotation.Annotation[] | getAnnotations()
initAnnotationsIfNecessary();
return annotations.values().toArray(EMPTY_ANNOTATIONS_ARRAY);
|
public java.lang.String | getCanonicalName()Returns the canonical name of the underlying class as
defined by the Java Language Specification. Returns null if
the underlying class does not have a canonical name (i.e., if
it is a local or anonymous class or an array whose component
type does not have a canonical name).
if (isArray()) {
String canonicalName = getComponentType().getCanonicalName();
if (canonicalName != null)
return canonicalName + "[]";
else
return null;
}
if (isLocalOrAnonymousClass())
return null;
Class<?> enclosingClass = getEnclosingClass();
if (enclosingClass == null) { // top level class
return getName();
} else {
String enclosingName = enclosingClass.getCanonicalName();
if (enclosingName == null)
return null;
return enclosingName + "." + getSimpleName();
}
|
public java.lang.ClassLoader | getClassLoader()Returns the class loader for the class. Some implementations may use
null to represent the bootstrap class loader. This method will return
null in such implementations if this class was loaded by the bootstrap
class loader.
If a security manager is present, and the caller's class loader is
not null and the caller's class loader is not the same as or an ancestor of
the class loader for the class whose class loader is requested, then
this method calls the security manager's checkPermission
method with a RuntimePermission("getClassLoader")
permission to ensure it's ok to access the class loader for the class.
If this object
represents a primitive type or void, null is returned.
ClassLoader cl = getClassLoader0();
if (cl == null)
return null;
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
ClassLoader ccl = ClassLoader.getCallerClassLoader();
if (ccl != null && ccl != cl && !cl.isAncestor(ccl)) {
sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
}
}
return cl;
|
native java.lang.ClassLoader | getClassLoader0()
|
public java.lang.Class[] | getClasses()Returns an array containing Class objects representing all
the public classes and interfaces that are members of the class
represented by this Class object. This includes public
class and interface members inherited from superclasses and public class
and interface members declared by the class. This method returns an
array of length 0 if this Class object has no public member
classes or interfaces. This method also returns an array of length 0 if
this Class object represents a primitive type, an array
class, or void.
// be very careful not to change the stack depth of this
// checkMemberAccess call for security reasons
// see java.lang.SecurityManager.checkMemberAccess
checkMemberAccess(Member.PUBLIC, ClassLoader.getCallerClassLoader());
// Privileged so this implementation can look at DECLARED classes,
// something the caller might not have privilege to do. The code here
// is allowed to look at DECLARED classes because (1) it does not hand
// out anything other than public members and (2) public member access
// has already been ok'd by the SecurityManager.
Class[] result = (Class[]) java.security.AccessController.doPrivileged
(new java.security.PrivilegedAction() {
public Object run() {
java.util.List<Class> list = new java.util.ArrayList();
Class currentClass = Class.this;
while (currentClass != null) {
Class[] members = currentClass.getDeclaredClasses();
for (int i = 0; i < members.length; i++) {
if (Modifier.isPublic(members[i].getModifiers())) {
list.add(members[i]);
}
}
currentClass = currentClass.getSuperclass();
}
Class[] empty = {};
return list.toArray(empty);
}
});
return result;
|
public native java.lang.Class | getComponentType()Returns the Class representing the component type of an
array. If this class does not represent an array class this method
returns null.
|
native sun.reflect.ConstantPool | getConstantPool()
|
public java.lang.reflect.Constructor | getConstructor(java.lang.Class parameterTypes)Returns a Constructor object that reflects the specified
public constructor of the class represented by this Class
object. The parameterTypes parameter is an array of
Class objects that identify the constructor's formal
parameter types, in declared order.
If this Class object represents an inner class
declared in a non-static context, the formal parameter types
include the explicit enclosing instance as the first parameter.
The constructor to reflect is the public constructor of the class
represented by this Class object whose formal parameter
types match those specified by parameterTypes .
// be very careful not to change the stack depth of this
// checkMemberAccess call for security reasons
// see java.lang.SecurityManager.checkMemberAccess
checkMemberAccess(Member.PUBLIC, ClassLoader.getCallerClassLoader());
return getConstructor0(parameterTypes, Member.PUBLIC);
|
private java.lang.reflect.Constructor | getConstructor0(java.lang.Class[] parameterTypes, int which)
Constructor[] constructors = privateGetDeclaredConstructors((which == Member.PUBLIC));
for (int i = 0; i < constructors.length; i++) {
if (arrayContentsEq(parameterTypes,
constructors[i].getParameterTypes())) {
return getReflectionFactory().copyConstructor(constructors[i]);
}
}
throw new NoSuchMethodException(getName() + ".<init>" + argumentTypesToString(parameterTypes));
|
public java.lang.reflect.Constructor[] | getConstructors()Returns an array containing Constructor objects reflecting
all the public constructors of the class represented by this
Class object. An array of length 0 is returned if the
class has no public constructors, or if the class is an array class, or
if the class reflects a primitive type or void.
Note that while this method returns an array of {@code
Constructor} objects (that is an array of constructors from
this class), the return type of this method is {@code
Constructor>[]} and not {@code Constructor[]} as
might be expected. This less informative return type is
necessary since after being returned from this method, the
array could be modified to hold {@code Constructor} objects for
different classes, which would violate the type guarantees of
{@code Constructor[]}.
// be very careful not to change the stack depth of this
// checkMemberAccess call for security reasons
// see java.lang.SecurityManager.checkMemberAccess
checkMemberAccess(Member.PUBLIC, ClassLoader.getCallerClassLoader());
return copyConstructors(privateGetDeclaredConstructors(true));
|
public java.lang.annotation.Annotation[] | getDeclaredAnnotations()
initAnnotationsIfNecessary();
return declaredAnnotations.values().toArray(EMPTY_ANNOTATIONS_ARRAY);
|
public java.lang.Class[] | getDeclaredClasses()Returns an array of Class objects reflecting all the
classes and interfaces declared as members of the class represented by
this Class object. This includes public, protected, default
(package) access, and private classes and interfaces declared by the
class, but excludes inherited classes and interfaces. This method
returns an array of length 0 if the class declares no classes or
interfaces as members, or if this Class object represents a
primitive type, an array class, or void.
// be very careful not to change the stack depth of this
// checkMemberAccess call for security reasons
// see java.lang.SecurityManager.checkMemberAccess
checkMemberAccess(Member.DECLARED, ClassLoader.getCallerClassLoader());
return getDeclaredClasses0();
|
private native java.lang.Class[] | getDeclaredClasses0()
|
public java.lang.reflect.Constructor | getDeclaredConstructor(java.lang.Class parameterTypes)Returns a Constructor object that reflects the specified
constructor of the class or interface represented by this
Class object. The parameterTypes parameter is
an array of Class objects that identify the constructor's
formal parameter types, in declared order.
If this Class object represents an inner class
declared in a non-static context, the formal parameter types
include the explicit enclosing instance as the first parameter.
// be very careful not to change the stack depth of this
// checkMemberAccess call for security reasons
// see java.lang.SecurityManager.checkMemberAccess
checkMemberAccess(Member.DECLARED, ClassLoader.getCallerClassLoader());
return getConstructor0(parameterTypes, Member.DECLARED);
|
public java.lang.reflect.Constructor[] | getDeclaredConstructors()Returns an array of Constructor objects reflecting all the
constructors declared by the class represented by this
Class object. These are public, protected, default
(package) access, and private constructors. The elements in the array
returned are not sorted and are not in any particular order. If the
class has a default constructor, it is included in the returned array.
This method returns an array of length 0 if this Class
object represents an interface, a primitive type, an array class, or
void.
See The Java Language Specification, section 8.2.
// be very careful not to change the stack depth of this
// checkMemberAccess call for security reasons
// see java.lang.SecurityManager.checkMemberAccess
checkMemberAccess(Member.DECLARED, ClassLoader.getCallerClassLoader());
return copyConstructors(privateGetDeclaredConstructors(false));
|
private native java.lang.reflect.Constructor[] | getDeclaredConstructors0(boolean publicOnly)
|
public java.lang.reflect.Field | getDeclaredField(java.lang.String name)Returns a Field object that reflects the specified declared
field of the class or interface represented by this Class
object. The name parameter is a String that
specifies the simple name of the desired field. Note that this method
will not reflect the length field of an array class.
// be very careful not to change the stack depth of this
// checkMemberAccess call for security reasons
// see java.lang.SecurityManager.checkMemberAccess
checkMemberAccess(Member.DECLARED, ClassLoader.getCallerClassLoader());
Field field = searchFields(privateGetDeclaredFields(false), name);
if (field == null) {
throw new NoSuchFieldException(name);
}
return field;
|
public java.lang.reflect.Field[] | getDeclaredFields()Returns an array of Field objects reflecting all the fields
declared by the class or interface represented by this
Class object. This includes public, protected, default
(package) access, and private fields, but excludes inherited fields.
The elements in the array returned are not sorted and are not in any
particular order. This method returns an array of length 0 if the class
or interface declares no fields, or if this Class object
represents a primitive type, an array class, or void.
See The Java Language Specification, sections 8.2 and 8.3.
// be very careful not to change the stack depth of this
// checkMemberAccess call for security reasons
// see java.lang.SecurityManager.checkMemberAccess
checkMemberAccess(Member.DECLARED, ClassLoader.getCallerClassLoader());
return copyFields(privateGetDeclaredFields(false));
|
private native java.lang.reflect.Field[] | getDeclaredFields0(boolean publicOnly)
|
public java.lang.reflect.Method | getDeclaredMethod(java.lang.String name, java.lang.Class parameterTypes)Returns a Method object that reflects the specified
declared method of the class or interface represented by this
Class object. The name parameter is a
String that specifies the simple name of the desired
method, and the parameterTypes parameter is an array of
Class objects that identify the method's formal parameter
types, in declared order. If more than one method with the same
parameter types is declared in a class, and one of these methods has a
return type that is more specific than any of the others, that method is
returned; otherwise one of the methods is chosen arbitrarily. If the
name is "<init>"or "<clinit>" a NoSuchMethodException
is raised.
// be very careful not to change the stack depth of this
// checkMemberAccess call for security reasons
// see java.lang.SecurityManager.checkMemberAccess
checkMemberAccess(Member.DECLARED, ClassLoader.getCallerClassLoader());
Method method = searchMethods(privateGetDeclaredMethods(false), name, parameterTypes);
if (method == null) {
throw new NoSuchMethodException(getName() + "." + name + argumentTypesToString(parameterTypes));
}
return method;
|
public java.lang.reflect.Method[] | getDeclaredMethods()Returns an array of Method objects reflecting all the
methods declared by the class or interface represented by this
Class object. This includes public, protected, default
(package) access, and private methods, but excludes inherited methods.
The elements in the array returned are not sorted and are not in any
particular order. This method returns an array of length 0 if the class
or interface declares no methods, or if this Class object
represents a primitive type, an array class, or void. The class
initialization method <clinit> is not included in the
returned array. If the class declares multiple public member methods
with the same parameter types, they are all included in the returned
array.
See The Java Language Specification, section 8.2.
// be very careful not to change the stack depth of this
// checkMemberAccess call for security reasons
// see java.lang.SecurityManager.checkMemberAccess
checkMemberAccess(Member.DECLARED, ClassLoader.getCallerClassLoader());
return copyMethods(privateGetDeclaredMethods(false));
|
private native java.lang.reflect.Method[] | getDeclaredMethods0(boolean publicOnly)
|
public native java.lang.Class | getDeclaringClass()If the class or interface represented by this Class object
is a member of another class, returns the Class object
representing the class in which it was declared. This method returns
null if this class or interface is not a member of any other class. If
this Class object represents an array class, a primitive
type, or void,then this method returns null.
|
public java.lang.Class | getEnclosingClass()Returns the immediately enclosing class of the underlying
class. If the underlying class is a top level class this
method returns null.
// There are five kinds of classes (or interfaces):
// a) Top level classes
// b) Nested classes (static member classes)
// c) Inner classes (non-static member classes)
// d) Local classes (named classes declared within a method)
// e) Anonymous classes
// JVM Spec 4.8.6: A class must have an EnclosingMethod
// attribute if and only if it is a local class or an
// anonymous class.
EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo();
if (enclosingInfo == null) {
// This is a top level or a nested class or an inner class (a, b, or c)
return getDeclaringClass();
} else {
Class<?> enclosingClass = enclosingInfo.getEnclosingClass();
// This is a local class or an anonymous class (d or e)
if (enclosingClass == this || enclosingClass == null)
throw new InternalError("Malformed enclosing method information");
else
return enclosingClass;
}
|
public java.lang.reflect.Constructor | getEnclosingConstructor()If this Class object represents a local or anonymous
class within a constructor, returns a {@link
java.lang.reflect.Constructor Constructor} object representing
the immediately enclosing constructor of the underlying
class. Returns null otherwise. In particular, this
method returns null if the underlying class is a local
or anonymous class immediately enclosed by a type declaration,
instance initializer or static initializer.
EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo();
if (enclosingInfo == null)
return null;
else {
if (!enclosingInfo.isConstructor())
return null;
ConstructorRepository typeInfo = ConstructorRepository.make(enclosingInfo.getDescriptor(),
getFactory());
Type [] parameterTypes = typeInfo.getParameterTypes();
Class<?>[] parameterClasses = new Class<?>[parameterTypes.length];
// Convert Types to Classes; returned types *should*
// be class objects since the methodDescriptor's used
// don't have generics information
for(int i = 0; i < parameterClasses.length; i++)
parameterClasses[i] = toClass(parameterTypes[i]);
/*
* Loop over all declared constructors; match number
* of and type of parameters.
*/
for(Constructor c: enclosingInfo.getEnclosingClass().getDeclaredConstructors()) {
Class<?>[] candidateParamClasses = c.getParameterTypes();
if (candidateParamClasses.length == parameterClasses.length) {
boolean matches = true;
for(int i = 0; i < candidateParamClasses.length; i++) {
if (!candidateParamClasses[i].equals(parameterClasses[i])) {
matches = false;
break;
}
}
if (matches)
return c;
}
}
throw new InternalError("Enclosing constructor not found");
}
|
public java.lang.reflect.Method | getEnclosingMethod()If this Class object represents a local or anonymous
class within a method, returns a {@link
java.lang.reflect.Method Method} object representing the
immediately enclosing method of the underlying class. Returns
null otherwise.
In particular, this method returns null if the underlying
class is a local or anonymous class immediately enclosed by a type
declaration, instance initializer or static initializer.
EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo();
if (enclosingInfo == null)
return null;
else {
if (!enclosingInfo.isMethod())
return null;
MethodRepository typeInfo = MethodRepository.make(enclosingInfo.getDescriptor(),
getFactory());
Class returnType = toClass(typeInfo.getReturnType());
Type [] parameterTypes = typeInfo.getParameterTypes();
Class<?>[] parameterClasses = new Class<?>[parameterTypes.length];
// Convert Types to Classes; returned types *should*
// be class objects since the methodDescriptor's used
// don't have generics information
for(int i = 0; i < parameterClasses.length; i++)
parameterClasses[i] = toClass(parameterTypes[i]);
/*
* Loop over all declared methods; match method name,
* number of and type of parameters, *and* return
* type. Matching return type is also necessary
* because of covariant returns, etc.
*/
for(Method m: enclosingInfo.getEnclosingClass().getDeclaredMethods()) {
if (m.getName().equals(enclosingInfo.getName()) ) {
Class<?>[] candidateParamClasses = m.getParameterTypes();
if (candidateParamClasses.length == parameterClasses.length) {
boolean matches = true;
for(int i = 0; i < candidateParamClasses.length; i++) {
if (!candidateParamClasses[i].equals(parameterClasses[i])) {
matches = false;
break;
}
}
if (matches) { // finally, check return type
if (m.getReturnType().equals(returnType) )
return m;
}
}
}
}
throw new InternalError("Enclosing method not found");
}
|
private native java.lang.Object[] | getEnclosingMethod0()
|
private java.lang.Class$EnclosingMethodInfo | getEnclosingMethodInfo()
Object[] enclosingInfo = getEnclosingMethod0();
if (enclosingInfo == null)
return null;
else {
return new EnclosingMethodInfo(enclosingInfo);
}
|
public T[] | getEnumConstants()Returns the elements of this enum class or null if this
Class object does not represent an enum type.
T[] values = getEnumConstantsShared();
return (values != null) ? values.clone() : null;
|
T[] | getEnumConstantsShared()Returns the elements of this enum class or null if this
Class object does not represent an enum type;
identical to getEnumConstantsShared except that
the result is uncloned, cached, and shared by all callers.
if (enumConstants == null) {
if (!isEnum()) return null;
try {
final Method values = getMethod("values");
java.security.AccessController.doPrivileged
(new java.security.PrivilegedAction() {
public Object run() {
values.setAccessible(true);
return null;
}
});
enumConstants = (T[])values.invoke(null);
}
// These can happen when users concoct enum-like classes
// that don't comply with the enum spec.
catch (InvocationTargetException ex) { return null; }
catch (NoSuchMethodException ex) { return null; }
catch (IllegalAccessException ex) { return null; }
}
return enumConstants;
|
private sun.reflect.generics.factory.GenericsFactory | getFactory()
// create scope and factory
return CoreReflectionFactory.make(this, ClassScope.make(this));
|
public java.lang.reflect.Field | getField(java.lang.String name)Returns a Field object that reflects the specified public
member field of the class or interface represented by this
Class object. The name parameter is a
String specifying the simple name of the desired field.
The field to be reflected is determined by the algorithm that
follows. Let C be the class represented by this object:
- If C declares a public field with the name specified, that is the
field to be reflected.
- If no field was found in step 1 above, this algorithm is applied
recursively to each direct superinterface of C. The direct
superinterfaces are searched in the order they were declared.
- If no field was found in steps 1 and 2 above, and C has a
superclass S, then this algorithm is invoked recursively upon S.
If C has no superclass, then a
NoSuchFieldException
is thrown.
See The Java Language Specification, sections 8.2 and 8.3.
// be very careful not to change the stack depth of this
// checkMemberAccess call for security reasons
// see java.lang.SecurityManager.checkMemberAccess
checkMemberAccess(Member.PUBLIC, ClassLoader.getCallerClassLoader());
Field field = getField0(name);
if (field == null) {
throw new NoSuchFieldException(name);
}
return field;
|
private java.lang.reflect.Field | getField0(java.lang.String name)
// Note: the intent is that the search algorithm this routine
// uses be equivalent to the ordering imposed by
// privateGetPublicFields(). It fetches only the declared
// public fields for each class, however, to reduce the number
// of Field objects which have to be created for the common
// case where the field being requested is declared in the
// class which is being queried.
Field res = null;
// Search declared public fields
if ((res = searchFields(privateGetDeclaredFields(true), name)) != null) {
return res;
}
// Direct superinterfaces, recursively
Class[] interfaces = getInterfaces();
for (int i = 0; i < interfaces.length; i++) {
Class c = interfaces[i];
if ((res = c.getField0(name)) != null) {
return res;
}
}
// Direct superclass, recursively
if (!isInterface()) {
Class c = getSuperclass();
if (c != null) {
if ((res = c.getField0(name)) != null) {
return res;
}
}
}
return null;
|
public java.lang.reflect.Field[] | getFields()Returns an array containing Field objects reflecting all
the accessible public fields of the class or interface represented by
this Class object. The elements in the array returned are
not sorted and are not in any particular order. This method returns an
array of length 0 if the class or interface has no accessible public
fields, or if it represents an array class, a primitive type, or void.
Specifically, if this Class object represents a class,
this method returns the public fields of this class and of all its
superclasses. If this Class object represents an
interface, this method returns the fields of this interface and of all
its superinterfaces.
The implicit length field for array class is not reflected by this
method. User code should use the methods of class Array to
manipulate arrays.
See The Java Language Specification, sections 8.2 and 8.3.
// be very careful not to change the stack depth of this
// checkMemberAccess call for security reasons
// see java.lang.SecurityManager.checkMemberAccess
checkMemberAccess(Member.PUBLIC, ClassLoader.getCallerClassLoader());
return copyFields(privateGetPublicFields(null));
|
private sun.reflect.generics.repository.ClassRepository | getGenericInfo()
// lazily initialize repository if necessary
if (genericInfo == null) {
// create and cache generic info repository
genericInfo = ClassRepository.make(getGenericSignature(),
getFactory());
}
return genericInfo; //return cached repository
|
public java.lang.reflect.Type[] | getGenericInterfaces()Returns the Types representing the interfaces
directly implemented by the class or interface represented by
this object.
If a superinterface is a parameterized type, the
Type object returned for it must accurately reflect
the actual type parameters used in the source code. The
parameterized type representing each superinterface is created
if it had not been created before. See the declaration of
{@link java.lang.reflect.ParameterizedType ParameterizedType}
for the semantics of the creation process for parameterized
types.
If this object represents a class, the return value is an
array containing objects representing all interfaces
implemented by the class. The order of the interface objects in
the array corresponds to the order of the interface names in
the implements clause of the declaration of the class
represented by this object. In the case of an array class, the
interfaces Cloneable and Serializable are
returned in that order.
If this object represents an interface, the array contains
objects representing all interfaces directly extended by the
interface. The order of the interface objects in the array
corresponds to the order of the interface names in the
extends clause of the declaration of the interface
represented by this object.
If this object represents a class or interface that
implements no interfaces, the method returns an array of length
0.
If this object represents a primitive type or void, the
method returns an array of length 0.
if (getGenericSignature() != null)
return getGenericInfo().getSuperInterfaces();
else
return getInterfaces();
|
private native java.lang.String | getGenericSignature()
|
public java.lang.reflect.Type | getGenericSuperclass()Returns the Type representing the direct superclass of
the entity (class, interface, primitive type or void) represented by
this Class.
If the superclass is a parameterized type, the Type
object returned must accurately reflect the actual type
parameters used in the source code. The parameterized type
representing the superclass is created if it had not been
created before. See the declaration of {@link
java.lang.reflect.ParameterizedType ParameterizedType} for the
semantics of the creation process for parameterized types. If
this Class represents either the Object
class, an interface, a primitive type, or void, then null is
returned. If this object represents an array class then the
Class object representing the Object class is
returned.
if (getGenericSignature() != null) {
// Historical irregularity:
// Generic signature marks interfaces with superclass = Object
// but this API returns null for interfaces
if (isInterface())
return null;
return getGenericInfo().getSuperclass();
} else
return getSuperclass();
|
public native java.lang.Class[] | getInterfaces()Determines the interfaces implemented by the class or interface
represented by this object.
If this object represents a class, the return value is an array
containing objects representing all interfaces implemented by the
class. The order of the interface objects in the array corresponds to
the order of the interface names in the implements clause
of the declaration of the class represented by this object. For
example, given the declaration:
class Shimmer implements FloorWax, DessertTopping { ... }
suppose the value of s is an instance of
Shimmer ; the value of the expression:
s.getClass().getInterfaces()[0]
is the Class object that represents interface
FloorWax ; and the value of:
s.getClass().getInterfaces()[1]
is the Class object that represents interface
DessertTopping .
If this object represents an interface, the array contains objects
representing all interfaces extended by the interface. The order of the
interface objects in the array corresponds to the order of the interface
names in the extends clause of the declaration of the
interface represented by this object.
If this object represents a class or interface that implements no
interfaces, the method returns an array of length 0.
If this object represents a primitive type or void, the method
returns an array of length 0.
|
public java.lang.reflect.Method | getMethod(java.lang.String name, java.lang.Class parameterTypes)Returns a Method object that reflects the specified public
member method of the class or interface represented by this
Class object. The name parameter is a
String specifying the simple name of the desired method. The
parameterTypes parameter is an array of Class
objects that identify the method's formal parameter types, in declared
order. If parameterTypes is null , it is
treated as if it were an empty array.
If the name is "{@code };"or "{@code }" a
NoSuchMethodException is raised. Otherwise, the method to
be reflected is determined by the algorithm that follows. Let C be the
class represented by this object:
- C is searched for any matching methods. If no matching
method is found, the algorithm of step 1 is invoked recursively on
the superclass of C.
- If no method was found in step 1 above, the superinterfaces of C
are searched for a matching method. If any such method is found, it
is reflected.
To find a matching method in a class C: If C declares exactly one
public method with the specified name and exactly the same formal
parameter types, that is the method reflected. If more than one such
method is found in C, and one of these methods has a return type that is
more specific than any of the others, that method is reflected;
otherwise one of the methods is chosen arbitrarily.
Note that there may be more than one matching method in a
class because while the Java language forbids a class to
declare multiple methods with the same signature but different
return types, the Java virtual machine does not. This
increased flexibility in the virtual machine can be used to
implement various language features. For example, covariant
returns can be implemented with {@linkplain
java.lang.reflect.Method#isBridge bridge methods}; the bridge
method and the method being overridden would have the same
signature but different return types.
See The Java Language Specification, sections 8.2 and 8.4.
// be very careful not to change the stack depth of this
// checkMemberAccess call for security reasons
// see java.lang.SecurityManager.checkMemberAccess
checkMemberAccess(Member.PUBLIC, ClassLoader.getCallerClassLoader());
Method method = getMethod0(name, parameterTypes);
if (method == null) {
throw new NoSuchMethodException(getName() + "." + name + argumentTypesToString(parameterTypes));
}
return method;
|
private java.lang.reflect.Method | getMethod0(java.lang.String name, java.lang.Class[] parameterTypes)
// Note: the intent is that the search algorithm this routine
// uses be equivalent to the ordering imposed by
// privateGetPublicMethods(). It fetches only the declared
// public methods for each class, however, to reduce the
// number of Method objects which have to be created for the
// common case where the method being requested is declared in
// the class which is being queried.
Method res = null;
// Search declared public methods
if ((res = searchMethods(privateGetDeclaredMethods(true),
name,
parameterTypes)) != null) {
return res;
}
// Search superclass's methods
if (!isInterface()) {
Class c = getSuperclass();
if (c != null) {
if ((res = c.getMethod0(name, parameterTypes)) != null) {
return res;
}
}
}
// Search superinterfaces' methods
Class[] interfaces = getInterfaces();
for (int i = 0; i < interfaces.length; i++) {
Class c = interfaces[i];
if ((res = c.getMethod0(name, parameterTypes)) != null) {
return res;
}
}
// Not found
return null;
|
public java.lang.reflect.Method[] | getMethods()Returns an array containing Method objects reflecting all
the public member methods of the class or interface represented
by this Class object, including those declared by the class
or interface and those inherited from superclasses and
superinterfaces. Array classes return all the (public) member methods
inherited from the Object class. The elements in the array
returned are not sorted and are not in any particular order. This
method returns an array of length 0 if this Class object
represents a class or interface that has no public member methods, or if
this Class object represents a primitive type or void.
The class initialization method <clinit> is not
included in the returned array. If the class declares multiple public
member methods with the same parameter types, they are all included in
the returned array.
See The Java Language Specification, sections 8.2 and 8.4.
// be very careful not to change the stack depth of this
// checkMemberAccess call for security reasons
// see java.lang.SecurityManager.checkMemberAccess
checkMemberAccess(Member.PUBLIC, ClassLoader.getCallerClassLoader());
return copyMethods(privateGetPublicMethods());
|
public native int | getModifiers()Returns the Java language modifiers for this class or interface, encoded
in an integer. The modifiers consist of the Java Virtual Machine's
constants for public , protected ,
private , final , static ,
abstract and interface ; they should be decoded
using the methods of class Modifier .
If the underlying class is an array class, then its
public , private and protected
modifiers are the same as those of its component type. If this
Class represents a primitive type or void, its
public modifier is always true , and its
protected and private modifiers are always
false . If this object represents an array class, a
primitive type or void, then its final modifier is always
true and its interface modifier is always
false . The values of its other modifiers are not determined
by this specification.
The modifier encodings are defined in The Java Virtual Machine
Specification, table 4.1.
|
public java.lang.String | getName()Returns the name of the entity (class, interface, array class,
primitive type, or void) represented by this Class object,
as a String.
If this class object represents a reference type that is not an
array type then the binary name of the class is returned, as specified
by the Java Language Specification, Second Edition.
If this class object represents a primitive type or void, then the
name returned is a String equal to the Java language
keyword corresponding to the primitive type or void.
If this class object represents a class of arrays, then the internal
form of the name consists of the name of the element type preceded by
one or more '[' characters representing the depth of the array
nesting. The encoding of element type names is as follows:
Element Type | | Encoding
|
---|
boolean | | Z
| byte | | B
| char | | C
| class or interface
| | Lclassname;
| double | | D
| float | | F
| int | | I
| long | | J
| short | | S
|
The class or interface name classname is the binary name of
the class specified above.
Examples:
String.class.getName()
returns "java.lang.String"
byte.class.getName()
returns "byte"
(new Object[3]).getClass().getName()
returns "[Ljava.lang.Object;"
(new int[3][4][5][6][7][8][9]).getClass().getName()
returns "[[[[[[[I"
if (name == null)
name = getName0();
return name;
|
private native java.lang.String | getName0()
|
public java.lang.Package | getPackage()Gets the package for this class. The class loader of this class is used
to find the package. If the class was loaded by the bootstrap class
loader the set of packages loaded from CLASSPATH is searched to find the
package of the class. Null is returned if no package object was created
by the class loader of this class.
Packages have attributes for versions and specifications only if the
information was defined in the manifests that accompany the classes, and
if the class loader created the package instance with the attributes
from the manifest.
return Package.getPackage(this);
|
static native java.lang.Class | getPrimitiveClass(java.lang.String name)
|
public java.security.ProtectionDomain | getProtectionDomain()Returns the ProtectionDomain of this class. If there is a
security manager installed, this method first calls the security
manager's checkPermission method with a
RuntimePermission("getProtectionDomain") permission to
ensure it's ok to get the
ProtectionDomain .
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
sm.checkPermission(SecurityConstants.GET_PD_PERMISSION);
}
java.security.ProtectionDomain pd = getProtectionDomain0();
if (pd == null) {
if (allPermDomain == null) {
java.security.Permissions perms =
new java.security.Permissions();
perms.add(SecurityConstants.ALL_PERMISSION);
allPermDomain =
new java.security.ProtectionDomain(null, perms);
}
pd = allPermDomain;
}
return pd;
|
private native java.security.ProtectionDomain | getProtectionDomain0()Returns the ProtectionDomain of this class.
|
private native byte[] | getRawAnnotations()
|
private static sun.reflect.ReflectionFactory | getReflectionFactory()
if (reflectionFactory == null) {
reflectionFactory = (ReflectionFactory)
java.security.AccessController.doPrivileged
(new sun.reflect.ReflectionFactory.GetReflectionFactoryAction());
}
return reflectionFactory;
|
public java.net.URL | getResource(java.lang.String name)Finds a resource with a given name. The rules for searching resources
associated with a given class are implemented by the defining
{@linkplain ClassLoader class loader} of the class. This method
delegates to this object's class loader. If this object was loaded by
the bootstrap class loader, the method delegates to {@link
ClassLoader#getSystemResource}.
Before delegation, an absolute resource name is constructed from the
given resource name using this algorithm:
name = resolveName(name);
ClassLoader cl = getClassLoader0();
if (cl==null) {
// A system class.
return ClassLoader.getSystemResource(name);
}
return cl.getResource(name);
|
public java.io.InputStream | getResourceAsStream(java.lang.String name)Finds a resource with a given name. The rules for searching resources
associated with a given class are implemented by the defining
{@linkplain ClassLoader class loader} of the class. This method
delegates to this object's class loader. If this object was loaded by
the bootstrap class loader, the method delegates to {@link
ClassLoader#getSystemResourceAsStream}.
Before delegation, an absolute resource name is constructed from the
given resource name using this algorithm:
name = resolveName(name);
ClassLoader cl = getClassLoader0();
if (cl==null) {
// A system class.
return ClassLoader.getSystemResourceAsStream(name);
}
return cl.getResourceAsStream(name);
|
public native java.lang.Object[] | getSigners()Gets the signers of this class.
|
private java.lang.String | getSimpleBinaryName()Returns the "simple binary name" of the underlying class, i.e.,
the binary name without the leading enclosing class name.
Returns null if the underlying class is a top level
class.
Class<?> enclosingClass = getEnclosingClass();
if (enclosingClass == null) // top level class
return null;
// Otherwise, strip the enclosing class' name
try {
return getName().substring(enclosingClass.getName().length());
} catch (IndexOutOfBoundsException ex) {
throw new InternalError("Malformed class name");
}
|
public java.lang.String | getSimpleName()Returns the simple name of the underlying class as given in the
source code. Returns an empty string if the underlying class is
anonymous.
The simple name of an array is the simple name of the
component type with "[]" appended. In particular the simple
name of an array whose component type is anonymous is "[]".
if (isArray())
return getComponentType().getSimpleName()+"[]";
String simpleName = getSimpleBinaryName();
if (simpleName == null) { // top level class
simpleName = getName();
return simpleName.substring(simpleName.lastIndexOf(".")+1); // strip the package name
}
// According to JLS3 "Binary Compatibility" (13.1) the binary
// name of non-package classes (not top level) is the binary
// name of the immediately enclosing class followed by a '$' followed by:
// (for nested and inner classes): the simple name.
// (for local classes): 1 or more digits followed by the simple name.
// (for anonymous classes): 1 or more digits.
// Since getSimpleBinaryName() will strip the binary name of
// the immediatly enclosing class, we are now looking at a
// string that matches the regular expression "\$[0-9]*"
// followed by a simple name (considering the simple of an
// anonymous class to be the empty string).
// Remove leading "\$[0-9]*" from the name
int length = simpleName.length();
if (length < 1 || simpleName.charAt(0) != '$")
throw new InternalError("Malformed class name");
int index = 1;
while (index < length && isAsciiDigit(simpleName.charAt(index)))
index++;
// Eventually, this is the empty string iff this is an anonymous class
return simpleName.substring(index);
|
public native java.lang.Class | getSuperclass()Returns the Class representing the superclass of the entity
(class, interface, primitive type or void) represented by this
Class . If this Class represents either the
Object class, an interface, a primitive type, or void, then
null is returned. If this object represents an array class then the
Class object representing the Object class is
returned.
|
public java.lang.reflect.TypeVariable[] | getTypeParameters()Returns an array of TypeVariable objects that represent the
type variables declared by the generic declaration represented by this
GenericDeclaration object, in declaration order. Returns an
array of length 0 if the underlying generic declaration declares no type
variables.
if (getGenericSignature() != null)
return (TypeVariable<Class<T>>[])getGenericInfo().getTypeParameters();
else
return (TypeVariable<Class<T>>[])new TypeVariable[0];
|
private synchronized void | initAnnotationsIfNecessary()
clearCachesOnClassRedefinition();
if (annotations != null)
return;
declaredAnnotations = AnnotationParser.parseAnnotations(
getRawAnnotations(), getConstantPool(), this);
Class<?> superClass = getSuperclass();
if (superClass == null) {
annotations = declaredAnnotations;
} else {
annotations = new HashMap<Class, Annotation>();
superClass.initAnnotationsIfNecessary();
for (Map.Entry<Class, Annotation> e : superClass.annotations.entrySet()) {
Class annotationClass = e.getKey();
if (AnnotationType.getInstance(annotationClass).isInherited())
annotations.put(annotationClass, e.getValue());
}
annotations.putAll(declaredAnnotations);
}
|
public boolean | isAnnotation()Returns true if this Class object represents an annotation
type. Note that if this method returns true, {@link #isInterface()}
would also return true, as all annotation types are also interfaces.
return (getModifiers() & ANNOTATION) != 0;
|
public boolean | isAnnotationPresent(java.lang.Class annotationClass)
if (annotationClass == null)
throw new NullPointerException();
return getAnnotation(annotationClass) != null;
|
public boolean | isAnonymousClass()Returns true if and only if the underlying class
is an anonymous class.
return "".equals(getSimpleName());
|
public native boolean | isArray()Determines if this Class object represents an array class.
|
private static boolean | isAsciiDigit(char c)Character.isDigit answers true to some non-ascii
digits. This one does not.
return '0" <= c && c <= '9";
|
public native boolean | isAssignableFrom(java.lang.Class cls)Determines if the class or interface represented by this
Class object is either the same as, or is a superclass or
superinterface of, the class or interface represented by the specified
Class parameter. It returns true if so;
otherwise it returns false . If this Class
object represents a primitive type, this method returns
true if the specified Class parameter is
exactly this Class object; otherwise it returns
false .
Specifically, this method tests whether the type represented by the
specified Class parameter can be converted to the type
represented by this Class object via an identity conversion
or via a widening reference conversion. See The Java Language
Specification, sections 5.1.1 and 5.1.4 , for details.
|
public boolean | isEnum()Returns true if and only if this class was declared as an enum in the
source code.
// An enum must both directly extend java.lang.Enum and have
// the ENUM bit set; classes for specialized enum constants
// don't do the former.
return (this.getModifiers() & ENUM) != 0 &&
this.getSuperclass() == java.lang.Enum.class;
|
public native boolean | isInstance(java.lang.Object obj)Determines if the specified Object is assignment-compatible
with the object represented by this Class . This method is
the dynamic equivalent of the Java language instanceof
operator. The method returns true if the specified
Object argument is non-null and can be cast to the
reference type represented by this Class object without
raising a ClassCastException. It returns false
otherwise.
Specifically, if this Class object represents a
declared class, this method returns true if the specified
Object argument is an instance of the represented class (or
of any of its subclasses); it returns false otherwise. If
this Class object represents an array class, this method
returns true if the specified Object argument
can be converted to an object of the array class by an identity
conversion or by a widening reference conversion; it returns
false otherwise. If this Class object
represents an interface, this method returns true if the
class or any superclass of the specified Object argument
implements this interface; it returns false otherwise. If
this Class object represents a primitive type, this method
returns false .
|
public native boolean | isInterface()Determines if the specified Class object represents an
interface type.
|
public boolean | isLocalClass()Returns true if and only if the underlying class
is a local class.
return isLocalOrAnonymousClass() && !isAnonymousClass();
|
private boolean | isLocalOrAnonymousClass()Returns true if this is a local class or an anonymous
class. Returns false otherwise.
// JVM Spec 4.8.6: A class must have an EnclosingMethod
// attribute if and only if it is a local class or an
// anonymous class.
return getEnclosingMethodInfo() != null;
|
public boolean | isMemberClass()Returns true if and only if the underlying class
is a member class.
return getSimpleBinaryName() != null && !isLocalOrAnonymousClass();
|
public native boolean | isPrimitive()Determines if the specified Class object represents a
primitive type.
There are nine predefined Class objects to represent
the eight primitive types and void. These are created by the Java
Virtual Machine, and have the same names as the primitive types that
they represent, namely boolean , byte ,
char , short , int ,
long , float , and double .
These objects may only be accessed via the following public static
final variables, and are the only Class objects for which
this method returns true .
|
public boolean | isSynthetic()Returns true if this class is a synthetic class;
returns false otherwise.
return (getModifiers() & SYNTHETIC) != 0;
|
public T | newInstance()Creates a new instance of the class represented by this Class
object. The class is instantiated as if by a new
expression with an empty argument list. The class is initialized if it
has not already been initialized.
Note that this method propagates any exception thrown by the
nullary constructor, including a checked exception. Use of
this method effectively bypasses the compile-time exception
checking that would otherwise be performed by the compiler.
The {@link
java.lang.reflect.Constructor#newInstance(java.lang.Object...)
Constructor.newInstance} method avoids this problem by wrapping
any exception thrown by the constructor in a (checked) {@link
java.lang.reflect.InvocationTargetException}.
if (System.getSecurityManager() != null) {
checkMemberAccess(Member.PUBLIC, ClassLoader.getCallerClassLoader());
}
return newInstance0();
|
private T | newInstance0()
// NOTE: the following code may not be strictly correct under
// the current Java memory model.
// Constructor lookup
if (cachedConstructor == null) {
if (this == Class.class) {
throw new IllegalAccessException(
"Can not call newInstance() on the Class for java.lang.Class"
);
}
try {
Class[] empty = {};
final Constructor<T> c = getConstructor0(empty, Member.DECLARED);
// Disable accessibility checks on the constructor
// since we have to do the security check here anyway
// (the stack depth is wrong for the Constructor's
// security check to work)
java.security.AccessController.doPrivileged
(new java.security.PrivilegedAction() {
public Object run() {
c.setAccessible(true);
return null;
}
});
cachedConstructor = c;
} catch (NoSuchMethodException e) {
throw new InstantiationException(getName());
}
}
Constructor<T> tmpConstructor = cachedConstructor;
// Security check (same as in java.lang.reflect.Constructor)
int modifiers = tmpConstructor.getModifiers();
if (!Reflection.quickCheckMemberAccess(this, modifiers)) {
Class caller = Reflection.getCallerClass(3);
if (newInstanceCallerCache != caller) {
Reflection.ensureMemberAccess(caller, this, null, modifiers);
newInstanceCallerCache = caller;
}
}
// Run constructor
try {
return tmpConstructor.newInstance((Object[])null);
} catch (InvocationTargetException e) {
Unsafe.getUnsafe().throwException(e.getTargetException());
// Not reached
return null;
}
|
private java.lang.reflect.Constructor[] | privateGetDeclaredConstructors(boolean publicOnly)
checkInitted();
Constructor[] res = null;
if (useCaches) {
clearCachesOnClassRedefinition();
if (publicOnly) {
if (publicConstructors != null) {
res = (Constructor[]) publicConstructors.get();
}
} else {
if (declaredConstructors != null) {
res = (Constructor[]) declaredConstructors.get();
}
}
if (res != null) return res;
}
// No cached value available; request value from VM
if (isInterface()) {
res = new Constructor[0];
} else {
res = getDeclaredConstructors0(publicOnly);
}
if (useCaches) {
if (publicOnly) {
publicConstructors = new SoftReference(res);
} else {
declaredConstructors = new SoftReference(res);
}
}
return res;
|
private java.lang.reflect.Field[] | privateGetDeclaredFields(boolean publicOnly)
checkInitted();
Field[] res = null;
if (useCaches) {
clearCachesOnClassRedefinition();
if (publicOnly) {
if (declaredPublicFields != null) {
res = (Field[]) declaredPublicFields.get();
}
} else {
if (declaredFields != null) {
res = (Field[]) declaredFields.get();
}
}
if (res != null) return res;
}
// No cached value available; request value from VM
res = Reflection.filterFields(this, getDeclaredFields0(publicOnly));
if (useCaches) {
if (publicOnly) {
declaredPublicFields = new SoftReference(res);
} else {
declaredFields = new SoftReference(res);
}
}
return res;
|
private java.lang.reflect.Method[] | privateGetDeclaredMethods(boolean publicOnly)
checkInitted();
Method[] res = null;
if (useCaches) {
clearCachesOnClassRedefinition();
if (publicOnly) {
if (declaredPublicMethods != null) {
res = (Method[]) declaredPublicMethods.get();
}
} else {
if (declaredMethods != null) {
res = (Method[]) declaredMethods.get();
}
}
if (res != null) return res;
}
// No cached value available; request value from VM
res = getDeclaredMethods0(publicOnly);
if (useCaches) {
if (publicOnly) {
declaredPublicMethods = new SoftReference(res);
} else {
declaredMethods = new SoftReference(res);
}
}
return res;
|
private java.lang.reflect.Field[] | privateGetPublicFields(java.util.Set traversedInterfaces)
checkInitted();
Field[] res = null;
if (useCaches) {
clearCachesOnClassRedefinition();
if (publicFields != null) {
res = (Field[]) publicFields.get();
}
if (res != null) return res;
}
// No cached value available; compute value recursively.
// Traverse in correct order for getField().
List fields = new ArrayList();
if (traversedInterfaces == null) {
traversedInterfaces = new HashSet();
}
// Local fields
Field[] tmp = privateGetDeclaredFields(true);
addAll(fields, tmp);
// Direct superinterfaces, recursively
Class[] interfaces = getInterfaces();
for (int i = 0; i < interfaces.length; i++) {
Class c = interfaces[i];
if (!traversedInterfaces.contains(c)) {
traversedInterfaces.add(c);
addAll(fields, c.privateGetPublicFields(traversedInterfaces));
}
}
// Direct superclass, recursively
if (!isInterface()) {
Class c = getSuperclass();
if (c != null) {
addAll(fields, c.privateGetPublicFields(traversedInterfaces));
}
}
res = new Field[fields.size()];
fields.toArray(res);
if (useCaches) {
publicFields = new SoftReference(res);
}
return res;
|
private java.lang.reflect.Method[] | privateGetPublicMethods()
checkInitted();
Method[] res = null;
if (useCaches) {
clearCachesOnClassRedefinition();
if (publicMethods != null) {
res = (Method[]) publicMethods.get();
}
if (res != null) return res;
}
// No cached value available; compute value recursively.
// Start by fetching public declared methods
MethodArray methods = new MethodArray();
{
Method[] tmp = privateGetDeclaredMethods(true);
methods.addAll(tmp);
}
// Now recur over superclass and direct superinterfaces.
// Go over superinterfaces first so we can more easily filter
// out concrete implementations inherited from superclasses at
// the end.
MethodArray inheritedMethods = new MethodArray();
Class[] interfaces = getInterfaces();
for (int i = 0; i < interfaces.length; i++) {
inheritedMethods.addAll(interfaces[i].privateGetPublicMethods());
}
if (!isInterface()) {
Class c = getSuperclass();
if (c != null) {
MethodArray supers = new MethodArray();
supers.addAll(c.privateGetPublicMethods());
// Filter out concrete implementations of any
// interface methods
for (int i = 0; i < supers.length(); i++) {
Method m = supers.get(i);
if (m != null && !Modifier.isAbstract(m.getModifiers())) {
inheritedMethods.removeByNameAndSignature(m);
}
}
// Insert superclass's inherited methods before
// superinterfaces' to satisfy getMethod's search
// order
supers.addAll(inheritedMethods);
inheritedMethods = supers;
}
}
// Filter out all local methods from inherited ones
for (int i = 0; i < methods.length(); i++) {
Method m = methods.get(i);
inheritedMethods.removeByNameAndSignature(m);
}
methods.addAllIfNotPresent(inheritedMethods);
methods.compactAndTrim();
res = methods.getArray();
if (useCaches) {
publicMethods = new SoftReference(res);
}
return res;
|
private static native void | registerNatives()
|
private java.lang.String | resolveName(java.lang.String name)Add a package name prefix if the name is not absolute Remove leading "/"
if name is absolute
if (name == null) {
return name;
}
if (!name.startsWith("/")) {
Class c = this;
while (c.isArray()) {
c = c.getComponentType();
}
String baseName = c.getName();
int index = baseName.lastIndexOf('.");
if (index != -1) {
name = baseName.substring(0, index).replace('.", '/")
+"/"+name;
}
} else {
name = name.substring(1);
}
return name;
|
private java.lang.reflect.Field | searchFields(java.lang.reflect.Field[] fields, java.lang.String name)
String internedName = name.intern();
for (int i = 0; i < fields.length; i++) {
if (fields[i].getName() == internedName) {
return getReflectionFactory().copyField(fields[i]);
}
}
return null;
|
private static java.lang.reflect.Method | searchMethods(java.lang.reflect.Method[] methods, java.lang.String name, java.lang.Class[] parameterTypes)
Method res = null;
String internedName = name.intern();
for (int i = 0; i < methods.length; i++) {
Method m = methods[i];
if (m.getName() == internedName
&& arrayContentsEq(parameterTypes, m.getParameterTypes())
&& (res == null
|| res.getReturnType().isAssignableFrom(m.getReturnType())))
res = m;
}
return (res == null ? res : getReflectionFactory().copyMethod(res));
|
void | setAnnotationType(sun.reflect.annotation.AnnotationType type)
annotationType = type;
|
native void | setProtectionDomain0(java.security.ProtectionDomain pd)Set the ProtectionDomain for this class. Called by
ClassLoader.defineClass.
|
native void | setSigners(java.lang.Object[] signers)Set the signers of this class.
|
private static java.lang.Class | toClass(java.lang.reflect.Type o)
if (o instanceof GenericArrayType)
return Array.newInstance(toClass(((GenericArrayType)o).getGenericComponentType()),
0)
.getClass();
return (Class)o;
|
public java.lang.String | toString()Converts the object to a string. The string representation is the
string "class" or "interface", followed by a space, and then by the
fully qualified name of the class in the format returned by
getName . If this Class object represents a
primitive type, this method returns the name of the primitive type. If
this Class object represents void this method returns
"void".
return (isInterface() ? "interface " : (isPrimitive() ? "" : "class "))
+ getName();
|