SparseArraypublic class SparseArray extends Object implements CloneableSparseArrays map integers to Objects. Unlike a normal array of Objects,
there can be gaps in the indices. It is intended to be more memory efficient
than using a HashMap to map Integers to Objects, both because it avoids
auto-boxing keys and its data structure doesn't rely on an extra entry object
for each mapping.
Note that this container keeps its mappings in an array data structure,
using a binary search to find keys. The implementation is not intended to be appropriate for
data structures
that may contain large numbers of items. It is generally slower than a traditional
HashMap, since lookups require a binary search and adds and removes require inserting
and deleting entries in the array. For containers holding up to hundreds of items,
the performance difference is not significant, less than 50%.
To help with performance, the container includes an optimization when removing
keys: instead of compacting its array immediately, it leaves the removed entry marked
as deleted. The entry can then be re-used for the same key, or compacted later in
a single garbage collection step of all removed entries. This garbage collection will
need to be performed at any time the array needs to be grown or the the map size or
entry values are retrieved.
It is possible to iterate over the items in this container using
{@link #keyAt(int)} and {@link #valueAt(int)}. Iterating over the keys using
keyAt(int) with ascending values of the index will return the
keys in ascending order, or the values corresponding to the keys in ascending
order in the case of valueAt(int) . |
Fields Summary |
---|
private static final Object | DELETED | private boolean | mGarbage | private int[] | mKeys | private Object[] | mValues | private int | mSize |
Constructors Summary |
---|
public SparseArray()Creates a new SparseArray containing no mappings.
this(10);
| public SparseArray(int initialCapacity)Creates a new SparseArray containing no mappings that will not
require any additional memory allocation to store the specified
number of mappings. If you supply an initial capacity of 0, the
sparse array will be initialized with a light-weight representation
not requiring any additional array allocations.
if (initialCapacity == 0) {
mKeys = EmptyArray.INT;
mValues = EmptyArray.OBJECT;
} else {
mValues = ArrayUtils.newUnpaddedObjectArray(initialCapacity);
mKeys = new int[mValues.length];
}
mSize = 0;
|
Methods Summary |
---|
public void | append(int key, E value)Puts a key/value pair into the array, optimizing for the case where
the key is greater than all existing keys in the array.
if (mSize != 0 && key <= mKeys[mSize - 1]) {
put(key, value);
return;
}
if (mGarbage && mSize >= mKeys.length) {
gc();
}
mKeys = GrowingArrayUtils.append(mKeys, mSize, key);
mValues = GrowingArrayUtils.append(mValues, mSize, value);
mSize++;
| public void | clear()Removes all key-value mappings from this SparseArray.
int n = mSize;
Object[] values = mValues;
for (int i = 0; i < n; i++) {
values[i] = null;
}
mSize = 0;
mGarbage = false;
| public android.util.SparseArray | clone()
SparseArray<E> clone = null;
try {
clone = (SparseArray<E>) super.clone();
clone.mKeys = mKeys.clone();
clone.mValues = mValues.clone();
} catch (CloneNotSupportedException cnse) {
/* ignore */
}
return clone;
| public void | delete(int key)Removes the mapping from the specified key, if there was any.
int i = ContainerHelpers.binarySearch(mKeys, mSize, key);
if (i >= 0) {
if (mValues[i] != DELETED) {
mValues[i] = DELETED;
mGarbage = true;
}
}
| private void | gc()
// Log.e("SparseArray", "gc start with " + mSize);
int n = mSize;
int o = 0;
int[] keys = mKeys;
Object[] values = mValues;
for (int i = 0; i < n; i++) {
Object val = values[i];
if (val != DELETED) {
if (i != o) {
keys[o] = keys[i];
values[o] = val;
values[i] = null;
}
o++;
}
}
mGarbage = false;
mSize = o;
// Log.e("SparseArray", "gc end with " + mSize);
| public E | get(int key)Gets the Object mapped from the specified key, or null
if no such mapping has been made.
return get(key, null);
| public E | get(int key, E valueIfKeyNotFound)Gets the Object mapped from the specified key, or the specified Object
if no such mapping has been made.
int i = ContainerHelpers.binarySearch(mKeys, mSize, key);
if (i < 0 || mValues[i] == DELETED) {
return valueIfKeyNotFound;
} else {
return (E) mValues[i];
}
| public int | indexOfKey(int key)Returns the index for which {@link #keyAt} would return the
specified key, or a negative number if the specified
key is not mapped.
if (mGarbage) {
gc();
}
return ContainerHelpers.binarySearch(mKeys, mSize, key);
| public int | indexOfValue(E value)Returns an index for which {@link #valueAt} would return the
specified key, or a negative number if no keys map to the
specified value.
Beware that this is a linear search, unlike lookups by key,
and that multiple keys can map to the same value and this will
find only one of them.
Note also that unlike most collections' {@code indexOf} methods,
this method compares values using {@code ==} rather than {@code equals}.
if (mGarbage) {
gc();
}
for (int i = 0; i < mSize; i++)
if (mValues[i] == value)
return i;
return -1;
| public int | keyAt(int index)Given an index in the range 0...size()-1 , returns
the key from the index th key-value mapping that this
SparseArray stores.
The keys corresponding to indices in ascending order are guaranteed to
be in ascending order, e.g., keyAt(0) will return the
smallest key and keyAt(size()-1) will return the largest
key.
if (mGarbage) {
gc();
}
return mKeys[index];
| public void | put(int key, E value)Adds a mapping from the specified key to the specified value,
replacing the previous mapping from the specified key if there
was one.
int i = ContainerHelpers.binarySearch(mKeys, mSize, key);
if (i >= 0) {
mValues[i] = value;
} else {
i = ~i;
if (i < mSize && mValues[i] == DELETED) {
mKeys[i] = key;
mValues[i] = value;
return;
}
if (mGarbage && mSize >= mKeys.length) {
gc();
// Search again because indices may have changed.
i = ~ContainerHelpers.binarySearch(mKeys, mSize, key);
}
mKeys = GrowingArrayUtils.insert(mKeys, mSize, i, key);
mValues = GrowingArrayUtils.insert(mValues, mSize, i, value);
mSize++;
}
| public void | remove(int key)Alias for {@link #delete(int)}.
delete(key);
| public void | removeAt(int index)Removes the mapping at the specified index.
if (mValues[index] != DELETED) {
mValues[index] = DELETED;
mGarbage = true;
}
| public void | removeAtRange(int index, int size)Remove a range of mappings as a batch.
final int end = Math.min(mSize, index + size);
for (int i = index; i < end; i++) {
removeAt(i);
}
| public void | setValueAt(int index, E value)Given an index in the range 0...size()-1 , sets a new
value for the index th key-value mapping that this
SparseArray stores.
if (mGarbage) {
gc();
}
mValues[index] = value;
| public int | size()Returns the number of key-value mappings that this SparseArray
currently stores.
if (mGarbage) {
gc();
}
return mSize;
| public java.lang.String | toString(){@inheritDoc}
This implementation composes a string by iterating over its mappings. If
this map contains itself as a value, the string "(this Map)"
will appear in its place.
if (size() <= 0) {
return "{}";
}
StringBuilder buffer = new StringBuilder(mSize * 28);
buffer.append('{");
for (int i=0; i<mSize; i++) {
if (i > 0) {
buffer.append(", ");
}
int key = keyAt(i);
buffer.append(key);
buffer.append('=");
Object value = valueAt(i);
if (value != this) {
buffer.append(value);
} else {
buffer.append("(this Map)");
}
}
buffer.append('}");
return buffer.toString();
| public E | valueAt(int index)Given an index in the range 0...size()-1 , returns
the value from the index th key-value mapping that this
SparseArray stores.
The values corresponding to indices in ascending order are guaranteed
to be associated with keys in ascending order, e.g.,
valueAt(0) will return the value associated with the
smallest key and valueAt(size()-1) will return the value
associated with the largest key.
if (mGarbage) {
gc();
}
return (E) mValues[index];
|
|