BigIntegerpublic class BigInteger extends Number implements ComparableImmutable arbitrary-precision integers. All operations behave as if
BigIntegers were represented in two's-complement notation (like Java's
primitive integer types). BigInteger provides analogues to all of Java's
primitive integer operators, and all relevant methods from java.lang.Math.
Additionally, BigInteger provides operations for modular arithmetic, GCD
calculation, primality testing, prime generation, bit manipulation,
and a few other miscellaneous operations.
Semantics of arithmetic operations exactly mimic those of Java's integer
arithmetic operators, as defined in The Java Language Specification.
For example, division by zero throws an ArithmeticException, and
division of a negative by a positive yields a negative (or zero) remainder.
All of the details in the Spec concerning overflow are ignored, as
BigIntegers are made as large as necessary to accommodate the results of an
operation.
Semantics of shift operations extend those of Java's shift operators
to allow for negative shift distances. A right-shift with a negative
shift distance results in a left shift, and vice-versa. The unsigned
right shift operator (>>>) is omitted, as this operation makes
little sense in combination with the "infinite word size" abstraction
provided by this class.
Semantics of bitwise logical operations exactly mimic those of Java's
bitwise integer operators. The binary operators (and,
or, xor) implicitly perform sign extension on the shorter
of the two operands prior to performing the operation.
Comparison operations perform signed integer comparisons, analogous to
those performed by Java's relational and equality operators.
Modular arithmetic operations are provided to compute residues, perform
exponentiation, and compute multiplicative inverses. These methods always
return a non-negative result, between 0 and (modulus - 1),
inclusive.
Bit operations operate on a single bit of the two's-complement
representation of their operand. If necessary, the operand is sign-
extended so that it contains the designated bit. None of the single-bit
operations can produce a BigInteger with a different sign from the
BigInteger being operated on, as they affect only a single bit, and the
"infinite word size" abstraction provided by this class ensures that there
are infinitely many "virtual sign bits" preceding each BigInteger.
For the sake of brevity and clarity, pseudo-code is used throughout the
descriptions of BigInteger methods. The pseudo-code expression
(i + j) is shorthand for "a BigInteger whose value is
that of the BigInteger i plus that of the BigInteger j."
The pseudo-code expression (i == j) is shorthand for
"true if and only if the BigInteger i represents the same
value as the BigInteger j." Other pseudo-code expressions are
interpreted similarly.
All methods and constructors in this class throw
NullPointerException when passed
a null object reference for any input parameter. |
Fields Summary |
---|
int | signumThe signum of this BigInteger: -1 for negative, 0 for zero, or
1 for positive. Note that the BigInteger zero must have
a signum of 0. This is necessary to ensures that there is exactly one
representation for each BigInteger value. | int[] | magThe magnitude of this BigInteger, in big-endian order: the
zeroth element of this array is the most-significant int of the
magnitude. The magnitude must be "minimal" in that the most-significant
int (mag[0]) must be non-zero. This is necessary to
ensure that there is exactly one representation for each BigInteger
value. Note that this implies that the BigInteger zero has a
zero-length mag array. | private int | bitCountThe bitCount of this BigInteger, as returned by bitCount(), or -1
(either value is acceptable). | private int | bitLengthThe bitLength of this BigInteger, as returned by bitLength(), or -1
(either value is acceptable). | private int | lowestSetBitThe lowest set bit of this BigInteger, as returned by getLowestSetBit(),
or -2 (either value is acceptable). | private int | firstNonzeroByteNumThe index of the lowest-order byte in the magnitude of this BigInteger
that contains a nonzero byte, or -2 (either value is acceptable). The
least significant byte has int-number 0, the next byte in order of
increasing significance has byte-number 1, and so forth. | private int | firstNonzeroIntNumThe index of the lowest-order int in the magnitude of this BigInteger
that contains a nonzero int, or -2 (either value is acceptable). The
least significant int has int-number 0, the next int in order of
increasing significance has int-number 1, and so forth. | private static final long | LONG_MASKThis mask is used to obtain the value of an int as if it were unsigned. | private static long[] | bitsPerDigit | private static final int | SMALL_PRIME_THRESHOLD | private static final int | DEFAULT_PRIME_CERTAINTY | private static final BigInteger | SMALL_PRIME_PRODUCT | private static final int | MAX_CONSTANTInitialize static constant array when class is loaded. | private static BigInteger[] | posConst | private static BigInteger[] | negConst | public static final BigInteger | ZEROThe BigInteger constant zero. | public static final BigInteger | ONEThe BigInteger constant one. | private static final BigInteger | TWOThe BigInteger constant two. (Not exported.) | public static final BigInteger | TENThe BigInteger constant ten. | static int[] | bnExpModThreshTable | static final byte[] | trailingZeroTable | private static String[] | zeros | private static int[] | digitsPerLong | private static BigInteger[] | longRadix | private static int[] | digitsPerInt | private static int[] | intRadix | private static final long | serialVersionUIDuse serialVersionUID from JDK 1.1. for interoperability | private static final ObjectStreamField[] | serialPersistentFieldsSerializable fields for BigInteger. |
Constructors Summary |
---|
public BigInteger(byte[] val)Translates a byte array containing the two's-complement binary
representation of a BigInteger into a BigInteger. The input array is
assumed to be in big-endian byte-order: the most significant
byte is in the zeroth element.
//Constructors
if (val.length == 0)
throw new NumberFormatException("Zero length BigInteger");
if (val[0] < 0) {
mag = makePositive(val);
signum = -1;
} else {
mag = stripLeadingZeroBytes(val);
signum = (mag.length == 0 ? 0 : 1);
}
| public BigInteger(int numBits, Random rnd)Constructs a randomly generated BigInteger, uniformly distributed over
the range 0 to (2numBits - 1), inclusive.
The uniformity of the distribution assumes that a fair source of random
bits is provided in rnd. Note that this constructor always
constructs a non-negative BigInteger.
this(1, randomBits(numBits, rnd));
| public BigInteger(int bitLength, int certainty, Random rnd)Constructs a randomly generated positive BigInteger that is probably
prime, with the specified bitLength.
It is recommended that the {@link #probablePrime probablePrime}
method be used in preference to this constructor unless there
is a compelling need to specify a certainty.
BigInteger prime;
if (bitLength < 2)
throw new ArithmeticException("bitLength < 2");
// The cutoff of 95 was chosen empirically for best performance
prime = (bitLength < 95 ? smallPrime(bitLength, certainty, rnd)
: largePrime(bitLength, certainty, rnd));
signum = 1;
mag = prime.mag;
| private BigInteger(int[] val)This private constructor translates an int array containing the
two's-complement binary representation of a BigInteger into a
BigInteger. The input array is assumed to be in big-endian
int-order: the most significant int is in the zeroth element.
if (val.length == 0)
throw new NumberFormatException("Zero length BigInteger");
if (val[0] < 0) {
mag = makePositive(val);
signum = -1;
} else {
mag = trustedStripLeadingZeroInts(val);
signum = (mag.length == 0 ? 0 : 1);
}
| private BigInteger(int[] magnitude, int signum)This private constructor differs from its public cousin
with the arguments reversed in two ways: it assumes that its
arguments are correct, and it doesn't copy the magnitude array.
this.signum = (magnitude.length==0 ? 0 : signum);
this.mag = magnitude;
| private BigInteger(byte[] magnitude, int signum)This private constructor is for internal use and assumes that its
arguments are correct.
this.signum = (magnitude.length==0 ? 0 : signum);
this.mag = stripLeadingZeroBytes(magnitude);
| BigInteger(MutableBigInteger val, int sign)This private constructor is for internal use in converting
from a MutableBigInteger object into a BigInteger.
if (val.offset > 0 || val.value.length != val.intLen) {
mag = new int[val.intLen];
for(int i=0; i<val.intLen; i++)
mag[i] = val.value[val.offset+i];
} else {
mag = val.value;
}
this.signum = (val.intLen == 0) ? 0 : sign;
| private BigInteger(long val)Constructs a BigInteger with the specified value, which may not be zero.
if (val < 0) {
signum = -1;
val = -val;
} else {
signum = 1;
}
int highWord = (int)(val >>> 32);
if (highWord==0) {
mag = new int[1];
mag[0] = (int)val;
} else {
mag = new int[2];
mag[0] = highWord;
mag[1] = (int)val;
}
| public BigInteger(int signum, byte[] magnitude)Translates the sign-magnitude representation of a BigInteger into a
BigInteger. The sign is represented as an integer signum value: -1 for
negative, 0 for zero, or 1 for positive. The magnitude is a byte array
in big-endian byte-order: the most significant byte is in the
zeroth element. A zero-length magnitude array is permissible, and will
result inin a BigInteger value of 0, whether signum is -1, 0 or 1.
this.mag = stripLeadingZeroBytes(magnitude);
if (signum < -1 || signum > 1)
throw(new NumberFormatException("Invalid signum value"));
if (this.mag.length==0) {
this.signum = 0;
} else {
if (signum == 0)
throw(new NumberFormatException("signum-magnitude mismatch"));
this.signum = signum;
}
| private BigInteger(int signum, int[] magnitude)A constructor for internal use that translates the sign-magnitude
representation of a BigInteger into a BigInteger. It checks the
arguments and copies the magnitude so this constructor would be
safe for external use.
this.mag = stripLeadingZeroInts(magnitude);
if (signum < -1 || signum > 1)
throw(new NumberFormatException("Invalid signum value"));
if (this.mag.length==0) {
this.signum = 0;
} else {
if (signum == 0)
throw(new NumberFormatException("signum-magnitude mismatch"));
this.signum = signum;
}
| public BigInteger(String val, int radix)Translates the String representation of a BigInteger in the specified
radix into a BigInteger. The String representation consists of an
optional minus sign followed by a sequence of one or more digits in the
specified radix. The character-to-digit mapping is provided by
Character.digit. The String may not contain any extraneous
characters (whitespace, for example).
int cursor = 0, numDigits;
int len = val.length();
if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
throw new NumberFormatException("Radix out of range");
if (val.length() == 0)
throw new NumberFormatException("Zero length BigInteger");
// Check for minus sign
signum = 1;
int index = val.lastIndexOf("-");
if (index != -1) {
if (index == 0) {
if (val.length() == 1)
throw new NumberFormatException("Zero length BigInteger");
signum = -1;
cursor = 1;
} else {
throw new NumberFormatException("Illegal embedded minus sign");
}
}
// Skip leading zeros and compute number of digits in magnitude
while (cursor < len &&
Character.digit(val.charAt(cursor),radix) == 0)
cursor++;
if (cursor == len) {
signum = 0;
mag = ZERO.mag;
return;
} else {
numDigits = len - cursor;
}
// Pre-allocate array of expected size. May be too large but can
// never be too small. Typically exact.
int numBits = (int)(((numDigits * bitsPerDigit[radix]) >>> 10) + 1);
int numWords = (numBits + 31) /32;
mag = new int[numWords];
// Process first (potentially short) digit group
int firstGroupLen = numDigits % digitsPerInt[radix];
if (firstGroupLen == 0)
firstGroupLen = digitsPerInt[radix];
String group = val.substring(cursor, cursor += firstGroupLen);
mag[mag.length - 1] = Integer.parseInt(group, radix);
if (mag[mag.length - 1] < 0)
throw new NumberFormatException("Illegal digit");
// Process remaining digit groups
int superRadix = intRadix[radix];
int groupVal = 0;
while (cursor < val.length()) {
group = val.substring(cursor, cursor += digitsPerInt[radix]);
groupVal = Integer.parseInt(group, radix);
if (groupVal < 0)
throw new NumberFormatException("Illegal digit");
destructiveMulAdd(mag, superRadix, groupVal);
}
// Required for cases where the array was overallocated.
mag = trustedStripLeadingZeroInts(mag);
| BigInteger(char[] val)
int cursor = 0, numDigits;
int len = val.length;
// Check for leading minus sign
signum = 1;
if (val[0] == '-") {
if (len == 1)
throw new NumberFormatException("Zero length BigInteger");
signum = -1;
cursor = 1;
}
// Skip leading zeros and compute number of digits in magnitude
while (cursor < len && Character.digit(val[cursor], 10) == 0)
cursor++;
if (cursor == len) {
signum = 0;
mag = ZERO.mag;
return;
} else {
numDigits = len - cursor;
}
// Pre-allocate array of expected size
int numWords;
if (len < 10) {
numWords = 1;
} else {
int numBits = (int)(((numDigits * bitsPerDigit[10]) >>> 10) + 1);
numWords = (numBits + 31) /32;
}
mag = new int[numWords];
// Process first (potentially short) digit group
int firstGroupLen = numDigits % digitsPerInt[10];
if (firstGroupLen == 0)
firstGroupLen = digitsPerInt[10];
mag[mag.length-1] = parseInt(val, cursor, cursor += firstGroupLen);
// Process remaining digit groups
while (cursor < len) {
int groupVal = parseInt(val, cursor, cursor += digitsPerInt[10]);
destructiveMulAdd(mag, intRadix[10], groupVal);
}
mag = trustedStripLeadingZeroInts(mag);
| public BigInteger(String val)Translates the decimal String representation of a BigInteger into a
BigInteger. The String representation consists of an optional minus
sign followed by a sequence of one or more decimal digits. The
character-to-digit mapping is provided by Character.digit.
The String may not contain any extraneous characters (whitespace, for
example).
this(val, 10);
|
Methods Summary |
---|
public java.math.BigInteger | abs()Returns a BigInteger whose value is the absolute value of this
BigInteger.
return (signum >= 0 ? this : this.negate());
| public java.math.BigInteger | add(java.math.BigInteger val)Returns a BigInteger whose value is (this + val).
// Arithmetic Operations
int[] resultMag;
if (val.signum == 0)
return this;
if (signum == 0)
return val;
if (val.signum == signum)
return new BigInteger(add(mag, val.mag), signum);
int cmp = intArrayCmp(mag, val.mag);
if (cmp==0)
return ZERO;
resultMag = (cmp>0 ? subtract(mag, val.mag)
: subtract(val.mag, mag));
resultMag = trustedStripLeadingZeroInts(resultMag);
return new BigInteger(resultMag, cmp*signum);
| private static int[] | add(int[] x, int[] y)Adds the contents of the int arrays x and y. This method allocates
a new int array to hold the answer and returns a reference to that
array.
// If x is shorter, swap the two arrays
if (x.length < y.length) {
int[] tmp = x;
x = y;
y = tmp;
}
int xIndex = x.length;
int yIndex = y.length;
int result[] = new int[xIndex];
long sum = 0;
// Add common parts of both numbers
while(yIndex > 0) {
sum = (x[--xIndex] & LONG_MASK) +
(y[--yIndex] & LONG_MASK) + (sum >>> 32);
result[xIndex] = (int)sum;
}
// Copy remainder of longer number while carry propagation is required
boolean carry = (sum >>> 32 != 0);
while (xIndex > 0 && carry)
carry = ((result[--xIndex] = x[xIndex] + 1) == 0);
// Copy remainder of longer number
while (xIndex > 0)
result[--xIndex] = x[xIndex];
// Grow result if necessary
if (carry) {
int newLen = result.length + 1;
int temp[] = new int[newLen];
for (int i = 1; i<newLen; i++)
temp[i] = result[i-1];
temp[0] = 0x01;
result = temp;
}
return result;
| static int | addOne(int[] a, int offset, int mlen, int carry)Add one word to the number a mlen words into a. Return the resulting
carry.
offset = a.length-1-mlen-offset;
long t = (a[offset] & LONG_MASK) + (carry & LONG_MASK);
a[offset] = (int)t;
if ((t >>> 32) == 0)
return 0;
while (--mlen >= 0) {
if (--offset < 0) { // Carry out of number
return 1;
} else {
a[offset]++;
if (a[offset] != 0)
return 0;
}
}
return 1;
| public java.math.BigInteger | and(java.math.BigInteger val)Returns a BigInteger whose value is (this & val). (This
method returns a negative BigInteger if and only if this and val are
both negative.)
int[] result = new int[Math.max(intLength(), val.intLength())];
for (int i=0; i<result.length; i++)
result[i] = (int) (getInt(result.length-i-1)
& val.getInt(result.length-i-1));
return valueOf(result);
| public java.math.BigInteger | andNot(java.math.BigInteger val)Returns a BigInteger whose value is (this & ~val). This
method, which is equivalent to and(val.not()), is provided as
a convenience for masking operations. (This method returns a negative
BigInteger if and only if this is negative and val is
positive.)
int[] result = new int[Math.max(intLength(), val.intLength())];
for (int i=0; i<result.length; i++)
result[i] = (int) (getInt(result.length-i-1)
& ~val.getInt(result.length-i-1));
return valueOf(result);
| static int | bitCnt(int val)
val -= (0xaaaaaaaa & val) >>> 1;
val = (val & 0x33333333) + ((val >>> 2) & 0x33333333);
val = val + (val >>> 4) & 0x0f0f0f0f;
val += val >>> 8;
val += val >>> 16;
return val & 0xff;
| public int | bitCount()Returns the number of bits in the two's complement representation
of this BigInteger that differ from its sign bit. This method is
useful when implementing bit-vector style sets atop BigIntegers.
/*
* Initialize bitCount field the first time this method is executed.
* This method depends on the atomicity of int modifies; without
* this guarantee, it would have to be synchronized.
*/
if (bitCount == -1) {
// Count the bits in the magnitude
int magBitCount = 0;
for (int i=0; i<mag.length; i++)
magBitCount += bitCnt(mag[i]);
if (signum < 0) {
// Count the trailing zeros in the magnitude
int magTrailingZeroCount = 0, j;
for (j=mag.length-1; mag[j]==0; j--)
magTrailingZeroCount += 32;
magTrailingZeroCount +=
trailingZeroCnt(mag[j]);
bitCount = magBitCount + magTrailingZeroCount - 1;
} else {
bitCount = magBitCount;
}
}
return bitCount;
| static int | bitLen(int w)bitLen(val) is the number of bits in val.
// Binary search - decision tree (5 tests, rarely 6)
return
(w < 1<<15 ?
(w < 1<<7 ?
(w < 1<<3 ?
(w < 1<<1 ? (w < 1<<0 ? (w<0 ? 32 : 0) : 1) : (w < 1<<2 ? 2 : 3)) :
(w < 1<<5 ? (w < 1<<4 ? 4 : 5) : (w < 1<<6 ? 6 : 7))) :
(w < 1<<11 ?
(w < 1<<9 ? (w < 1<<8 ? 8 : 9) : (w < 1<<10 ? 10 : 11)) :
(w < 1<<13 ? (w < 1<<12 ? 12 : 13) : (w < 1<<14 ? 14 : 15)))) :
(w < 1<<23 ?
(w < 1<<19 ?
(w < 1<<17 ? (w < 1<<16 ? 16 : 17) : (w < 1<<18 ? 18 : 19)) :
(w < 1<<21 ? (w < 1<<20 ? 20 : 21) : (w < 1<<22 ? 22 : 23))) :
(w < 1<<27 ?
(w < 1<<25 ? (w < 1<<24 ? 24 : 25) : (w < 1<<26 ? 26 : 27)) :
(w < 1<<29 ? (w < 1<<28 ? 28 : 29) : (w < 1<<30 ? 30 : 31)))));
| private static int | bitLength(int[] val, int len)Calculate bitlength of contents of the first len elements an int array,
assuming there are no leading zero ints.
if (len==0)
return 0;
return ((len-1)<<5) + bitLen(val[0]);
| public int | bitLength()Returns the number of bits in the minimal two's-complement
representation of this BigInteger, excluding a sign bit.
For positive BigIntegers, this is equivalent to the number of bits in
the ordinary binary representation. (Computes
(ceil(log2(this < 0 ? -this : this+1))).)
/*
* Initialize bitLength field the first time this method is executed.
* This method depends on the atomicity of int modifies; without
* this guarantee, it would have to be synchronized.
*/
if (bitLength == -1) {
if (signum == 0) {
bitLength = 0;
} else {
// Calculate the bit length of the magnitude
int magBitLength = ((mag.length-1) << 5) + bitLen(mag[0]);
if (signum < 0) {
// Check if magnitude is a power of two
boolean pow2 = (bitCnt(mag[0]) == 1);
for(int i=1; i<mag.length && pow2; i++)
pow2 = (mag[i]==0);
bitLength = (pow2 ? magBitLength-1 : magBitLength);
} else {
bitLength = magBitLength;
}
}
}
return bitLength;
| public java.math.BigInteger | clearBit(int n)Returns a BigInteger whose value is equivalent to this BigInteger
with the designated bit cleared.
(Computes (this & ~(1<<n)).)
if (n<0)
throw new ArithmeticException("Negative bit address");
int intNum = n/32;
int[] result = new int[Math.max(intLength(), (n+1)/32+1)];
for (int i=0; i<result.length; i++)
result[result.length-i-1] = getInt(i);
result[result.length-intNum-1] &= ~(1 << (n%32));
return valueOf(result);
| public int | compareTo(java.math.BigInteger val)Compares this BigInteger with the specified BigInteger. This method is
provided in preference to individual methods for each of the six
boolean comparison operators (<, ==, >, >=, !=, <=). The
suggested idiom for performing these comparisons is:
(x.compareTo(y) <op> 0),
where <op> is one of the six comparison operators.
return (signum==val.signum
? signum*intArrayCmp(mag, val.mag)
: (signum>val.signum ? 1 : -1));
| private static void | destructiveMulAdd(int[] x, int y, int z)
// Multiply x array times word y in place, and add word z
// Perform the multiplication word by word
long ylong = y & LONG_MASK;
long zlong = z & LONG_MASK;
int len = x.length;
long product = 0;
long carry = 0;
for (int i = len-1; i >= 0; i--) {
product = ylong * (x[i] & LONG_MASK) + carry;
x[i] = (int)product;
carry = product >>> 32;
}
// Perform the addition
long sum = (x[len-1] & LONG_MASK) + zlong;
x[len-1] = (int)sum;
carry = sum >>> 32;
for (int i = len-2; i >= 0; i--) {
sum = (x[i] & LONG_MASK) + carry;
x[i] = (int)sum;
carry = sum >>> 32;
}
| public java.math.BigInteger | divide(java.math.BigInteger val)Returns a BigInteger whose value is (this / val).
MutableBigInteger q = new MutableBigInteger(),
r = new MutableBigInteger(),
a = new MutableBigInteger(this.mag),
b = new MutableBigInteger(val.mag);
a.divide(b, q, r);
return new BigInteger(q, this.signum * val.signum);
| public java.math.BigInteger[] | divideAndRemainder(java.math.BigInteger val)Returns an array of two BigIntegers containing (this / val)
followed by (this % val).
BigInteger[] result = new BigInteger[2];
MutableBigInteger q = new MutableBigInteger(),
r = new MutableBigInteger(),
a = new MutableBigInteger(this.mag),
b = new MutableBigInteger(val.mag);
a.divide(b, q, r);
result[0] = new BigInteger(q, this.signum * val.signum);
result[1] = new BigInteger(r, this.signum);
return result;
| public double | doubleValue()Converts this BigInteger to a double . This
conversion is similar to the narrowing
primitive conversion from double to
float defined in the Java Language
Specification: if this BigInteger has too great a magnitude
to represent as a double , it will be converted to
{@link Double#NEGATIVE_INFINITY} or {@link
Double#POSITIVE_INFINITY} as appropriate. Note that even when
the return value is finite, this conversion can lose
information about the precision of the BigInteger value.
// Somewhat inefficient, but guaranteed to work.
return Double.parseDouble(this.toString());
| public boolean | equals(java.lang.Object x)Compares this BigInteger with the specified Object for equality.
// This test is just an optimization, which may or may not help
if (x == this)
return true;
if (!(x instanceof BigInteger))
return false;
BigInteger xInt = (BigInteger) x;
if (xInt.signum != signum || xInt.mag.length != mag.length)
return false;
for (int i=0; i<mag.length; i++)
if (xInt.mag[i] != mag[i])
return false;
return true;
| private int | firstNonzeroIntNum()Returns the index of the int that contains the first nonzero int in the
little-endian binary representation of the magnitude (int 0 is the
least significant). If the magnitude is zero, return value is undefined.
/*
* Initialize firstNonzeroIntNum field the first time this method is
* executed. This method depends on the atomicity of int modifies;
* without this guarantee, it would have to be synchronized.
*/
if (firstNonzeroIntNum == -2) {
// Search for the first nonzero int
int i;
for (i=mag.length-1; i>=0 && mag[i]==0; i--)
;
firstNonzeroIntNum = mag.length-i-1;
}
return firstNonzeroIntNum;
| public java.math.BigInteger | flipBit(int n)Returns a BigInteger whose value is equivalent to this BigInteger
with the designated bit flipped.
(Computes (this ^ (1<<n)).)
if (n<0)
throw new ArithmeticException("Negative bit address");
int intNum = n/32;
int[] result = new int[Math.max(intLength(), intNum+2)];
for (int i=0; i<result.length; i++)
result[result.length-i-1] = getInt(i);
result[result.length-intNum-1] ^= (1 << (n%32));
return valueOf(result);
| public float | floatValue()Converts this BigInteger to a float . This
conversion is similar to the narrowing
primitive conversion from double to
float defined in the Java Language
Specification: if this BigInteger has too great a magnitude
to represent as a float , it will be converted to
{@link Float#NEGATIVE_INFINITY} or {@link
Float#POSITIVE_INFINITY} as appropriate. Note that even when
the return value is finite, this conversion can lose
information about the precision of the BigInteger value.
// Somewhat inefficient, but guaranteed to work.
return Float.parseFloat(this.toString());
| public java.math.BigInteger | gcd(java.math.BigInteger val)Returns a BigInteger whose value is the greatest common divisor of
abs(this) and abs(val). Returns 0 if
this==0 && val==0.
if (val.signum == 0)
return this.abs();
else if (this.signum == 0)
return val.abs();
MutableBigInteger a = new MutableBigInteger(this);
MutableBigInteger b = new MutableBigInteger(val);
MutableBigInteger result = a.hybridGCD(b);
return new BigInteger(result, 1);
| private int | getInt(int n)Returns the specified int of the little-endian two's complement
representation (int 0 is the least significant). The int number can
be arbitrarily high (values are logically preceded by infinitely many
sign ints).
if (n < 0)
return 0;
if (n >= mag.length)
return signInt();
int magInt = mag[mag.length-n-1];
return (int) (signum >= 0 ? magInt :
(n <= firstNonzeroIntNum() ? -magInt : ~magInt));
| public int | getLowestSetBit()Returns the index of the rightmost (lowest-order) one bit in this
BigInteger (the number of zero bits to the right of the rightmost
one bit). Returns -1 if this BigInteger contains no one bits.
(Computes (this==0? -1 : log2(this & -this)).)
/*
* Initialize lowestSetBit field the first time this method is
* executed. This method depends on the atomicity of int modifies;
* without this guarantee, it would have to be synchronized.
*/
if (lowestSetBit == -2) {
if (signum == 0) {
lowestSetBit = -1;
} else {
// Search for lowest order nonzero int
int i,b;
for (i=0; (b = getInt(i))==0; i++)
;
lowestSetBit = (i << 5) + trailingZeroCnt(b);
}
}
return lowestSetBit;
| public int | hashCode()Returns the hash code for this BigInteger.
int hashCode = 0;
for (int i=0; i<mag.length; i++)
hashCode = (int)(31*hashCode + (mag[i] & LONG_MASK));
return hashCode * signum;
| private static int | intArrayCmp(int[] arg1, int[] arg2)
if (arg1.length < arg2.length)
return -1;
if (arg1.length > arg2.length)
return 1;
// Argument lengths are equal; compare the values
for (int i=0; i<arg1.length; i++) {
long b1 = arg1[i] & LONG_MASK;
long b2 = arg2[i] & LONG_MASK;
if (b1 < b2)
return -1;
if (b1 > b2)
return 1;
}
return 0;
| private static int | intArrayCmpToLen(int[] arg1, int[] arg2, int len)
for (int i=0; i<len; i++) {
long b1 = arg1[i] & LONG_MASK;
long b2 = arg2[i] & LONG_MASK;
if (b1 < b2)
return -1;
if (b1 > b2)
return 1;
}
return 0;
| private int | intLength()Returns the length of the two's complement representation in ints,
including space for at least one sign bit.
return bitLength()/32 + 1;
| public int | intValue()Converts this BigInteger to an int . This
conversion is analogous to a narrowing
primitive conversion from long to
int as defined in the Java Language
Specification: if this BigInteger is too big to fit in an
int , only the low-order 32 bits are returned.
Note that this conversion can lose information about the
overall magnitude of the BigInteger value as well as return a
result with the opposite sign.
int result = 0;
result = getInt(0);
return result;
| public boolean | isProbablePrime(int certainty)Returns true if this BigInteger is probably prime,
false if it's definitely composite. If
certainty is <= 0, true is
returned.
if (certainty <= 0)
return true;
BigInteger w = this.abs();
if (w.equals(TWO))
return true;
if (!w.testBit(0) || w.equals(ONE))
return false;
return w.primeToCertainty(certainty);
| private static int | jacobiSymbol(int p, java.math.BigInteger n)Computes Jacobi(p,n).
Assumes n positive, odd, n>=3.
if (p == 0)
return 0;
// Algorithm and comments adapted from Colin Plumb's C library.
int j = 1;
int u = n.mag[n.mag.length-1];
// Make p positive
if (p < 0) {
p = -p;
int n8 = u & 7;
if ((n8 == 3) || (n8 == 7))
j = -j; // 3 (011) or 7 (111) mod 8
}
// Get rid of factors of 2 in p
while ((p & 3) == 0)
p >>= 2;
if ((p & 1) == 0) {
p >>= 1;
if (((u ^ (u>>1)) & 2) != 0)
j = -j; // 3 (011) or 5 (101) mod 8
}
if (p == 1)
return j;
// Then, apply quadratic reciprocity
if ((p & u & 2) != 0) // p = u = 3 (mod 4)?
j = -j;
// And reduce u mod p
u = n.mod(BigInteger.valueOf(p)).intValue();
// Now compute Jacobi(u,p), u < p
while (u != 0) {
while ((u & 3) == 0)
u >>= 2;
if ((u & 1) == 0) {
u >>= 1;
if (((p ^ (p>>1)) & 2) != 0)
j = -j; // 3 (011) or 5 (101) mod 8
}
if (u == 1)
return j;
// Now both u and p are odd, so use quadratic reciprocity
assert (u < p);
int t = u; u = p; p = t;
if ((u & p & 2) != 0) // u = p = 3 (mod 4)?
j = -j;
// Now u >= p, so it can be reduced
u %= p;
}
return 0;
| int[] | javaIncrement(int[] val)
boolean done = false;
int lastSum = 0;
for (int i=val.length-1; i >= 0 && lastSum == 0; i--)
lastSum = (val[i] += 1);
if (lastSum == 0) {
val = new int[val.length+1];
val[0] = 1;
}
return val;
| private static java.math.BigInteger | largePrime(int bitLength, int certainty, java.util.Random rnd)Find a random number of the specified bitLength that is probably prime.
This method is more appropriate for larger bitlengths since it uses
a sieve to eliminate most composites before using a more expensive
test.
BigInteger p;
p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
p.mag[p.mag.length-1] &= 0xfffffffe;
// Use a sieve length likely to contain the next prime number
int searchLen = (bitLength / 20) * 64;
BitSieve searchSieve = new BitSieve(p, searchLen);
BigInteger candidate = searchSieve.retrieve(p, certainty);
while ((candidate == null) || (candidate.bitLength() != bitLength)) {
p = p.add(BigInteger.valueOf(2*searchLen));
if (p.bitLength() != bitLength)
p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
p.mag[p.mag.length-1] &= 0xfffffffe;
searchSieve = new BitSieve(p, searchLen);
candidate = searchSieve.retrieve(p, certainty);
}
return candidate;
| private static int[] | leftShift(int[] a, int len, int n)Left shift int array a up to len by n bits. Returns the array that
results from the shift since space may have to be reallocated.
int nInts = n >>> 5;
int nBits = n&0x1F;
int bitsInHighWord = bitLen(a[0]);
// If shift can be done without recopy, do so
if (n <= (32-bitsInHighWord)) {
primitiveLeftShift(a, len, nBits);
return a;
} else { // Array must be resized
if (nBits <= (32-bitsInHighWord)) {
int result[] = new int[nInts+len];
for (int i=0; i<len; i++)
result[i] = a[i];
primitiveLeftShift(result, result.length, nBits);
return result;
} else {
int result[] = new int[nInts+len+1];
for (int i=0; i<len; i++)
result[i] = a[i];
primitiveRightShift(result, result.length, 32 - nBits);
return result;
}
}
| public long | longValue()Converts this BigInteger to a long . This
conversion is analogous to a narrowing
primitive conversion from long to
int as defined in the Java Language
Specification: if this BigInteger is too big to fit in a
long , only the low-order 64 bits are returned.
Note that this conversion can lose information about the
overall magnitude of the BigInteger value as well as return a
result with the opposite sign.
long result = 0;
for (int i=1; i>=0; i--)
result = (result << 32) + (getInt(i) & LONG_MASK);
return result;
| private static java.math.BigInteger | lucasLehmerSequence(int z, java.math.BigInteger k, java.math.BigInteger n)
BigInteger d = BigInteger.valueOf(z);
BigInteger u = ONE; BigInteger u2;
BigInteger v = ONE; BigInteger v2;
for (int i=k.bitLength()-2; i>=0; i--) {
u2 = u.multiply(v).mod(n);
v2 = v.square().add(d.multiply(u.square())).mod(n);
if (v2.testBit(0)) {
v2 = n.subtract(v2);
v2.signum = - v2.signum;
}
v2 = v2.shiftRight(1);
u = u2; v = v2;
if (k.testBit(i)) {
u2 = u.add(v).mod(n);
if (u2.testBit(0)) {
u2 = n.subtract(u2);
u2.signum = - u2.signum;
}
u2 = u2.shiftRight(1);
v2 = v.add(d.multiply(u)).mod(n);
if (v2.testBit(0)) {
v2 = n.subtract(v2);
v2.signum = - v2.signum;
}
v2 = v2.shiftRight(1);
u = u2; v = v2;
}
}
return u;
| private byte[] | magSerializedForm()Returns the mag array as an array of bytes.
int bitLen = (mag.length == 0 ? 0 :
((mag.length - 1) << 5) + bitLen(mag[0]));
int byteLen = (bitLen + 7)/8;
byte[] result = new byte[byteLen];
for (int i=byteLen-1, bytesCopied=4, intIndex=mag.length-1, nextInt=0;
i>=0; i--) {
if (bytesCopied == 4) {
nextInt = mag[intIndex--];
bytesCopied = 1;
} else {
nextInt >>>= 8;
bytesCopied++;
}
result[i] = (byte)nextInt;
}
return result;
| private static int[] | makePositive(byte[] a)Takes an array a representing a negative 2's-complement number and
returns the minimal (no leading zero bytes) unsigned whose value is -a.
int keep, k;
int byteLength = a.length;
// Find first non-sign (0xff) byte of input
for (keep=0; keep<byteLength && a[keep]==-1; keep++)
;
/* Allocate output array. If all non-sign bytes are 0x00, we must
* allocate space for one extra output byte. */
for (k=keep; k<byteLength && a[k]==0; k++)
;
int extraByte = (k==byteLength) ? 1 : 0;
int intLength = ((byteLength - keep + extraByte) + 3)/4;
int result[] = new int[intLength];
/* Copy one's complement of input into output, leaving extra
* byte (if it exists) == 0x00 */
int b = byteLength - 1;
for (int i = intLength-1; i >= 0; i--) {
result[i] = a[b--] & 0xff;
int numBytesToTransfer = Math.min(3, b-keep+1);
if (numBytesToTransfer < 0)
numBytesToTransfer = 0;
for (int j=8; j <= 8*numBytesToTransfer; j += 8)
result[i] |= ((a[b--] & 0xff) << j);
// Mask indicates which bits must be complemented
int mask = -1 >>> (8*(3-numBytesToTransfer));
result[i] = ~result[i] & mask;
}
// Add one to one's complement to generate two's complement
for (int i=result.length-1; i>=0; i--) {
result[i] = (int)((result[i] & LONG_MASK) + 1);
if (result[i] != 0)
break;
}
return result;
| private static int[] | makePositive(int[] a)Takes an array a representing a negative 2's-complement number and
returns the minimal (no leading zero ints) unsigned whose value is -a.
int keep, j;
// Find first non-sign (0xffffffff) int of input
for (keep=0; keep<a.length && a[keep]==-1; keep++)
;
/* Allocate output array. If all non-sign ints are 0x00, we must
* allocate space for one extra output int. */
for (j=keep; j<a.length && a[j]==0; j++)
;
int extraInt = (j==a.length ? 1 : 0);
int result[] = new int[a.length - keep + extraInt];
/* Copy one's complement of input into output, leaving extra
* int (if it exists) == 0x00 */
for (int i = keep; i<a.length; i++)
result[i - keep + extraInt] = ~a[i];
// Add one to one's complement to generate two's complement
for (int i=result.length-1; ++result[i]==0; i--)
;
return result;
| public java.math.BigInteger | max(java.math.BigInteger val)Returns the maximum of this BigInteger and val.
return (compareTo(val)>0 ? this : val);
| public java.math.BigInteger | min(java.math.BigInteger val)Returns the minimum of this BigInteger and val.
return (compareTo(val)<0 ? this : val);
| public java.math.BigInteger | mod(java.math.BigInteger m)Returns a BigInteger whose value is (this mod m). This method
differs from remainder in that it always returns a
non-negative BigInteger.
if (m.signum <= 0)
throw new ArithmeticException("BigInteger: modulus not positive");
BigInteger result = this.remainder(m);
return (result.signum >= 0 ? result : result.add(m));
| private java.math.BigInteger | mod2(int p)Returns a BigInteger whose value is this mod(2**p).
Assumes that this BigInteger >= 0 and p > 0.
if (bitLength() <= p)
return this;
// Copy remaining ints of mag
int numInts = (p+31)/32;
int[] mag = new int[numInts];
for (int i=0; i<numInts; i++)
mag[i] = this.mag[i + (this.mag.length - numInts)];
// Mask out any excess bits
int excessBits = (numInts << 5) - p;
mag[0] &= (1L << (32-excessBits)) - 1;
return (mag[0]==0 ? new BigInteger(1, mag) : new BigInteger(mag, 1));
| public java.math.BigInteger | modInverse(java.math.BigInteger m)Returns a BigInteger whose value is (this-1 mod m).
if (m.signum != 1)
throw new ArithmeticException("BigInteger: modulus not positive");
if (m.equals(ONE))
return ZERO;
// Calculate (this mod m)
BigInteger modVal = this;
if (signum < 0 || (intArrayCmp(mag, m.mag) >= 0))
modVal = this.mod(m);
if (modVal.equals(ONE))
return ONE;
MutableBigInteger a = new MutableBigInteger(modVal);
MutableBigInteger b = new MutableBigInteger(m);
MutableBigInteger result = a.mutableModInverse(b);
return new BigInteger(result, 1);
| public java.math.BigInteger | modPow(java.math.BigInteger exponent, java.math.BigInteger m)Returns a BigInteger whose value is
(thisexponent mod m). (Unlike pow, this
method permits negative exponents.)
if (m.signum <= 0)
throw new ArithmeticException("BigInteger: modulus not positive");
// Trivial cases
if (exponent.signum == 0)
return (m.equals(ONE) ? ZERO : ONE);
if (this.equals(ONE))
return (m.equals(ONE) ? ZERO : ONE);
if (this.equals(ZERO) && exponent.signum >= 0)
return ZERO;
if (this.equals(negConst[1]) && (!exponent.testBit(0)))
return (m.equals(ONE) ? ZERO : ONE);
boolean invertResult;
if ((invertResult = (exponent.signum < 0)))
exponent = exponent.negate();
BigInteger base = (this.signum < 0 || this.compareTo(m) >= 0
? this.mod(m) : this);
BigInteger result;
if (m.testBit(0)) { // odd modulus
result = base.oddModPow(exponent, m);
} else {
/*
* Even modulus. Tear it into an "odd part" (m1) and power of two
* (m2), exponentiate mod m1, manually exponentiate mod m2, and
* use Chinese Remainder Theorem to combine results.
*/
// Tear m apart into odd part (m1) and power of 2 (m2)
int p = m.getLowestSetBit(); // Max pow of 2 that divides m
BigInteger m1 = m.shiftRight(p); // m/2**p
BigInteger m2 = ONE.shiftLeft(p); // 2**p
// Calculate new base from m1
BigInteger base2 = (this.signum < 0 || this.compareTo(m1) >= 0
? this.mod(m1) : this);
// Caculate (base ** exponent) mod m1.
BigInteger a1 = (m1.equals(ONE) ? ZERO :
base2.oddModPow(exponent, m1));
// Calculate (this ** exponent) mod m2
BigInteger a2 = base.modPow2(exponent, p);
// Combine results using Chinese Remainder Theorem
BigInteger y1 = m2.modInverse(m1);
BigInteger y2 = m1.modInverse(m2);
result = a1.multiply(m2).multiply(y1).add
(a2.multiply(m1).multiply(y2)).mod(m);
}
return (invertResult ? result.modInverse(m) : result);
| private java.math.BigInteger | modPow2(java.math.BigInteger exponent, int p)Returns a BigInteger whose value is (this ** exponent) mod (2**p)
/*
* Perform exponentiation using repeated squaring trick, chopping off
* high order bits as indicated by modulus.
*/
BigInteger result = valueOf(1);
BigInteger baseToPow2 = this.mod2(p);
int expOffset = 0;
int limit = exponent.bitLength();
if (this.testBit(0))
limit = (p-1) < limit ? (p-1) : limit;
while (expOffset < limit) {
if (exponent.testBit(expOffset))
result = result.multiply(baseToPow2).mod2(p);
expOffset++;
if (expOffset < limit)
baseToPow2 = baseToPow2.square().mod2(p);
}
return result;
| private static int[] | montReduce(int[] n, int[] mod, int mlen, int inv)Montgomery reduce n, modulo mod. This reduces modulo mod and divides
by 2^(32*mlen). Adapted from Colin Plumb's C library.
int c=0;
int len = mlen;
int offset=0;
do {
int nEnd = n[n.length-1-offset];
int carry = mulAdd(n, mod, offset, mlen, inv * nEnd);
c += addOne(n, offset, mlen, carry);
offset++;
} while(--len > 0);
while(c>0)
c += subN(n, mod, mlen);
while (intArrayCmpToLen(n, mod, mlen) >= 0)
subN(n, mod, mlen);
return n;
| static int | mulAdd(int[] out, int[] in, int offset, int len, int k)Multiply an array by one word k and add to result, return the carry
long kLong = k & LONG_MASK;
long carry = 0;
offset = out.length-offset - 1;
for (int j=len-1; j >= 0; j--) {
long product = (in[j] & LONG_MASK) * kLong +
(out[offset] & LONG_MASK) + carry;
out[offset--] = (int)product;
carry = product >>> 32;
}
return (int)carry;
| public java.math.BigInteger | multiply(java.math.BigInteger val)Returns a BigInteger whose value is (this * val).
if (signum == 0 || val.signum==0)
return ZERO;
int[] result = multiplyToLen(mag, mag.length,
val.mag, val.mag.length, null);
result = trustedStripLeadingZeroInts(result);
return new BigInteger(result, signum*val.signum);
| private int[] | multiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z)Multiplies int arrays x and y to the specified lengths and places
the result into z.
int xstart = xlen - 1;
int ystart = ylen - 1;
if (z == null || z.length < (xlen+ ylen))
z = new int[xlen+ylen];
long carry = 0;
for (int j=ystart, k=ystart+1+xstart; j>=0; j--, k--) {
long product = (y[j] & LONG_MASK) *
(x[xstart] & LONG_MASK) + carry;
z[k] = (int)product;
carry = product >>> 32;
}
z[xstart] = (int)carry;
for (int i = xstart-1; i >= 0; i--) {
carry = 0;
for (int j=ystart, k=ystart+1+i; j>=0; j--, k--) {
long product = (y[j] & LONG_MASK) *
(x[i] & LONG_MASK) +
(z[k] & LONG_MASK) + carry;
z[k] = (int)product;
carry = product >>> 32;
}
z[i] = (int)carry;
}
return z;
| public java.math.BigInteger | negate()Returns a BigInteger whose value is (-this).
return new BigInteger(this.mag, -this.signum);
| public java.math.BigInteger | nextProbablePrime()Returns the first integer greater than this BigInteger that
is probably prime. The probability that the number returned by this
method is composite does not exceed 2-100. This method will
never skip over a prime when searching: if it returns p, there
is no prime q such that this < q < p.
if (this.signum < 0)
throw new ArithmeticException("start < 0: " + this);
// Handle trivial cases
if ((this.signum == 0) || this.equals(ONE))
return TWO;
BigInteger result = this.add(ONE);
// Fastpath for small numbers
if (result.bitLength() < SMALL_PRIME_THRESHOLD) {
// Ensure an odd number
if (!result.testBit(0))
result = result.add(ONE);
while(true) {
// Do cheap "pre-test" if applicable
if (result.bitLength() > 6) {
long r = result.remainder(SMALL_PRIME_PRODUCT).longValue();
if ((r%3==0) || (r%5==0) || (r%7==0) || (r%11==0) ||
(r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) ||
(r%29==0) || (r%31==0) || (r%37==0) || (r%41==0)) {
result = result.add(TWO);
continue; // Candidate is composite; try another
}
}
// All candidates of bitLength 2 and 3 are prime by this point
if (result.bitLength() < 4)
return result;
// The expensive test
if (result.primeToCertainty(DEFAULT_PRIME_CERTAINTY))
return result;
result = result.add(TWO);
}
}
// Start at previous even number
if (result.testBit(0))
result = result.subtract(ONE);
// Looking for the next large prime
int searchLen = (result.bitLength() / 20) * 64;
while(true) {
BitSieve searchSieve = new BitSieve(result, searchLen);
BigInteger candidate = searchSieve.retrieve(result,
DEFAULT_PRIME_CERTAINTY);
if (candidate != null)
return candidate;
result = result.add(BigInteger.valueOf(2 * searchLen));
}
| public java.math.BigInteger | not()Returns a BigInteger whose value is (~this). (This method
returns a negative value if and only if this BigInteger is
non-negative.)
int[] result = new int[intLength()];
for (int i=0; i<result.length; i++)
result[i] = (int) ~getInt(result.length-i-1);
return valueOf(result);
| private java.math.BigInteger | oddModPow(java.math.BigInteger y, java.math.BigInteger z)Returns a BigInteger whose value is x to the power of y mod z.
Assumes: z is odd && x < z. // Sentinel
/*
* The algorithm is adapted from Colin Plumb's C library.
*
* The window algorithm:
* The idea is to keep a running product of b1 = n^(high-order bits of exp)
* and then keep appending exponent bits to it. The following patterns
* apply to a 3-bit window (k = 3):
* To append 0: square
* To append 1: square, multiply by n^1
* To append 10: square, multiply by n^1, square
* To append 11: square, square, multiply by n^3
* To append 100: square, multiply by n^1, square, square
* To append 101: square, square, square, multiply by n^5
* To append 110: square, square, multiply by n^3, square
* To append 111: square, square, square, multiply by n^7
*
* Since each pattern involves only one multiply, the longer the pattern
* the better, except that a 0 (no multiplies) can be appended directly.
* We precompute a table of odd powers of n, up to 2^k, and can then
* multiply k bits of exponent at a time. Actually, assuming random
* exponents, there is on average one zero bit between needs to
* multiply (1/2 of the time there's none, 1/4 of the time there's 1,
* 1/8 of the time, there's 2, 1/32 of the time, there's 3, etc.), so
* you have to do one multiply per k+1 bits of exponent.
*
* The loop walks down the exponent, squaring the result buffer as
* it goes. There is a wbits+1 bit lookahead buffer, buf, that is
* filled with the upcoming exponent bits. (What is read after the
* end of the exponent is unimportant, but it is filled with zero here.)
* When the most-significant bit of this buffer becomes set, i.e.
* (buf & tblmask) != 0, we have to decide what pattern to multiply
* by, and when to do it. We decide, remember to do it in future
* after a suitable number of squarings have passed (e.g. a pattern
* of "100" in the buffer requires that we multiply by n^1 immediately;
* a pattern of "110" calls for multiplying by n^3 after one more
* squaring), clear the buffer, and continue.
*
* When we start, there is one more optimization: the result buffer
* is implcitly one, so squaring it or multiplying by it can be
* optimized away. Further, if we start with a pattern like "100"
* in the lookahead window, rather than placing n into the buffer
* and then starting to square it, we have already computed n^2
* to compute the odd-powers table, so we can place that into
* the buffer and save a squaring.
*
* This means that if you have a k-bit window, to compute n^z,
* where z is the high k bits of the exponent, 1/2 of the time
* it requires no squarings. 1/4 of the time, it requires 1
* squaring, ... 1/2^(k-1) of the time, it reqires k-2 squarings.
* And the remaining 1/2^(k-1) of the time, the top k bits are a
* 1 followed by k-1 0 bits, so it again only requires k-2
* squarings, not k-1. The average of these is 1. Add that
* to the one squaring we have to do to compute the table,
* and you'll see that a k-bit window saves k-2 squarings
* as well as reducing the multiplies. (It actually doesn't
* hurt in the case k = 1, either.)
*/
// Special case for exponent of one
if (y.equals(ONE))
return this;
// Special case for base of zero
if (signum==0)
return ZERO;
int[] base = (int[])mag.clone();
int[] exp = y.mag;
int[] mod = z.mag;
int modLen = mod.length;
// Select an appropriate window size
int wbits = 0;
int ebits = bitLength(exp, exp.length);
// if exponent is 65537 (0x10001), use minimum window size
if ((ebits != 17) || (exp[0] != 65537)) {
while (ebits > bnExpModThreshTable[wbits]) {
wbits++;
}
}
// Calculate appropriate table size
int tblmask = 1 << wbits;
// Allocate table for precomputed odd powers of base in Montgomery form
int[][] table = new int[tblmask][];
for (int i=0; i<tblmask; i++)
table[i] = new int[modLen];
// Compute the modular inverse
int inv = -MutableBigInteger.inverseMod32(mod[modLen-1]);
// Convert base to Montgomery form
int[] a = leftShift(base, base.length, modLen << 5);
MutableBigInteger q = new MutableBigInteger(),
r = new MutableBigInteger(),
a2 = new MutableBigInteger(a),
b2 = new MutableBigInteger(mod);
a2.divide(b2, q, r);
table[0] = r.toIntArray();
// Pad table[0] with leading zeros so its length is at least modLen
if (table[0].length < modLen) {
int offset = modLen - table[0].length;
int[] t2 = new int[modLen];
for (int i=0; i<table[0].length; i++)
t2[i+offset] = table[0][i];
table[0] = t2;
}
// Set b to the square of the base
int[] b = squareToLen(table[0], modLen, null);
b = montReduce(b, mod, modLen, inv);
// Set t to high half of b
int[] t = new int[modLen];
for(int i=0; i<modLen; i++)
t[i] = b[i];
// Fill in the table with odd powers of the base
for (int i=1; i<tblmask; i++) {
int[] prod = multiplyToLen(t, modLen, table[i-1], modLen, null);
table[i] = montReduce(prod, mod, modLen, inv);
}
// Pre load the window that slides over the exponent
int bitpos = 1 << ((ebits-1) & (32-1));
int buf = 0;
int elen = exp.length;
int eIndex = 0;
for (int i = 0; i <= wbits; i++) {
buf = (buf << 1) | (((exp[eIndex] & bitpos) != 0)?1:0);
bitpos >>>= 1;
if (bitpos == 0) {
eIndex++;
bitpos = 1 << (32-1);
elen--;
}
}
int multpos = ebits;
// The first iteration, which is hoisted out of the main loop
ebits--;
boolean isone = true;
multpos = ebits - wbits;
while ((buf & 1) == 0) {
buf >>>= 1;
multpos++;
}
int[] mult = table[buf >>> 1];
buf = 0;
if (multpos == ebits)
isone = false;
// The main loop
while(true) {
ebits--;
// Advance the window
buf <<= 1;
if (elen != 0) {
buf |= ((exp[eIndex] & bitpos) != 0) ? 1 : 0;
bitpos >>>= 1;
if (bitpos == 0) {
eIndex++;
bitpos = 1 << (32-1);
elen--;
}
}
// Examine the window for pending multiplies
if ((buf & tblmask) != 0) {
multpos = ebits - wbits;
while ((buf & 1) == 0) {
buf >>>= 1;
multpos++;
}
mult = table[buf >>> 1];
buf = 0;
}
// Perform multiply
if (ebits == multpos) {
if (isone) {
b = (int[])mult.clone();
isone = false;
} else {
t = b;
a = multiplyToLen(t, modLen, mult, modLen, a);
a = montReduce(a, mod, modLen, inv);
t = a; a = b; b = t;
}
}
// Check if done
if (ebits == 0)
break;
// Square the input
if (!isone) {
t = b;
a = squareToLen(t, modLen, a);
a = montReduce(a, mod, modLen, inv);
t = a; a = b; b = t;
}
}
// Convert result out of Montgomery form and return
int[] t2 = new int[2*modLen];
for(int i=0; i<modLen; i++)
t2[i+modLen] = b[i];
b = montReduce(t2, mod, modLen, inv);
t2 = new int[modLen];
for(int i=0; i<modLen; i++)
t2[i] = b[i];
return new BigInteger(1, t2);
| public java.math.BigInteger | or(java.math.BigInteger val)Returns a BigInteger whose value is (this | val). (This method
returns a negative BigInteger if and only if either this or val is
negative.)
int[] result = new int[Math.max(intLength(), val.intLength())];
for (int i=0; i<result.length; i++)
result[i] = (int) (getInt(result.length-i-1)
| val.getInt(result.length-i-1));
return valueOf(result);
| private int | parseInt(char[] source, int start, int end)
int result = Character.digit(source[start++], 10);
if (result == -1)
throw new NumberFormatException(new String(source));
for (int index = start; index<end; index++) {
int nextVal = Character.digit(source[index], 10);
if (nextVal == -1)
throw new NumberFormatException(new String(source));
result = 10*result + nextVal;
}
return result;
| private boolean | passesLucasLehmer()Returns true iff this BigInteger is a Lucas-Lehmer probable prime.
The following assumptions are made:
This BigInteger is a positive, odd number.
BigInteger thisPlusOne = this.add(ONE);
// Step 1
int d = 5;
while (jacobiSymbol(d, this) != -1) {
// 5, -7, 9, -11, ...
d = (d<0) ? Math.abs(d)+2 : -(d+2);
}
// Step 2
BigInteger u = lucasLehmerSequence(d, thisPlusOne, this);
// Step 3
return u.mod(this).equals(ZERO);
| private boolean | passesMillerRabin(int iterations)Returns true iff this BigInteger passes the specified number of
Miller-Rabin tests. This test is taken from the DSA spec (NIST FIPS
186-2).
The following assumptions are made:
This BigInteger is a positive, odd number greater than 2.
iterations<=50.
// Find a and m such that m is odd and this == 1 + 2**a * m
BigInteger thisMinusOne = this.subtract(ONE);
BigInteger m = thisMinusOne;
int a = m.getLowestSetBit();
m = m.shiftRight(a);
// Do the tests
Random rnd = new Random();
for (int i=0; i<iterations; i++) {
// Generate a uniform random on (1, this)
BigInteger b;
do {
b = new BigInteger(this.bitLength(), rnd);
} while (b.compareTo(ONE) <= 0 || b.compareTo(this) >= 0);
int j = 0;
BigInteger z = b.modPow(m, this);
while(!((j==0 && z.equals(ONE)) || z.equals(thisMinusOne))) {
if (j>0 && z.equals(ONE) || ++j==a)
return false;
z = z.modPow(TWO, this);
}
}
return true;
| public java.math.BigInteger | pow(int exponent)Returns a BigInteger whose value is (thisexponent).
Note that exponent is an integer rather than a BigInteger.
if (exponent < 0)
throw new ArithmeticException("Negative exponent");
if (signum==0)
return (exponent==0 ? ONE : this);
// Perform exponentiation using repeated squaring trick
int newSign = (signum<0 && (exponent&1)==1 ? -1 : 1);
int[] baseToPow2 = this.mag;
int[] result = {1};
while (exponent != 0) {
if ((exponent & 1)==1) {
result = multiplyToLen(result, result.length,
baseToPow2, baseToPow2.length, null);
result = trustedStripLeadingZeroInts(result);
}
if ((exponent >>>= 1) != 0) {
baseToPow2 = squareToLen(baseToPow2, baseToPow2.length, null);
baseToPow2 = trustedStripLeadingZeroInts(baseToPow2);
}
}
return new BigInteger(result, newSign);
| boolean | primeToCertainty(int certainty)Returns true if this BigInteger is probably prime,
false if it's definitely composite.
This method assumes bitLength > 2.
int rounds = 0;
int n = (Math.min(certainty, Integer.MAX_VALUE-1)+1)/2;
// The relationship between the certainty and the number of rounds
// we perform is given in the draft standard ANSI X9.80, "PRIME
// NUMBER GENERATION, PRIMALITY TESTING, AND PRIMALITY CERTIFICATES".
int sizeInBits = this.bitLength();
if (sizeInBits < 100) {
rounds = 50;
rounds = n < rounds ? n : rounds;
return passesMillerRabin(rounds);
}
if (sizeInBits < 256) {
rounds = 27;
} else if (sizeInBits < 512) {
rounds = 15;
} else if (sizeInBits < 768) {
rounds = 8;
} else if (sizeInBits < 1024) {
rounds = 4;
} else {
rounds = 2;
}
rounds = n < rounds ? n : rounds;
return passesMillerRabin(rounds) && passesLucasLehmer();
| static void | primitiveLeftShift(int[] a, int len, int n)
if (len == 0 || n == 0)
return;
int n2 = 32 - n;
for (int i=0, c=a[i], m=i+len-1; i<m; i++) {
int b = c;
c = a[i+1];
a[i] = (b << n) | (c >>> n2);
}
a[len-1] <<= n;
| static void | primitiveRightShift(int[] a, int len, int n)
int n2 = 32 - n;
for (int i=len-1, c=a[i]; i>0; i--) {
int b = c;
c = a[i-1];
a[i] = (c << n2) | (b >>> n);
}
a[0] >>>= n;
| public static java.math.BigInteger | probablePrime(int bitLength, java.util.Random rnd)Returns a positive BigInteger that is probably prime, with the
specified bitLength. The probability that a BigInteger returned
by this method is composite does not exceed 2-100.
if (bitLength < 2)
throw new ArithmeticException("bitLength < 2");
// The cutoff of 95 was chosen empirically for best performance
return (bitLength < SMALL_PRIME_THRESHOLD ?
smallPrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd) :
largePrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd));
| private static byte[] | randomBits(int numBits, java.util.Random rnd)
if (numBits < 0)
throw new IllegalArgumentException("numBits must be non-negative");
int numBytes = (numBits+7)/8;
byte[] randomBits = new byte[numBytes];
// Generate random bytes and mask out any excess bits
if (numBytes > 0) {
rnd.nextBytes(randomBits);
int excessBits = 8*numBytes - numBits;
randomBits[0] &= (1 << (8-excessBits)) - 1;
}
return randomBits;
| private void | readObject(java.io.ObjectInputStream s)Reconstitute the BigInteger instance from a stream (that is,
deserialize it). The magnitude is read in as an array of bytes
for historical reasons, but it is converted to an array of ints
and the byte array is discarded.
/*
* In order to maintain compatibility with previous serialized forms,
* the magnitude of a BigInteger is serialized as an array of bytes.
* The magnitude field is used as a temporary store for the byte array
* that is deserialized. The cached computation fields should be
* transient but are serialized for compatibility reasons.
*/
// prepare to read the alternate persistent fields
ObjectInputStream.GetField fields = s.readFields();
// Read the alternate persistent fields that we care about
signum = (int)fields.get("signum", -2);
byte[] magnitude = (byte[])fields.get("magnitude", null);
// Validate signum
if (signum < -1 || signum > 1) {
String message = "BigInteger: Invalid signum value";
if (fields.defaulted("signum"))
message = "BigInteger: Signum not present in stream";
throw new java.io.StreamCorruptedException(message);
}
if ((magnitude.length==0) != (signum==0)) {
String message = "BigInteger: signum-magnitude mismatch";
if (fields.defaulted("magnitude"))
message = "BigInteger: Magnitude not present in stream";
throw new java.io.StreamCorruptedException(message);
}
// Set "cached computation" fields to their initial values
bitCount = bitLength = -1;
lowestSetBit = firstNonzeroByteNum = firstNonzeroIntNum = -2;
// Calculate mag field from magnitude and discard magnitude
mag = stripLeadingZeroBytes(magnitude);
| public java.math.BigInteger | remainder(java.math.BigInteger val)Returns a BigInteger whose value is (this % val).
MutableBigInteger q = new MutableBigInteger(),
r = new MutableBigInteger(),
a = new MutableBigInteger(this.mag),
b = new MutableBigInteger(val.mag);
a.divide(b, q, r);
return new BigInteger(r, this.signum);
| public java.math.BigInteger | setBit(int n)Returns a BigInteger whose value is equivalent to this BigInteger
with the designated bit set. (Computes (this | (1<<n)).)
if (n<0)
throw new ArithmeticException("Negative bit address");
int intNum = n/32;
int[] result = new int[Math.max(intLength(), intNum+2)];
for (int i=0; i<result.length; i++)
result[result.length-i-1] = getInt(i);
result[result.length-intNum-1] |= (1 << (n%32));
return valueOf(result);
| public java.math.BigInteger | shiftLeft(int n)Returns a BigInteger whose value is (this << n).
The shift distance, n, may be negative, in which case
this method performs a right shift.
(Computes floor(this * 2n).)
if (signum == 0)
return ZERO;
if (n==0)
return this;
if (n<0)
return shiftRight(-n);
int nInts = n >>> 5;
int nBits = n & 0x1f;
int magLen = mag.length;
int newMag[] = null;
if (nBits == 0) {
newMag = new int[magLen + nInts];
for (int i=0; i<magLen; i++)
newMag[i] = mag[i];
} else {
int i = 0;
int nBits2 = 32 - nBits;
int highBits = mag[0] >>> nBits2;
if (highBits != 0) {
newMag = new int[magLen + nInts + 1];
newMag[i++] = highBits;
} else {
newMag = new int[magLen + nInts];
}
int j=0;
while (j < magLen-1)
newMag[i++] = mag[j++] << nBits | mag[j] >>> nBits2;
newMag[i] = mag[j] << nBits;
}
return new BigInteger(newMag, signum);
| public java.math.BigInteger | shiftRight(int n)Returns a BigInteger whose value is (this >> n). Sign
extension is performed. The shift distance, n, may be
negative, in which case this method performs a left shift.
(Computes floor(this / 2n).)
if (n==0)
return this;
if (n<0)
return shiftLeft(-n);
int nInts = n >>> 5;
int nBits = n & 0x1f;
int magLen = mag.length;
int newMag[] = null;
// Special case: entire contents shifted off the end
if (nInts >= magLen)
return (signum >= 0 ? ZERO : negConst[1]);
if (nBits == 0) {
int newMagLen = magLen - nInts;
newMag = new int[newMagLen];
for (int i=0; i<newMagLen; i++)
newMag[i] = mag[i];
} else {
int i = 0;
int highBits = mag[0] >>> nBits;
if (highBits != 0) {
newMag = new int[magLen - nInts];
newMag[i++] = highBits;
} else {
newMag = new int[magLen - nInts -1];
}
int nBits2 = 32 - nBits;
int j=0;
while (j < magLen - nInts - 1)
newMag[i++] = (mag[j++] << nBits2) | (mag[j] >>> nBits);
}
if (signum < 0) {
// Find out whether any one-bits were shifted off the end.
boolean onesLost = false;
for (int i=magLen-1, j=magLen-nInts; i>=j && !onesLost; i--)
onesLost = (mag[i] != 0);
if (!onesLost && nBits != 0)
onesLost = (mag[magLen - nInts - 1] << (32 - nBits) != 0);
if (onesLost)
newMag = javaIncrement(newMag);
}
return new BigInteger(newMag, signum);
| private int | signBit()
return (signum < 0 ? 1 : 0);
| private int | signInt()
return (int) (signum < 0 ? -1 : 0);
| public int | signum()Returns the signum function of this BigInteger.
return this.signum;
| private static java.math.BigInteger | smallPrime(int bitLength, int certainty, java.util.Random rnd)Find a random number of the specified bitLength that is probably prime.
This method is used for smaller primes, its performance degrades on
larger bitlengths.
This method assumes bitLength > 1.
int magLen = (bitLength + 31) >>> 5;
int temp[] = new int[magLen];
int highBit = 1 << ((bitLength+31) & 0x1f); // High bit of high int
int highMask = (highBit << 1) - 1; // Bits to keep in high int
while(true) {
// Construct a candidate
for (int i=0; i<magLen; i++)
temp[i] = rnd.nextInt();
temp[0] = (temp[0] & highMask) | highBit; // Ensure exact length
if (bitLength > 2)
temp[magLen-1] |= 1; // Make odd if bitlen > 2
BigInteger p = new BigInteger(temp, 1);
// Do cheap "pre-test" if applicable
if (bitLength > 6) {
long r = p.remainder(SMALL_PRIME_PRODUCT).longValue();
if ((r%3==0) || (r%5==0) || (r%7==0) || (r%11==0) ||
(r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) ||
(r%29==0) || (r%31==0) || (r%37==0) || (r%41==0))
continue; // Candidate is composite; try another
}
// All candidates of bitLength 2 and 3 are prime by this point
if (bitLength < 4)
return p;
// Do expensive test if we survive pre-test (or it's inapplicable)
if (p.primeToCertainty(certainty))
return p;
}
| private java.math.BigInteger | square()Returns a BigInteger whose value is (this2).
if (signum == 0)
return ZERO;
int[] z = squareToLen(mag, mag.length, null);
return new BigInteger(trustedStripLeadingZeroInts(z), 1);
| private static final int[] | squareToLen(int[] x, int len, int[] z)Squares the contents of the int array x. The result is placed into the
int array z. The contents of x are not changed.
/*
* The algorithm used here is adapted from Colin Plumb's C library.
* Technique: Consider the partial products in the multiplication
* of "abcde" by itself:
*
* a b c d e
* * a b c d e
* ==================
* ae be ce de ee
* ad bd cd dd de
* ac bc cc cd ce
* ab bb bc bd be
* aa ab ac ad ae
*
* Note that everything above the main diagonal:
* ae be ce de = (abcd) * e
* ad bd cd = (abc) * d
* ac bc = (ab) * c
* ab = (a) * b
*
* is a copy of everything below the main diagonal:
* de
* cd ce
* bc bd be
* ab ac ad ae
*
* Thus, the sum is 2 * (off the diagonal) + diagonal.
*
* This is accumulated beginning with the diagonal (which
* consist of the squares of the digits of the input), which is then
* divided by two, the off-diagonal added, and multiplied by two
* again. The low bit is simply a copy of the low bit of the
* input, so it doesn't need special care.
*/
int zlen = len << 1;
if (z == null || z.length < zlen)
z = new int[zlen];
// Store the squares, right shifted one bit (i.e., divided by 2)
int lastProductLowWord = 0;
for (int j=0, i=0; j<len; j++) {
long piece = (x[j] & LONG_MASK);
long product = piece * piece;
z[i++] = (lastProductLowWord << 31) | (int)(product >>> 33);
z[i++] = (int)(product >>> 1);
lastProductLowWord = (int)product;
}
// Add in off-diagonal sums
for (int i=len, offset=1; i>0; i--, offset+=2) {
int t = x[i-1];
t = mulAdd(z, x, offset, i-1, t);
addOne(z, offset-1, i, t);
}
// Shift back up and set low bit
primitiveLeftShift(z, zlen, 1);
z[zlen-1] |= x[len-1] & 1;
return z;
| private static int[] | stripLeadingZeroBytes(byte[] a)Returns a copy of the input array stripped of any leading zero bytes.
int byteLength = a.length;
int keep;
// Find first nonzero byte
for (keep=0; keep<a.length && a[keep]==0; keep++)
;
// Allocate new array and copy relevant part of input array
int intLength = ((byteLength - keep) + 3)/4;
int[] result = new int[intLength];
int b = byteLength - 1;
for (int i = intLength-1; i >= 0; i--) {
result[i] = a[b--] & 0xff;
int bytesRemaining = b - keep + 1;
int bytesToTransfer = Math.min(3, bytesRemaining);
for (int j=8; j <= 8*bytesToTransfer; j += 8)
result[i] |= ((a[b--] & 0xff) << j);
}
return result;
| private static int[] | stripLeadingZeroInts(int[] val)Returns a copy of the input array stripped of any leading zero bytes.
int byteLength = val.length;
int keep;
// Find first nonzero byte
for (keep=0; keep<val.length && val[keep]==0; keep++)
;
int result[] = new int[val.length - keep];
for(int i=0; i<val.length - keep; i++)
result[i] = val[keep+i];
return result;
| private static int | subN(int[] a, int[] b, int len)Subtracts two numbers of same length, returning borrow.
long sum = 0;
while(--len >= 0) {
sum = (a[len] & LONG_MASK) -
(b[len] & LONG_MASK) + (sum >> 32);
a[len] = (int)sum;
}
return (int)(sum >> 32);
| public java.math.BigInteger | subtract(java.math.BigInteger val)Returns a BigInteger whose value is (this - val).
int[] resultMag;
if (val.signum == 0)
return this;
if (signum == 0)
return val.negate();
if (val.signum != signum)
return new BigInteger(add(mag, val.mag), signum);
int cmp = intArrayCmp(mag, val.mag);
if (cmp==0)
return ZERO;
resultMag = (cmp>0 ? subtract(mag, val.mag)
: subtract(val.mag, mag));
resultMag = trustedStripLeadingZeroInts(resultMag);
return new BigInteger(resultMag, cmp*signum);
| private static int[] | subtract(int[] big, int[] little)Subtracts the contents of the second int arrays (little) from the
first (big). The first int array (big) must represent a larger number
than the second. This method allocates the space necessary to hold the
answer.
int bigIndex = big.length;
int result[] = new int[bigIndex];
int littleIndex = little.length;
long difference = 0;
// Subtract common parts of both numbers
while(littleIndex > 0) {
difference = (big[--bigIndex] & LONG_MASK) -
(little[--littleIndex] & LONG_MASK) +
(difference >> 32);
result[bigIndex] = (int)difference;
}
// Subtract remainder of longer number while borrow propagates
boolean borrow = (difference >> 32 != 0);
while (bigIndex > 0 && borrow)
borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);
// Copy remainder of longer number
while (bigIndex > 0)
result[--bigIndex] = big[bigIndex];
return result;
| public boolean | testBit(int n)Returns true if and only if the designated bit is set.
(Computes ((this & (1<<n)) != 0).)
if (n<0)
throw new ArithmeticException("Negative bit address");
return (getInt(n/32) & (1 << (n%32))) != 0;
| public byte[] | toByteArray()Returns a byte array containing the two's-complement
representation of this BigInteger. The byte array will be in
big-endian byte-order: the most significant byte is in
the zeroth element. The array will contain the minimum number
of bytes required to represent this BigInteger, including at
least one sign bit, which is (ceil((this.bitLength() +
1)/8)). (This representation is compatible with the
{@link #BigInteger(byte[]) (byte[])} constructor.)
int byteLen = bitLength()/8 + 1;
byte[] byteArray = new byte[byteLen];
for (int i=byteLen-1, bytesCopied=4, nextInt=0, intIndex=0; i>=0; i--) {
if (bytesCopied == 4) {
nextInt = getInt(intIndex++);
bytesCopied = 1;
} else {
nextInt >>>= 8;
bytesCopied++;
}
byteArray[i] = (byte)nextInt;
}
return byteArray;
| public java.lang.String | toString(int radix)Returns the String representation of this BigInteger in the
given radix. If the radix is outside the range from {@link
Character#MIN_RADIX} to {@link Character#MAX_RADIX} inclusive,
it will default to 10 (as is the case for
Integer.toString). The digit-to-character mapping
provided by Character.forDigit is used, and a minus
sign is prepended if appropriate. (This representation is
compatible with the {@link #BigInteger(String, int) (String,
int )} constructor.)
if (signum == 0)
return "0";
if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
radix = 10;
// Compute upper bound on number of digit groups and allocate space
int maxNumDigitGroups = (4*mag.length + 6)/7;
String digitGroup[] = new String[maxNumDigitGroups];
// Translate number to string, a digit group at a time
BigInteger tmp = this.abs();
int numGroups = 0;
while (tmp.signum != 0) {
BigInteger d = longRadix[radix];
MutableBigInteger q = new MutableBigInteger(),
r = new MutableBigInteger(),
a = new MutableBigInteger(tmp.mag),
b = new MutableBigInteger(d.mag);
a.divide(b, q, r);
BigInteger q2 = new BigInteger(q, tmp.signum * d.signum);
BigInteger r2 = new BigInteger(r, tmp.signum * d.signum);
digitGroup[numGroups++] = Long.toString(r2.longValue(), radix);
tmp = q2;
}
// Put sign (if any) and first digit group into result buffer
StringBuilder buf = new StringBuilder(numGroups*digitsPerLong[radix]+1);
if (signum<0)
buf.append('-");
buf.append(digitGroup[numGroups-1]);
// Append remaining digit groups padded with leading zeros
for (int i=numGroups-2; i>=0; i--) {
// Prepend (any) leading zeros for this digit group
int numLeadingZeros = digitsPerLong[radix]-digitGroup[i].length();
if (numLeadingZeros != 0)
buf.append(zeros[numLeadingZeros]);
buf.append(digitGroup[i]);
}
return buf.toString();
| public java.lang.String | toString()Returns the decimal String representation of this BigInteger.
The digit-to-character mapping provided by
Character.forDigit is used, and a minus sign is
prepended if appropriate. (This representation is compatible
with the {@link #BigInteger(String) (String)} constructor, and
allows for String concatenation with Java's + operator.)
zeros[63] =
"000000000000000000000000000000000000000000000000000000000000000";
for (int i=0; i<63; i++)
zeros[i] = zeros[63].substring(0, i);
return toString(10);
| static int | trailingZeroCnt(int val)
// Loop unrolled for performance
int byteVal = val & 0xff;
if (byteVal != 0)
return trailingZeroTable[byteVal];
byteVal = (val >>> 8) & 0xff;
if (byteVal != 0)
return trailingZeroTable[byteVal] + 8;
byteVal = (val >>> 16) & 0xff;
if (byteVal != 0)
return trailingZeroTable[byteVal] + 16;
byteVal = (val >>> 24) & 0xff;
return trailingZeroTable[byteVal] + 24;
| private static int[] | trustedStripLeadingZeroInts(int[] val)Returns the input array stripped of any leading zero bytes.
Since the source is trusted the copying may be skipped.
int byteLength = val.length;
int keep;
// Find first nonzero byte
for (keep=0; keep<val.length && val[keep]==0; keep++)
;
// Only perform copy if necessary
if (keep > 0) {
int result[] = new int[val.length - keep];
for(int i=0; i<val.length - keep; i++)
result[i] = val[keep+i];
return result;
}
return val;
| public static java.math.BigInteger | valueOf(long val)Returns a BigInteger whose value is equal to that of the
specified long . This "static factory method" is
provided in preference to a (long ) constructor
because it allows for reuse of frequently used BigIntegers.
// If -MAX_CONSTANT < val < MAX_CONSTANT, return stashed constant
if (val == 0)
return ZERO;
if (val > 0 && val <= MAX_CONSTANT)
return posConst[(int) val];
else if (val < 0 && val >= -MAX_CONSTANT)
return negConst[(int) -val];
return new BigInteger(val);
| private static java.math.BigInteger | valueOf(int[] val)Returns a BigInteger with the given two's complement representation.
Assumes that the input array will not be modified (the returned
BigInteger will reference the input array if feasible).
return (val[0]>0 ? new BigInteger(val, 1) : new BigInteger(val));
| private void | writeObject(java.io.ObjectOutputStream s)Save the BigInteger instance to a stream.
The magnitude of a BigInteger is serialized as a byte array for
historical reasons.
// set the values of the Serializable fields
ObjectOutputStream.PutField fields = s.putFields();
fields.put("signum", signum);
fields.put("magnitude", magSerializedForm());
fields.put("bitCount", -1);
fields.put("bitLength", -1);
fields.put("lowestSetBit", -2);
fields.put("firstNonzeroByteNum", -2);
// save them
s.writeFields();
| public java.math.BigInteger | xor(java.math.BigInteger val)Returns a BigInteger whose value is (this ^ val). (This method
returns a negative BigInteger if and only if exactly one of this and
val are negative.)
int[] result = new int[Math.max(intLength(), val.intLength())];
for (int i=0; i<result.length; i++)
result[i] = (int) (getInt(result.length-i-1)
^ val.getInt(result.length-i-1));
return valueOf(result);
|
|