FileDocCategorySizeDatePackage
TimeUnit.javaAPI DocJava SE 5 API7951Fri Aug 26 14:57:26 BST 2005java.util.concurrent

TimeUnit.java

/*
 * @(#)TimeUnit.java	1.6 04/02/09
 *
 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package java.util.concurrent;

/**
 * A <tt>TimeUnit</tt> represents time durations at a given unit of
 * granularity and provides utility methods to convert across units,
 * and to perform timing and delay operations in these units.  A
 * <tt>TimeUnit</tt> does not maintain time information, but only
 * helps organize and use time representations that may be maintained
 * separately across various contexts.
 *
 * <p>A <tt>TimeUnit</tt> is mainly used to inform time-based methods
 * how a given timing parameter should be interpreted. For example,
 * the following code will timeout in 50 milliseconds if the {@link
 * java.util.concurrent.locks.Lock lock} is not available:
 *
 * <pre>  Lock lock = ...;
 *  if ( lock.tryLock(50L, TimeUnit.MILLISECONDS) ) ...
 * </pre>
 * while this code will timeout in 50 seconds:
 * <pre>
 *  Lock lock = ...;
 *  if ( lock.tryLock(50L, TimeUnit.SECONDS) ) ...
 * </pre>
 *
 * Note however, that there is no guarantee that a particular timeout
 * implementation will be able to notice the passage of time at the
 * same granularity as the given <tt>TimeUnit</tt>.
 *
 * @since 1.5
 * @author Doug Lea
 */
public enum TimeUnit {
    NANOSECONDS(0), MICROSECONDS(1), MILLISECONDS(2), SECONDS(3);

    /** the index of this unit */
    private final int index;

    /** Internal constructor */
    TimeUnit(int index) { 
        this.index = index; 
    }

    /** Lookup table for conversion factors */
    private static final int[] multipliers = { 
        1, 
        1000, 
        1000 * 1000, 
        1000 * 1000 * 1000 
    };
    
    /** 
     * Lookup table to check saturation.  Note that because we are
     * dividing these down, we don't have to deal with asymmetry of
     * MIN/MAX values.
     */
    private static final long[] overflows = { 
        0, // unused
        Long.MAX_VALUE / 1000,
        Long.MAX_VALUE / (1000 * 1000),
        Long.MAX_VALUE / (1000 * 1000 * 1000) 
    };

    /**
     * Perform conversion based on given delta representing the
     * difference between units
     * @param delta the difference in index values of source and target units
     * @param duration the duration
     * @return converted duration or saturated value
     */
    private static long doConvert(int delta, long duration) {
        if (delta == 0)
            return duration;
        if (delta < 0) 
            return duration / multipliers[-delta];
        if (duration > overflows[delta])
            return Long.MAX_VALUE;
        if (duration < -overflows[delta])
            return Long.MIN_VALUE;
        return duration * multipliers[delta];
    }

    /**
     * Convert the given time duration in the given unit to this
     * unit.  Conversions from finer to coarser granularities
     * truncate, so lose precision. For example converting
     * <tt>999</tt> milliseconds to seconds results in
     * <tt>0</tt>. Conversions from coarser to finer granularities
     * with arguments that would numerically overflow saturate to
     * <tt>Long.MIN_VALUE</tt> if negative or <tt>Long.MAX_VALUE</tt>
     * if positive.
     *
     * @param duration the time duration in the given <tt>unit</tt>
     * @param unit the unit of the <tt>duration</tt> argument
     * @return the converted duration in this unit,
     * or <tt>Long.MIN_VALUE</tt> if conversion would negatively
     * overflow, or <tt>Long.MAX_VALUE</tt> if it would positively overflow.
     */
    public long convert(long duration, TimeUnit unit) {
        return doConvert(unit.index - index, duration);
    }

    /**
     * Equivalent to <tt>NANOSECONDS.convert(duration, this)</tt>.
     * @param duration the duration
     * @return the converted duration,
     * or <tt>Long.MIN_VALUE</tt> if conversion would negatively
     * overflow, or <tt>Long.MAX_VALUE</tt> if it would positively overflow.
     * @see #convert
     */
    public long toNanos(long duration) {
        return doConvert(index, duration);
    }

    /**
     * Equivalent to <tt>MICROSECONDS.convert(duration, this)</tt>.
     * @param duration the duration
     * @return the converted duration,
     * or <tt>Long.MIN_VALUE</tt> if conversion would negatively
     * overflow, or <tt>Long.MAX_VALUE</tt> if it would positively overflow.
     * @see #convert
     */
    public long toMicros(long duration) {
        return doConvert(index - MICROSECONDS.index, duration);
    }

    /**
     * Equivalent to <tt>MILLISECONDS.convert(duration, this)</tt>.
     * @param duration the duration
     * @return the converted duration,
     * or <tt>Long.MIN_VALUE</tt> if conversion would negatively
     * overflow, or <tt>Long.MAX_VALUE</tt> if it would positively overflow.
     * @see #convert
     */
    public long toMillis(long duration) {
        return doConvert(index - MILLISECONDS.index, duration);
    }

    /**
     * Equivalent to <tt>SECONDS.convert(duration, this)</tt>.
     * @param duration the duration
     * @return the converted duration.
     * @see #convert
     */
    public long toSeconds(long duration) {
        return doConvert(index - SECONDS.index, duration);
    }


    /**
     * Utility method to compute the excess-nanosecond argument to
     * wait, sleep, join.
     */
    private int excessNanos(long time, long ms) {
        if (this == NANOSECONDS)
            return (int) (time  - (ms * 1000 * 1000));
        if (this == MICROSECONDS)
            return (int) ((time * 1000) - (ms * 1000 * 1000));
        return 0;
    }

    /**
     * Perform a timed <tt>Object.wait</tt> using this time unit.
     * This is a convenience method that converts timeout arguments
     * into the form required by the <tt>Object.wait</tt> method.
     *
     * <p>For example, you could implement a blocking <tt>poll</tt>
     * method (see {@link BlockingQueue#poll BlockingQueue.poll})
     * using:
     *
     * <pre>  public synchronized  Object poll(long timeout, TimeUnit unit) throws InterruptedException {
     *    while (empty) {
     *      unit.timedWait(this, timeout);
     *      ...
     *    }
     *  }</pre>
     *
     * @param obj the object to wait on
     * @param timeout the maximum time to wait. 
     * @throws InterruptedException if interrupted while waiting.
     * @see Object#wait(long, int)
     */
    public void timedWait(Object obj, long timeout)
        throws InterruptedException {
        if (timeout > 0) {
            long ms = toMillis(timeout);
            int ns = excessNanos(timeout, ms);
            obj.wait(ms, ns);
        }
    }

    /**
     * Perform a timed <tt>Thread.join</tt> using this time unit.
     * This is a convenience method that converts time arguments into the
     * form required by the <tt>Thread.join</tt> method.
     * @param thread the thread to wait for
     * @param timeout the maximum time to wait
     * @throws InterruptedException if interrupted while waiting.
     * @see Thread#join(long, int)
     */
    public void timedJoin(Thread thread, long timeout)
        throws InterruptedException {
        if (timeout > 0) {
            long ms = toMillis(timeout);
            int ns = excessNanos(timeout, ms);
            thread.join(ms, ns);
        }
    }

    /**
     * Perform a <tt>Thread.sleep</tt> using this unit.
     * This is a convenience method that converts time arguments into the
     * form required by the <tt>Thread.sleep</tt> method.
     * @param timeout the minimum time to sleep
     * @throws InterruptedException if interrupted while sleeping.
     * @see Thread#sleep
     */
    public void sleep(long timeout) throws InterruptedException {
        if (timeout > 0) {
            long ms = toMillis(timeout);
            int ns = excessNanos(timeout, ms);
            Thread.sleep(ms, ns);
        }
    }

}