FileDocCategorySizeDatePackage
Long.javaAPI DocJava SE 5 API43128Fri Aug 26 14:57:02 BST 2005java.lang

Long

public final class Long extends Number implements Comparable
The Long class wraps a value of the primitive type long in an object. An object of type Long contains a single field whose type is long.

In addition, this class provides several methods for converting a long to a String and a String to a long, as well as other constants and methods useful when dealing with a long.

Implementation note: The implementations of the "bit twiddling" methods (such as {@link #highestOneBit(long) highestOneBit} and {@link #numberOfTrailingZeros(long) numberOfTrailingZeros}) are based on material from Henry S. Warren, Jr.'s Hacker's Delight, (Addison Wesley, 2002).

author
Lee Boynton
author
Arthur van Hoff
author
Josh Bloch
version
1.79, 05/11/04
since
JDK1.0

Fields Summary
public static final long
MIN_VALUE
A constant holding the minimum value a long can have, -263.
public static final long
MAX_VALUE
A constant holding the maximum value a long can have, 263-1.
public static final Class
TYPE
The Class instance representing the primitive type long.
private final long
value
The value of the Long.
public static final int
SIZE
The number of bits used to represent a long value in two's complement binary form.
private static final long
serialVersionUID
use serialVersionUID from JDK 1.0.2 for interoperability
Constructors Summary
public Long(long value)
Constructs a newly allocated Long object that represents the specified long argument.

param
value the value to be represented by the Long object.

	this.value = value;
    
public Long(String s)
Constructs a newly allocated Long object that represents the long value indicated by the String parameter. The string is converted to a long value in exactly the manner used by the parseLong method for radix 10.

param
s the String to be converted to a Long.
exception
NumberFormatException if the String does not contain a parsable long.
see
java.lang.Long#parseLong(java.lang.String, int)

	this.value = parseLong(s, 10);
    
Methods Summary
public static intbitCount(long i)
Returns the number of one-bits in the two's complement binary representation of the specified long value. This function is sometimes referred to as the population count.

return
the number of one-bits in the two's complement binary representation of the specified long value.
since
1.5

        // HD, Figure 5-14
	i = i - ((i >>> 1) & 0x5555555555555555L);
	i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L);
	i = (i + (i >>> 4)) & 0x0f0f0f0f0f0f0f0fL;
	i = i + (i >>> 8);
	i = i + (i >>> 16);
	i = i + (i >>> 32);
	return (int)i & 0x7f;
     
public bytebyteValue()
Returns the value of this Long as a byte.

	return (byte)value;
    
public intcompareTo(java.lang.Long anotherLong)
Compares two Long objects numerically.

param
anotherLong the Long to be compared.
return
the value 0 if this Long is equal to the argument Long; a value less than 0 if this Long is numerically less than the argument Long; and a value greater than 0 if this Long is numerically greater than the argument Long (signed comparison).
since
1.2

	long thisVal = this.value;
	long anotherVal = anotherLong.value;
	return (thisVal<anotherVal ? -1 : (thisVal==anotherVal ? 0 : 1));
    
public static java.lang.Longdecode(java.lang.String nm)
Decodes a String into a Long. Accepts decimal, hexadecimal, and octal numbers given by the following grammar:
DecodableString:
Signopt DecimalNumeral
Signopt 0x HexDigits
Signopt 0X HexDigits
Signopt # HexDigits
Signopt 0 OctalDigits

Sign:
-
DecimalNumeral, HexDigits, and OctalDigits are defined in §3.10.1 of the Java Language Specification.

The sequence of characters following an (optional) negative sign and/or radix specifier ("0x", "0X", "#", or leading zero) is parsed as by the Long.parseLong method with the indicated radix (10, 16, or 8). This sequence of characters must represent a positive value or a {@link NumberFormatException} will be thrown. The result is negated if first character of the specified String is the minus sign. No whitespace characters are permitted in the String.

param
nm the String to decode.
return
a Long object holding the long value represented by nm
exception
NumberFormatException if the String does not contain a parsable long.
see
java.lang.Long#parseLong(String, int)
since
1.2

        int radix = 10;
        int index = 0;
        boolean negative = false;
        Long result;

        // Handle minus sign, if present
        if (nm.startsWith("-")) {
            negative = true;
            index++;
        }

        // Handle radix specifier, if present
	if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
	    index += 2;
            radix = 16;
	}
	else if (nm.startsWith("#", index)) {
	    index ++;
            radix = 16;
	}
	else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
	    index ++;
            radix = 8;
	}

        if (nm.startsWith("-", index))
            throw new NumberFormatException("Negative sign in wrong position");

        try {
            result = Long.valueOf(nm.substring(index), radix);
            result = negative ? new Long((long)-result.longValue()) : result;
        } catch (NumberFormatException e) {
            // If number is Long.MIN_VALUE, we'll end up here. The next line
            // handles this case, and causes any genuine format error to be
            // rethrown.
            String constant = negative ? new String("-" + nm.substring(index))
                                       : nm.substring(index);
            result = Long.valueOf(constant, radix);
        }
        return result;
    
public doubledoubleValue()
Returns the value of this Long as a double.

	return (double)value;
    
public booleanequals(java.lang.Object obj)
Compares this object to the specified object. The result is true if and only if the argument is not null and is a Long object that contains the same long value as this object.

param
obj the object to compare with.
return
true if the objects are the same; false otherwise.

	if (obj instanceof Long) {
	    return value == ((Long)obj).longValue();
	}
	return false;
    
public floatfloatValue()
Returns the value of this Long as a float.

	return (float)value;
    
static voidgetChars(long i, int index, char[] buf)
Places characters representing the integer i into the character array buf. The characters are placed into the buffer backwards starting with the least significant digit at the specified index (exclusive), and working backwards from there. Will fail if i == Long.MIN_VALUE

        long q;
        int r;
        int charPos = index;
        char sign = 0;

        if (i < 0) {
            sign = '-";
            i = -i;
        }

        // Get 2 digits/iteration using longs until quotient fits into an int
        while (i > Integer.MAX_VALUE) { 
            q = i / 100;
            // really: r = i - (q * 100);
            r = (int)(i - ((q << 6) + (q << 5) + (q << 2)));
            i = q;
            buf[--charPos] = Integer.DigitOnes[r];
            buf[--charPos] = Integer.DigitTens[r];
        }

        // Get 2 digits/iteration using ints
        int q2;
        int i2 = (int)i;
        while (i2 >= 65536) {
            q2 = i2 / 100;
            // really: r = i2 - (q * 100);
            r = i2 - ((q2 << 6) + (q2 << 5) + (q2 << 2));
            i2 = q2;
            buf[--charPos] = Integer.DigitOnes[r];
            buf[--charPos] = Integer.DigitTens[r];
        }

        // Fall thru to fast mode for smaller numbers
        // assert(i2 <= 65536, i2);
        for (;;) {
            q2 = (i2 * 52429) >>> (16+3);
            r = i2 - ((q2 << 3) + (q2 << 1));  // r = i2-(q2*10) ...
            buf[--charPos] = Integer.digits[r];
            i2 = q2;
            if (i2 == 0) break;
        }
        if (sign != 0) {
            buf[--charPos] = sign;
        }
    
public static java.lang.LonggetLong(java.lang.String nm)
Determines the long value of the system property with the specified name.

The first argument is treated as the name of a system property. System properties are accessible through the {@link java.lang.System#getProperty(java.lang.String)} method. The string value of this property is then interpreted as a long value and a Long object representing this value is returned. Details of possible numeric formats can be found with the definition of getProperty.

If there is no property with the specified name, if the specified name is empty or null, or if the property does not have the correct numeric format, then null is returned.

In other words, this method returns a Long object equal to the value of:

getLong(nm, null)

param
nm property name.
return
the Long value of the property.
see
java.lang.System#getProperty(java.lang.String)
see
java.lang.System#getProperty(java.lang.String, java.lang.String)

	return getLong(nm, null);
    
public static java.lang.LonggetLong(java.lang.String nm, long val)
Determines the long value of the system property with the specified name.

The first argument is treated as the name of a system property. System properties are accessible through the {@link java.lang.System#getProperty(java.lang.String)} method. The string value of this property is then interpreted as a long value and a Long object representing this value is returned. Details of possible numeric formats can be found with the definition of getProperty.

The second argument is the default value. A Long object that represents the value of the second argument is returned if there is no property of the specified name, if the property does not have the correct numeric format, or if the specified name is empty or null.

In other words, this method returns a Long object equal to the value of:

getLong(nm, new Long(val))
but in practice it may be implemented in a manner such as:
Long result = getLong(nm, null);
return (result == null) ? new Long(val) : result;
to avoid the unnecessary allocation of a Long object when the default value is not needed.

param
nm property name.
param
val default value.
return
the Long value of the property.
see
java.lang.System#getProperty(java.lang.String)
see
java.lang.System#getProperty(java.lang.String, java.lang.String)

        Long result = Long.getLong(nm, null);
        return (result == null) ? new Long(val) : result;
    
public static java.lang.LonggetLong(java.lang.String nm, java.lang.Long val)
Returns the long value of the system property with the specified name. The first argument is treated as the name of a system property. System properties are accessible through the {@link java.lang.System#getProperty(java.lang.String)} method. The string value of this property is then interpreted as a long value, as per the Long.decode method, and a Long object representing this value is returned.

  • If the property value begins with the two ASCII characters 0x or the ASCII character #, not followed by a minus sign, then the rest of it is parsed as a hexadecimal integer exactly as for the method {@link #valueOf(java.lang.String, int)} with radix 16.
  • If the property value begins with the ASCII character 0 followed by another character, it is parsed as an octal integer exactly as by the method {@link #valueOf(java.lang.String, int)} with radix 8.
  • Otherwise the property value is parsed as a decimal integer exactly as by the method {@link #valueOf(java.lang.String, int)} with radix 10.

Note that, in every case, neither L ('\u004C') nor l ('\u006C') is permitted to appear at the end of the property value as a type indicator, as would be permitted in Java programming language source code.

The second argument is the default value. The default value is returned if there is no property of the specified name, if the property does not have the correct numeric format, or if the specified name is empty or null.

param
nm property name.
param
val default value.
return
the Long value of the property.
see
java.lang.System#getProperty(java.lang.String)
see
java.lang.System#getProperty(java.lang.String, java.lang.String)
see
java.lang.Long#decode

        String v = null;
        try {
            v = System.getProperty(nm);
        } catch (IllegalArgumentException e) {
        } catch (NullPointerException e) {
        }
	if (v != null) {
	    try {
		return Long.decode(v);
	    } catch (NumberFormatException e) {
	    }
	}
	return val;
    
public inthashCode()
Returns a hash code for this Long. The result is the exclusive OR of the two halves of the primitive long value held by this Long object. That is, the hashcode is the value of the expression:
(int)(this.longValue()^(this.longValue()>>>32))

return
a hash code value for this object.

	return (int)(value ^ (value >>> 32));
    
public static longhighestOneBit(long i)
Returns an long value with at most a single one-bit, in the position of the highest-order ("leftmost") one-bit in the specified long value. Returns zero if the specified value has no one-bits in its two's complement binary representation, that is, if it is equal to zero.

return
an long value with a single one-bit, in the position of the highest-order one-bit in the specified value, or zero if the specified value is itself equal to zero.
since
1.5

 
                                                                                                
         
        // HD, Figure 3-1
        i |= (i >>  1);
        i |= (i >>  2);
        i |= (i >>  4);
        i |= (i >>  8);
        i |= (i >> 16);
        i |= (i >> 32);
        return i - (i >>> 1);
    
public intintValue()
Returns the value of this Long as an int.

	return (int)value;
    
public longlongValue()
Returns the value of this Long as a long value.

	return (long)value;
    
public static longlowestOneBit(long i)
Returns an long value with at most a single one-bit, in the position of the lowest-order ("rightmost") one-bit in the specified long value. Returns zero if the specified value has no one-bits in its two's complement binary representation, that is, if it is equal to zero.

return
an long value with a single one-bit, in the position of the lowest-order one-bit in the specified value, or zero if the specified value is itself equal to zero.
since
1.5

        // HD, Section 2-1
        return i & -i;
    
public static intnumberOfLeadingZeros(long i)
Returns the number of zero bits preceding the highest-order ("leftmost") one-bit in the two's complement binary representation of the specified long value. Returns 64 if the specified value has no one-bits in its two's complement representation, in other words if it is equal to zero.

Note that this method is closely related to the logarithm base 2. For all positive long values x:

  • floor(log2(x)) = 63 - numberOfLeadingZeros(x)
  • ceil(log2(x)) = 64 - numberOfLeadingZeros(x - 1)

return
the number of zero bits preceding the highest-order ("leftmost") one-bit in the two's complement binary representation of the specified long value, or 64 if the value is equal to zero.
since
1.5

        // HD, Figure 5-6
         if (i == 0)
            return 64;
        int n = 1;
	int x = (int)(i >>> 32);
        if (x == 0) { n += 32; x = (int)i; }
        if (x >>> 16 == 0) { n += 16; x <<= 16; }
        if (x >>> 24 == 0) { n +=  8; x <<=  8; }
        if (x >>> 28 == 0) { n +=  4; x <<=  4; }
        if (x >>> 30 == 0) { n +=  2; x <<=  2; }
        n -= x >>> 31;
        return n;
    
public static intnumberOfTrailingZeros(long i)
Returns the number of zero bits following the lowest-order ("rightmost") one-bit in the two's complement binary representation of the specified long value. Returns 64 if the specified value has no one-bits in its two's complement representation, in other words if it is equal to zero.

return
the number of zero bits following the lowest-order ("rightmost") one-bit in the two's complement binary representation of the specified long value, or 64 if the value is equal to zero.
since
1.5

        // HD, Figure 5-14
	int x, y;
	if (i == 0) return 64;
	int n = 63;
	y = (int)i; if (y != 0) { n = n -32; x = y; } else x = (int)(i>>>32);
	y = x <<16; if (y != 0) { n = n -16; x = y; }
	y = x << 8; if (y != 0) { n = n - 8; x = y; }
	y = x << 4; if (y != 0) { n = n - 4; x = y; }
	y = x << 2; if (y != 0) { n = n - 2; x = y; }
	return n - ((x << 1) >>> 31);
    
public static longparseLong(java.lang.String s)
Parses the string argument as a signed decimal long. The characters in the string must all be decimal digits, except that the first character may be an ASCII minus sign '-' (\u002D') to indicate a negative value. The resulting long value is returned, exactly as if the argument and the radix 10 were given as arguments to the {@link #parseLong(java.lang.String, int)} method.

Note that neither the character L ('\u004C') nor l ('\u006C') is permitted to appear at the end of the string as a type indicator, as would be permitted in Java programming language source code.

param
s a String containing the long representation to be parsed
return
the long represented by the argument in decimal.
exception
NumberFormatException if the string does not contain a parsable long.

	return parseLong(s, 10);
    
public static longparseLong(java.lang.String s, int radix)
Parses the string argument as a signed long in the radix specified by the second argument. The characters in the string must all be digits of the specified radix (as determined by whether {@link java.lang.Character#digit(char, int)} returns a nonnegative value), except that the first character may be an ASCII minus sign '-' ('\u002D') to indicate a negative value. The resulting long value is returned.

Note that neither the character L ('\u004C') nor l ('\u006C') is permitted to appear at the end of the string as a type indicator, as would be permitted in Java programming language source code - except that either L or l may appear as a digit for a radix greater than 22.

An exception of type NumberFormatException is thrown if any of the following situations occurs:

  • The first argument is null or is a string of length zero.
  • The radix is either smaller than {@link java.lang.Character#MIN_RADIX} or larger than {@link java.lang.Character#MAX_RADIX}.
  • Any character of the string is not a digit of the specified radix, except that the first character may be a minus sign '-' ('\u002d') provided that the string is longer than length 1.
  • The value represented by the string is not a value of type long.

Examples:

parseLong("0", 10) returns 0L
parseLong("473", 10) returns 473L
parseLong("-0", 10) returns 0L
parseLong("-FF", 16) returns -255L
parseLong("1100110", 2) returns 102L
parseLong("99", 8) throws a NumberFormatException
parseLong("Hazelnut", 10) throws a NumberFormatException
parseLong("Hazelnut", 36) returns 1356099454469L

param
s the String containing the long representation to be parsed.
param
radix the radix to be used while parsing s.
return
the long represented by the string argument in the specified radix.
exception
NumberFormatException if the string does not contain a parsable long.

        if (s == null) {
            throw new NumberFormatException("null");
        }

	if (radix < Character.MIN_RADIX) {
	    throw new NumberFormatException("radix " + radix +
					    " less than Character.MIN_RADIX");
	}
	if (radix > Character.MAX_RADIX) {
	    throw new NumberFormatException("radix " + radix +
					    " greater than Character.MAX_RADIX");
	}

	long result = 0;
	boolean negative = false;
	int i = 0, max = s.length();
	long limit;
	long multmin;
	int digit;

	if (max > 0) {
	    if (s.charAt(0) == '-") {
		negative = true;
		limit = Long.MIN_VALUE;
		i++;
	    } else {
		limit = -Long.MAX_VALUE;
	    }
	    multmin = limit / radix;
            if (i < max) {
                digit = Character.digit(s.charAt(i++),radix);
		if (digit < 0) {
		    throw NumberFormatException.forInputString(s);
		} else {
		    result = -digit;
		}
	    }
	    while (i < max) {
		// Accumulating negatively avoids surprises near MAX_VALUE
		digit = Character.digit(s.charAt(i++),radix);
		if (digit < 0) {
		    throw NumberFormatException.forInputString(s);
		}
		if (result < multmin) {
		    throw NumberFormatException.forInputString(s);
		}
		result *= radix;
		if (result < limit + digit) {
		    throw NumberFormatException.forInputString(s);
		}
		result -= digit;
	    }
	} else {
	    throw NumberFormatException.forInputString(s);
	}
	if (negative) {
	    if (i > 1) {
		return result;
	    } else {	/* Only got "-" */
		throw NumberFormatException.forInputString(s);
	    }
	} else {
	    return -result;
	}
    
public static longreverse(long i)
Returns the value obtained by reversing the order of the bits in the two's complement binary representation of the specified long value.

return
the value obtained by reversing order of the bits in the specified long value.
since
1.5

        // HD, Figure 7-1
	i = (i & 0x5555555555555555L) << 1 | (i >>> 1) & 0x5555555555555555L;
	i = (i & 0x3333333333333333L) << 2 | (i >>> 2) & 0x3333333333333333L;
	i = (i & 0x0f0f0f0f0f0f0f0fL) << 4 | (i >>> 4) & 0x0f0f0f0f0f0f0f0fL;
	i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
	i = (i << 48) | ((i & 0xffff0000L) << 16) |
	    ((i >>> 16) & 0xffff0000L) | (i >>> 48);
	return i;
    
public static longreverseBytes(long i)
Returns the value obtained by reversing the order of the bytes in the two's complement representation of the specified long value.

return
the value obtained by reversing the bytes in the specified long value.
since
1.5

        i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
        return (i << 48) | ((i & 0xffff0000L) << 16) |
            ((i >>> 16) & 0xffff0000L) | (i >>> 48);
    
public static longrotateLeft(long i, int distance)
Returns the value obtained by rotating the two's complement binary representation of the specified long value left by the specified number of bits. (Bits shifted out of the left hand, or high-order, side reenter on the right, or low-order.)

Note that left rotation with a negative distance is equivalent to right rotation: rotateLeft(val, -distance) == rotateRight(val, distance). Note also that rotation by any multiple of 64 is a no-op, so all but the last six bits of the rotation distance can be ignored, even if the distance is negative: rotateLeft(val, distance) == rotateLeft(val, distance & 0x3F).

return
the value obtained by rotating the two's complement binary representation of the specified long value left by the specified number of bits.
since
1.5

        return (i << distance) | (i >>> -distance);
    
public static longrotateRight(long i, int distance)
Returns the value obtained by rotating the two's complement binary representation of the specified long value right by the specified number of bits. (Bits shifted out of the right hand, or low-order, side reenter on the left, or high-order.)

Note that right rotation with a negative distance is equivalent to left rotation: rotateRight(val, -distance) == rotateLeft(val, distance). Note also that rotation by any multiple of 64 is a no-op, so all but the last six bits of the rotation distance can be ignored, even if the distance is negative: rotateRight(val, distance) == rotateRight(val, distance & 0x3F).

return
the value obtained by rotating the two's complement binary representation of the specified long value right by the specified number of bits.
since
1.5

        return (i >>> distance) | (i << -distance);
    
public shortshortValue()
Returns the value of this Long as a short.

	return (short)value;
    
public static intsignum(long i)
Returns the signum function of the specified long value. (The return value is -1 if the specified value is negative; 0 if the specified value is zero; and 1 if the specified value is positive.)

return
the signum function of the specified long value.
since
1.5

        // HD, Section 2-7
        return (int) ((i >> 63) | (-i >>> 63));
    
static intstringSize(long x)

        long p = 10;
        for (int i=1; i<19; i++) {
            if (x < p)
                return i;
            p = 10*p;
        }
        return 19;
    
public static java.lang.StringtoBinaryString(long i)
Returns a string representation of the long argument as an unsigned integer in base 2.

The unsigned long value is the argument plus 264 if the argument is negative; otherwise, it is equal to the argument. This value is converted to a string of ASCII digits in binary (base 2) with no extra leading 0s. If the unsigned magnitude is zero, it is represented by a single zero character '0' ('\u0030'); otherwise, the first character of the representation of the unsigned magnitude will not be the zero character. The characters '0' ('\u0030') and '1' ('\u0031') are used as binary digits.

param
i a long to be converted to a string.
return
the string representation of the unsigned long value represented by the argument in binary (base 2).
since
JDK 1.0.2

	return toUnsignedString(i, 1);
    
public static java.lang.StringtoHexString(long i)
Returns a string representation of the long argument as an unsigned integer in base 16.

The unsigned long value is the argument plus 264 if the argument is negative; otherwise, it is equal to the argument. This value is converted to a string of ASCII digits in hexadecimal (base 16) with no extra leading 0s. If the unsigned magnitude is zero, it is represented by a single zero character '0' ('\u0030'); otherwise, the first character of the representation of the unsigned magnitude will not be the zero character. The following characters are used as hexadecimal digits:

0123456789abcdef
These are the characters '\u0030' through '\u0039' and '\u0061' through '\u0066'. If uppercase letters are desired, the {@link java.lang.String#toUpperCase()} method may be called on the result:
Long.toHexString(n).toUpperCase()

param
i a long to be converted to a string.
return
the string representation of the unsigned long value represented by the argument in hexadecimal (base 16).
since
JDK 1.0.2

	return toUnsignedString(i, 4);
    
public static java.lang.StringtoOctalString(long i)
Returns a string representation of the long argument as an unsigned integer in base 8.

The unsigned long value is the argument plus 264 if the argument is negative; otherwise, it is equal to the argument. This value is converted to a string of ASCII digits in octal (base 8) with no extra leading 0s.

If the unsigned magnitude is zero, it is represented by a single zero character '0' ('\u0030'); otherwise, the first character of the representation of the unsigned magnitude will not be the zero character. The following characters are used as octal digits:

01234567
These are the characters '\u0030' through '\u0037'.

param
i a long to be converted to a string.
return
the string representation of the unsigned long value represented by the argument in octal (base 8).
since
JDK 1.0.2

	return toUnsignedString(i, 3);
    
public static java.lang.StringtoString(long i, int radix)
Returns a string representation of the first argument in the radix specified by the second argument.

If the radix is smaller than Character.MIN_RADIX or larger than Character.MAX_RADIX, then the radix 10 is used instead.

If the first argument is negative, the first element of the result is the ASCII minus sign '-' ('\u002d'). If the first argument is not negative, no sign character appears in the result.

The remaining characters of the result represent the magnitude of the first argument. If the magnitude is zero, it is represented by a single zero character '0' ('\u0030'); otherwise, the first character of the representation of the magnitude will not be the zero character. The following ASCII characters are used as digits:

0123456789abcdefghijklmnopqrstuvwxyz
These are '\u0030' through '\u0039' and '\u0061' through '\u007a'. If radix is N, then the first N of these characters are used as radix-N digits in the order shown. Thus, the digits for hexadecimal (radix 16) are 0123456789abcdef. If uppercase letters are desired, the {@link java.lang.String#toUpperCase()} method may be called on the result:
Long.toString(n, 16).toUpperCase()

param
i a longto be converted to a string.
param
radix the radix to use in the string representation.
return
a string representation of the argument in the specified radix.
see
java.lang.Character#MAX_RADIX
see
java.lang.Character#MIN_RADIX


                                                                                                                                                                                                                                                          
           
        if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
	    radix = 10;
        if (radix == 10)
            return toString(i);
        char[] buf = new char[65];
        int charPos = 64;
        boolean negative = (i < 0);

        if (!negative) {
            i = -i;
        }

        while (i <= -radix) {
            buf[charPos--] = Integer.digits[(int)(-(i % radix))];
            i = i / radix;
        }
        buf[charPos] = Integer.digits[(int)(-i)];

        if (negative) { 
            buf[--charPos] = '-";
        }

        return new String(buf, charPos, (65 - charPos));
    
public java.lang.StringtoString()
Returns a String object representing this Long's value. The value is converted to signed decimal representation and returned as a string, exactly as if the long value were given as an argument to the {@link java.lang.Long#toString(long)} method.

return
a string representation of the value of this object in base 10.

	return String.valueOf(value);
    
public static java.lang.StringtoString(long i)
Returns a String object representing the specified long. The argument is converted to signed decimal representation and returned as a string, exactly as if the argument and the radix 10 were given as arguments to the {@link #toString(long, int)} method.

param
i a long to be converted.
return
a string representation of the argument in base 10.

        if (i == Long.MIN_VALUE)
            return "-9223372036854775808";
        int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);
        char[] buf = new char[size];
        getChars(i, size, buf);
        return new String(0, size, buf);
    
private static java.lang.StringtoUnsignedString(long i, int shift)
Convert the integer to an unsigned number.

	char[] buf = new char[64];
	int charPos = 64;
	int radix = 1 << shift;
	long mask = radix - 1;
	do {
	    buf[--charPos] = Integer.digits[(int)(i & mask)];
	    i >>>= shift;
	} while (i != 0);
	return new String(buf, charPos, (64 - charPos));
    
public static java.lang.LongvalueOf(java.lang.String s, int radix)
Returns a Long object holding the value extracted from the specified String when parsed with the radix given by the second argument. The first argument is interpreted as representing a signed long in the radix specified by the second argument, exactly as if the arguments were given to the {@link #parseLong(java.lang.String, int)} method. The result is a Long object that represents the long value specified by the string.

In other words, this method returns a Long object equal to the value of:

new Long(Long.parseLong(s, radix))

param
s the string to be parsed
param
radix the radix to be used in interpreting s
return
a Long object holding the value represented by the string argument in the specified radix.
exception
NumberFormatException If the String does not contain a parsable long.

	return new Long(parseLong(s, radix));
    
public static java.lang.LongvalueOf(java.lang.String s)
Returns a Long object holding the value of the specified String. The argument is interpreted as representing a signed decimal long, exactly as if the argument were given to the {@link #parseLong(java.lang.String)} method. The result is a Long object that represents the integer value specified by the string.

In other words, this method returns a Long object equal to the value of:

new Long(Long.parseLong(s))

param
s the string to be parsed.
return
a Long object holding the value represented by the string argument.
exception
NumberFormatException If the string cannot be parsed as a long.

	return new Long(parseLong(s, 10));
    
public static java.lang.LongvalueOf(long l)
Returns a Long instance representing the specified long value. If a new Long instance is not required, this method should generally be used in preference to the constructor {@link #Long(long)}, as this method is likely to yield significantly better space and time performance by caching frequently requested values.

param
l a long value.
return
a Long instance representing l.
since
1.5


	 
	    for(int i = 0; i < cache.length; i++)
		cache[i] = new Long(i - 128);
	
	final int offset = 128;
	if (l >= -128 && l <= 127) { // will cache
	    return LongCache.cache[(int)l + offset];
	}
        return new Long(l);