FileDocCategorySizeDatePackage
Line2D.javaAPI DocJava SE 6 API37889Tue Jun 10 00:25:26 BST 2008java.awt.geom

Line2D.java

/*
 * @(#)Line2D.java	1.31 06/02/24
 *
 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package java.awt.geom;

import java.awt.Shape;
import java.awt.Rectangle;
import java.io.Serializable;

/**
 * This <code>Line2D</code> represents a line segment in {@code (x,y)}
 * coordinate space.  This class, like all of the Java 2D API, uses a
 * default coordinate system called <i>user space</i> in which the y-axis
 * values increase downward and x-axis values increase to the right.  For
 * more information on the user space coordinate system, see the 
 * <a href="http://java.sun.com/j2se/1.3/docs/guide/2d/spec/j2d-intro.fm2.html#61857">
 * Coordinate Systems</a> section of the Java 2D Programmer's Guide.  
 * <p>
 * This class is only the abstract superclass for all objects that
 * store a 2D line segment.
 * The actual storage representation of the coordinates is left to
 * the subclass.
 *
 * @version 	1.31, 02/24/06
 * @author	Jim Graham
 * @since 1.2
 */
public abstract class Line2D implements Shape, Cloneable {

    /**
     * A line segment specified with float coordinates.
     * @since 1.2
     */
    public static class Float extends Line2D implements Serializable {
	/**
	 * The X coordinate of the start point of the line segment.
         * @since 1.2
         * @serial
	 */
	public float x1;

	/**
	 * The Y coordinate of the start point of the line segment.
         * @since 1.2
         * @serial
	 */
	public float y1;

	/**
	 * The X coordinate of the end point of the line segment.
         * @since 1.2
         * @serial
	 */
	public float x2;

	/**
	 * The Y coordinate of the end point of the line segment.
         * @since 1.2
         * @serial
	 */
	public float y2;

	/**
	 * Constructs and initializes a Line with coordinates (0, 0) -> (0, 0).
         * @since 1.2
	 */
	public Float() {
	}

	/**
	 * Constructs and initializes a Line from the specified coordinates.
	 * @param x1 the X coordinate of the start point
	 * @param y1 the Y coordinate of the start point
	 * @param x2 the X coordinate of the end point
	 * @param y2 the Y coordinate of the end point
         * @since 1.2
	 */
	public Float(float x1, float y1, float x2, float y2) {
	    setLine(x1, y1, x2, y2);
	}

	/**
	 * Constructs and initializes a <code>Line2D</code> from the
	 * specified <code>Point2D</code> objects.
	 * @param p1 the start <code>Point2D</code> of this line segment
	 * @param p2 the end <code>Point2D</code> of this line segment
         * @since 1.2
	 */
	public Float(Point2D p1, Point2D p2) {
	    setLine(p1, p2);
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public double getX1() {
	    return (double) x1;
	} 

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public double getY1() {
	    return (double) y1;
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public Point2D getP1() {
	    return new Point2D.Float(x1, y1);
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public double getX2() {
	    return (double) x2;
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public double getY2() {
	    return (double) y2;
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public Point2D getP2() {
	    return new Point2D.Float(x2, y2);
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public void setLine(double x1, double y1, double x2, double y2) {
	    this.x1 = (float) x1;
	    this.y1 = (float) y1;
	    this.x2 = (float) x2;
	    this.y2 = (float) y2;
	}

	/**
	 * Sets the location of the end points of this <code>Line2D</code> 
	 * to the specified float coordinates.
	 * @param x1 the X coordinate of the start point
	 * @param y1 the Y coordinate of the start point
	 * @param x2 the X coordinate of the end point
	 * @param y2 the Y coordinate of the end point
         * @since 1.2
	 */
	public void setLine(float x1, float y1, float x2, float y2) {
	    this.x1 = x1;
	    this.y1 = y1;
	    this.x2 = x2;
	    this.y2 = y2;
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public Rectangle2D getBounds2D() {
	    float x, y, w, h;
	    if (x1 < x2) {
		x = x1;
		w = x2 - x1;
	    } else {
		x = x2;
		w = x1 - x2;
	    }
	    if (y1 < y2) {
		y = y1;
		h = y2 - y1;
	    } else {
		y = y2;
		h = y1 - y2;
	    }
	    return new Rectangle2D.Float(x, y, w, h);
	}

        /*
         * JDK 1.6 serialVersionUID
         */
        private static final long serialVersionUID = 6161772511649436349L;
    }

    /**
     * A line segment specified with double coordinates.
     * @since 1.2
     */
    public static class Double extends Line2D implements Serializable {
	/**
	 * The X coordinate of the start point of the line segment.
         * @since 1.2
         * @serial
	 */
	public double x1;

	/**
	 * The Y coordinate of the start point of the line segment.
         * @since 1.2
         * @serial
	 */
	public double y1;

	/**
	 * The X coordinate of the end point of the line segment.
         * @since 1.2
         * @serial
	 */
	public double x2;

	/**
	 * The Y coordinate of the end point of the line segment.
         * @since 1.2
         * @serial
	 */
	public double y2;

	/**
	 * Constructs and initializes a Line with coordinates (0, 0) -> (0, 0).
         * @since 1.2
	 */
	public Double() {
	}

	/**
	 * Constructs and initializes a <code>Line2D</code> from the
         * specified coordinates.
	 * @param x1 the X coordinate of the start point
	 * @param y1 the Y coordinate of the start point
	 * @param x2 the X coordinate of the end point
	 * @param y2 the Y coordinate of the end point
         * @since 1.2
	 */
	public Double(double x1, double y1, double x2, double y2) {
	    setLine(x1, y1, x2, y2);
	}

	/**
	 * Constructs and initializes a <code>Line2D</code> from the
	 * specified <code>Point2D</code> objects.
	 * @param p1 the start <code>Point2D</code> of this line segment
	 * @param p2 the end <code>Point2D</code> of this line segment
         * @since 1.2
	 */
	public Double(Point2D p1, Point2D p2) {
	    setLine(p1, p2);
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public double getX1() {
	    return x1;
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public double getY1() {
	    return y1;
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public Point2D getP1() {
	    return new Point2D.Double(x1, y1);
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public double getX2() {
	    return x2;
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public double getY2() {
	    return y2;
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public Point2D getP2() {
	    return new Point2D.Double(x2, y2);
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public void setLine(double x1, double y1, double x2, double y2) {
	    this.x1 = x1;
	    this.y1 = y1;
	    this.x2 = x2;
	    this.y2 = y2;
	}

	/**
         * {@inheritDoc}
         * @since 1.2
	 */
	public Rectangle2D getBounds2D() {
	    double x, y, w, h;
	    if (x1 < x2) {
		x = x1;
		w = x2 - x1;
	    } else {
		x = x2;
		w = x1 - x2;
	    }
	    if (y1 < y2) {
		y = y1;
		h = y2 - y1;
	    } else {
		y = y2;
		h = y1 - y2;
	    }
	    return new Rectangle2D.Double(x, y, w, h);
	}

        /*
         * JDK 1.6 serialVersionUID
         */
        private static final long serialVersionUID = 7979627399746467499L;
    }

    /**
     * This is an abstract class that cannot be instantiated directly.
     * Type-specific implementation subclasses are available for
     * instantiation and provide a number of formats for storing
     * the information necessary to satisfy the various accessory
     * methods below.
     *
     * @see java.awt.geom.Line2D.Float
     * @see java.awt.geom.Line2D.Double
     * @since 1.2
     */
    protected Line2D() {
    }

    /**
     * Returns the X coordinate of the start point in double precision.
     * @return the X coordinate of the start point of this
     *         {@code Line2D} object.
     * @since 1.2
     */
    public abstract double getX1();

    /**
     * Returns the Y coordinate of the start point in double precision.
     * @return the Y coordinate of the start point of this
     *         {@code Line2D} object.
     * @since 1.2
     */
    public abstract double getY1();

    /**
     * Returns the start <code>Point2D</code> of this <code>Line2D</code>.
     * @return the start <code>Point2D</code> of this <code>Line2D</code>.
     * @since 1.2
     */
    public abstract Point2D getP1();

    /**
     * Returns the X coordinate of the end point in double precision.
     * @return the X coordinate of the end point of this
     *         {@code Line2D} object.
     * @since 1.2
     */
    public abstract double getX2();

    /**
     * Returns the Y coordinate of the end point in double precision.
     * @return the Y coordinate of the end point of this
     *         {@code Line2D} object.
     * @since 1.2
     */
    public abstract double getY2();

    /**
     * Returns the end <code>Point2D</code> of this <code>Line2D</code>.
     * @return the end <code>Point2D</code> of this <code>Line2D</code>.
     * @since 1.2
     */
    public abstract Point2D getP2();

    /**
     * Sets the location of the end points of this <code>Line2D</code> to
     * the specified double coordinates.
     * @param x1 the X coordinate of the start point
     * @param y1 the Y coordinate of the start point
     * @param x2 the X coordinate of the end point
     * @param y2 the Y coordinate of the end point
     * @since 1.2
     */
    public abstract void setLine(double x1, double y1, double x2, double y2);

    /**
     * Sets the location of the end points of this <code>Line2D</code> to
     * the specified <code>Point2D</code> coordinates.
     * @param p1 the start <code>Point2D</code> of the line segment
     * @param p2 the end <code>Point2D</code> of the line segment
     * @since 1.2
     */
    public void setLine(Point2D p1, Point2D p2) {
	setLine(p1.getX(), p1.getY(), p2.getX(), p2.getY());
    }

    /**
     * Sets the location of the end points of this <code>Line2D</code> to
     * the same as those end points of the specified <code>Line2D</code>.
     * @param l the specified <code>Line2D</code>
     * @since 1.2
     */
    public void setLine(Line2D l) {
	setLine(l.getX1(), l.getY1(), l.getX2(), l.getY2());
    }

    /**
     * Returns an indicator of where the specified point 
     * {@code (px,py)} lies with respect to the line segment from 
     * {@code (x1,y1)} to {@code (x2,y2)}.
     * The return value can be either 1, -1, or 0 and indicates
     * in which direction the specified line must pivot around its
     * first end point, {@code (x1,y1)}, in order to point at the
     * specified point {@code (px,py)}.
     * <p>A return value of 1 indicates that the line segment must
     * turn in the direction that takes the positive X axis towards
     * the negative Y axis.  In the default coordinate system used by
     * Java 2D, this direction is counterclockwise.  
     * <p>A return value of -1 indicates that the line segment must
     * turn in the direction that takes the positive X axis towards
     * the positive Y axis.  In the default coordinate system, this 
     * direction is clockwise.
     * <p>A return value of 0 indicates that the point lies
     * exactly on the line segment.  Note that an indicator value 
     * of 0 is rare and not useful for determining colinearity 
     * because of floating point rounding issues. 
     * <p>If the point is colinear with the line segment, but 
     * not between the end points, then the value will be -1 if the point
     * lies "beyond {@code (x1,y1)}" or 1 if the point lies 
     * "beyond {@code (x2,y2)}".
     *
     * @param x1 the X coordinate of the start point of the
     *           specified line segment
     * @param y1 the Y coordinate of the start point of the
     *           specified line segment
     * @param x2 the X coordinate of the end point of the
     *           specified line segment
     * @param y2 the Y coordinate of the end point of the
     *           specified line segment
     * @param px the X coordinate of the specified point to be
     *           compared with the specified line segment
     * @param py the Y coordinate of the specified point to be
     *           compared with the specified line segment
     * @return an integer that indicates the position of the third specified
     *			coordinates with respect to the line segment formed
     *			by the first two specified coordinates.
     * @since 1.2
     */
    public static int relativeCCW(double x1, double y1,
				  double x2, double y2,
				  double px, double py)
    {
	x2 -= x1;
	y2 -= y1;
	px -= x1;
	py -= y1;
	double ccw = px * y2 - py * x2;
	if (ccw == 0.0) {
	    // The point is colinear, classify based on which side of
	    // the segment the point falls on.  We can calculate a
	    // relative value using the projection of px,py onto the
	    // segment - a negative value indicates the point projects
	    // outside of the segment in the direction of the particular
	    // endpoint used as the origin for the projection.
	    ccw = px * x2 + py * y2;
	    if (ccw > 0.0) {
		// Reverse the projection to be relative to the original x2,y2
		// x2 and y2 are simply negated.
		// px and py need to have (x2 - x1) or (y2 - y1) subtracted
		//    from them (based on the original values)
		// Since we really want to get a positive answer when the
		//    point is "beyond (x2,y2)", then we want to calculate
		//    the inverse anyway - thus we leave x2 & y2 negated.
		px -= x2;
		py -= y2;
		ccw = px * x2 + py * y2;
		if (ccw < 0.0) {
		    ccw = 0.0;
		}
	    }
	}
	return (ccw < 0.0) ? -1 : ((ccw > 0.0) ? 1 : 0);
    }

    /**
     * Returns an indicator of where the specified point 
     * {@code (px,py)} lies with respect to this line segment.
     * See the method comments of 
     * {@link #relativeCCW(double, double, double, double, double, double)}
     * to interpret the return value.
     * @param px the X coordinate of the specified point
     *           to be compared with this <code>Line2D</code>
     * @param py the Y coordinate of the specified point
     *           to be compared with this <code>Line2D</code>
     * @return an integer that indicates the position of the specified
     *         coordinates with respect to this <code>Line2D</code>
     * @see #relativeCCW(double, double, double, double, double, double)
     * @since 1.2
     */
    public int relativeCCW(double px, double py) {
	return relativeCCW(getX1(), getY1(), getX2(), getY2(), px, py);
    }

    /**
     * Returns an indicator of where the specified <code>Point2D</code>
     * lies with respect to this line segment.
     * See the method comments of
     * {@link #relativeCCW(double, double, double, double, double, double)}
     * to interpret the return value.
     * @param p the specified <code>Point2D</code> to be compared 
     *          with this <code>Line2D</code>
     * @return an integer that indicates the position of the specified
     *         <code>Point2D</code> with respect to this <code>Line2D</code>
     * @see #relativeCCW(double, double, double, double, double, double)
     * @since 1.2
     */
    public int relativeCCW(Point2D p) {
	return relativeCCW(getX1(), getY1(), getX2(), getY2(),
			   p.getX(), p.getY());
    }

    /**
     * Tests if the line segment from {@code (x1,y1)} to 
     * {@code (x2,y2)} intersects the line segment from {@code (x3,y3)} 
     * to {@code (x4,y4)}.
     *
     * @param x1 the X coordinate of the start point of the first
     *           specified line segment
     * @param y1 the Y coordinate of the start point of the first
     *           specified line segment
     * @param x2 the X coordinate of the end point of the first
     *           specified line segment
     * @param y2 the Y coordinate of the end point of the first
     *           specified line segment
     * @param x3 the X coordinate of the start point of the second
     *           specified line segment
     * @param y3 the Y coordinate of the start point of the second
     *           specified line segment
     * @param x4 the X coordinate of the end point of the second
     *           specified line segment
     * @param y4 the Y coordinate of the end point of the second
     *           specified line segment
     * @return <code>true</code> if the first specified line segment 
     *			and the second specified line segment intersect  
     *			each other; <code>false</code> otherwise.  
     * @since 1.2
     */
    public static boolean linesIntersect(double x1, double y1,
					 double x2, double y2,
					 double x3, double y3,
					 double x4, double y4)
    {
	return ((relativeCCW(x1, y1, x2, y2, x3, y3) *
		 relativeCCW(x1, y1, x2, y2, x4, y4) <= 0)
		&& (relativeCCW(x3, y3, x4, y4, x1, y1) *
		    relativeCCW(x3, y3, x4, y4, x2, y2) <= 0));
    }

    /**
     * Tests if the line segment from {@code (x1,y1)} to 
     * {@code (x2,y2)} intersects this line segment.
     *
     * @param x1 the X coordinate of the start point of the
     *           specified line segment
     * @param y1 the Y coordinate of the start point of the
     *           specified line segment
     * @param x2 the X coordinate of the end point of the
     *           specified line segment
     * @param y2 the Y coordinate of the end point of the
     *           specified line segment
     * @return <true> if this line segment and the specified line segment
     *			intersect each other; <code>false</code> otherwise.
     * @since 1.2
     */
    public boolean intersectsLine(double x1, double y1, double x2, double y2) {
	return linesIntersect(x1, y1, x2, y2,
			      getX1(), getY1(), getX2(), getY2());
    }

    /**
     * Tests if the specified line segment intersects this line segment.
     * @param l the specified <code>Line2D</code>
     * @return <code>true</code> if this line segment and the specified line
     *			segment intersect each other; 
     *			<code>false</code> otherwise.
     * @since 1.2
     */
    public boolean intersectsLine(Line2D l) {
	return linesIntersect(l.getX1(), l.getY1(), l.getX2(), l.getY2(),
			      getX1(), getY1(), getX2(), getY2());
    }

    /**
     * Returns the square of the distance from a point to a line segment.
     * The distance measured is the distance between the specified
     * point and the closest point between the specified end points.  
     * If the specified point intersects the line segment in between the
     * end points, this method returns 0.0.     
     *
     * @param x1 the X coordinate of the start point of the
     *           specified line segment
     * @param y1 the Y coordinate of the start point of the
     *           specified line segment
     * @param x2 the X coordinate of the end point of the
     *           specified line segment
     * @param y2 the Y coordinate of the end point of the
     *           specified line segment
     * @param px the X coordinate of the specified point being
     *           measured against the specified line segment
     * @param py the Y coordinate of the specified point being
     *           measured against the specified line segment
     * @return a double value that is the square of the distance from the
     *			specified point to the specified line segment.
     * @see #ptLineDistSq(double, double, double, double, double, double)
     * @since 1.2
     */
    public static double ptSegDistSq(double x1, double y1,
				     double x2, double y2,
				     double px, double py)
    {
	// Adjust vectors relative to x1,y1
	// x2,y2 becomes relative vector from x1,y1 to end of segment
	x2 -= x1;
	y2 -= y1;
	// px,py becomes relative vector from x1,y1 to test point
	px -= x1;
	py -= y1;
	double dotprod = px * x2 + py * y2;
	double projlenSq;
	if (dotprod <= 0.0) {
	    // px,py is on the side of x1,y1 away from x2,y2
	    // distance to segment is length of px,py vector
	    // "length of its (clipped) projection" is now 0.0
	    projlenSq = 0.0;
	} else {
	    // switch to backwards vectors relative to x2,y2
	    // x2,y2 are already the negative of x1,y1=>x2,y2
	    // to get px,py to be the negative of px,py=>x2,y2
	    // the dot product of two negated vectors is the same
	    // as the dot product of the two normal vectors
	    px = x2 - px;
	    py = y2 - py;
	    dotprod = px * x2 + py * y2;
	    if (dotprod <= 0.0) {
		// px,py is on the side of x2,y2 away from x1,y1
		// distance to segment is length of (backwards) px,py vector
		// "length of its (clipped) projection" is now 0.0
		projlenSq = 0.0;
	    } else {
		// px,py is between x1,y1 and x2,y2
		// dotprod is the length of the px,py vector
		// projected on the x2,y2=>x1,y1 vector times the
		// length of the x2,y2=>x1,y1 vector
		projlenSq = dotprod * dotprod / (x2 * x2 + y2 * y2);
	    }
	}
	// Distance to line is now the length of the relative point
	// vector minus the length of its projection onto the line
	// (which is zero if the projection falls outside the range
	//  of the line segment).
	double lenSq = px * px + py * py - projlenSq;
	if (lenSq < 0) {
	    lenSq = 0;
	}
	return lenSq;
    }

    /**
     * Returns the distance from a point to a line segment.
     * The distance measured is the distance between the specified
     * point and the closest point between the specified end points.  
     * If the specified point intersects the line segment in between the
     * end points, this method returns 0.0.
     *
     * @param x1 the X coordinate of the start point of the
     *           specified line segment
     * @param y1 the Y coordinate of the start point of the
     *           specified line segment
     * @param x2 the X coordinate of the end point of the
     *           specified line segment
     * @param y2 the Y coordinate of the end point of the
     *           specified line segment
     * @param px the X coordinate of the specified point being
     *           measured against the specified line segment
     * @param py the Y coordinate of the specified point being
     *           measured against the specified line segment
     * @return a double value that is the distance from the specified point
     *				to the specified line segment.
     * @see #ptLineDist(double, double, double, double, double, double)
     * @since 1.2
     */
    public static double ptSegDist(double x1, double y1,
				   double x2, double y2,
				   double px, double py)
    {
	return Math.sqrt(ptSegDistSq(x1, y1, x2, y2, px, py));
    }

    /**
     * Returns the square of the distance from a point to this line segment.
     * The distance measured is the distance between the specified
     * point and the closest point between the current line's end points.  
     * If the specified point intersects the line segment in between the
     * end points, this method returns 0.0.
     *
     * @param px the X coordinate of the specified point being
     *           measured against this line segment
     * @param py the Y coordinate of the specified point being
     *           measured against this line segment
     * @return a double value that is the square of the distance from the
     *			specified point to the current line segment.
     * @see #ptLineDistSq(double, double)
     * @since 1.2
     */
    public double ptSegDistSq(double px, double py) {
	return ptSegDistSq(getX1(), getY1(), getX2(), getY2(), px, py);
    }

    /**
     * Returns the square of the distance from a <code>Point2D</code> to 
     * this line segment.
     * The distance measured is the distance between the specified
     * point and the closest point between the current line's end points.  
     * If the specified point intersects the line segment in between the
     * end points, this method returns 0.0.
     * @param pt the specified <code>Point2D</code> being measured against
     *	         this line segment.
     * @return a double value that is the square of the distance from the
     *			specified <code>Point2D</code> to the current 
     *			line segment.
     * @see #ptLineDistSq(Point2D)
     * @since 1.2
     */
    public double ptSegDistSq(Point2D pt) {
	return ptSegDistSq(getX1(), getY1(), getX2(), getY2(),
			   pt.getX(), pt.getY());
    }

    /**
     * Returns the distance from a point to this line segment.
     * The distance measured is the distance between the specified
     * point and the closest point between the current line's end points.  
     * If the specified point intersects the line segment in between the
     * end points, this method returns 0.0.
     *
     * @param px the X coordinate of the specified point being
     *           measured against this line segment
     * @param py the Y coordinate of the specified point being
     *           measured against this line segment
     * @return a double value that is the distance from the specified 
     *			point to the current line segment.
     * @see #ptLineDist(double, double)
     * @since 1.2
     */
    public double ptSegDist(double px, double py) {
	return ptSegDist(getX1(), getY1(), getX2(), getY2(), px, py);
    }

    /**
     * Returns the distance from a <code>Point2D</code> to this line
     * segment.
     * The distance measured is the distance between the specified
     * point and the closest point between the current line's end points.  
     * If the specified point intersects the line segment in between the
     * end points, this method returns 0.0.
     * @param pt the specified <code>Point2D</code> being measured
     *		against this line segment
     * @return a double value that is the distance from the specified
     *				<code>Point2D</code> to the current line
     *				segment.
     * @see #ptLineDist(Point2D)
     * @since 1.2
     */
    public double ptSegDist(Point2D pt) {
	return ptSegDist(getX1(), getY1(), getX2(), getY2(),
			 pt.getX(), pt.getY());
    }

    /**
     * Returns the square of the distance from a point to a line.
     * The distance measured is the distance between the specified
     * point and the closest point on the infinitely-extended line
     * defined by the specified coordinates.  If the specified point 
     * intersects the line, this method returns 0.0.
     *
     * @param x1 the X coordinate of the start point of the specified line
     * @param y1 the Y coordinate of the start point of the specified line
     * @param x2 the X coordinate of the end point of the specified line
     * @param y2 the Y coordinate of the end point of the specified line
     * @param px the X coordinate of the specified point being
     *           measured against the specified line
     * @param py the Y coordinate of the specified point being
     *           measured against the specified line
     * @return a double value that is the square of the distance from the
     *			specified point to the specified line.
     * @see #ptSegDistSq(double, double, double, double, double, double)
     * @since 1.2
     */
    public static double ptLineDistSq(double x1, double y1,
				      double x2, double y2,
				      double px, double py)
    {
	// Adjust vectors relative to x1,y1
	// x2,y2 becomes relative vector from x1,y1 to end of segment
	x2 -= x1;
	y2 -= y1;
	// px,py becomes relative vector from x1,y1 to test point
	px -= x1;
	py -= y1;
	double dotprod = px * x2 + py * y2;
	// dotprod is the length of the px,py vector
	// projected on the x1,y1=>x2,y2 vector times the
	// length of the x1,y1=>x2,y2 vector
	double projlenSq = dotprod * dotprod / (x2 * x2 + y2 * y2);
	// Distance to line is now the length of the relative point
	// vector minus the length of its projection onto the line
	double lenSq = px * px + py * py - projlenSq;
	if (lenSq < 0) {
	    lenSq = 0;
	}
	return lenSq;
    }

    /**
     * Returns the distance from a point to a line.
     * The distance measured is the distance between the specified
     * point and the closest point on the infinitely-extended line
     * defined by the specified coordinates.  If the specified point 
     * intersects the line, this method returns 0.0.
     *
     * @param x1 the X coordinate of the start point of the specified line
     * @param y1 the Y coordinate of the start point of the specified line
     * @param x2 the X coordinate of the end point of the specified line
     * @param y2 the Y coordinate of the end point of the specified line
     * @param px the X coordinate of the specified point being
     *           measured against the specified line
     * @param py the Y coordinate of the specified point being
     *           measured against the specified line
     * @return a double value that is the distance from the specified
     *			 point to the specified line.
     * @see #ptSegDist(double, double, double, double, double, double)
     * @since 1.2
     */
    public static double ptLineDist(double x1, double y1,
				    double x2, double y2,
				    double px, double py)
    {
	return Math.sqrt(ptLineDistSq(x1, y1, x2, y2, px, py));
    }

    /**
     * Returns the square of the distance from a point to this line.
     * The distance measured is the distance between the specified
     * point and the closest point on the infinitely-extended line
     * defined by this <code>Line2D</code>.  If the specified point 
     * intersects the line, this method returns 0.0.
     *
     * @param px the X coordinate of the specified point being
     *           measured against this line
     * @param py the Y coordinate of the specified point being
     *           measured against this line
     * @return a double value that is the square of the distance from a 
     *			specified point to the current line.
     * @see #ptSegDistSq(double, double)
     * @since 1.2
     */
    public double ptLineDistSq(double px, double py) {
	return ptLineDistSq(getX1(), getY1(), getX2(), getY2(), px, py);
    }

    /**
     * Returns the square of the distance from a specified 
     * <code>Point2D</code> to this line.
     * The distance measured is the distance between the specified
     * point and the closest point on the infinitely-extended line
     * defined by this <code>Line2D</code>.  If the specified point 
     * intersects the line, this method returns 0.0.
     * @param pt the specified <code>Point2D</code> being measured
     *           against this line
     * @return a double value that is the square of the distance from a
     *			specified <code>Point2D</code> to the current
     *			line.
     * @see #ptSegDistSq(Point2D)
     * @since 1.2
     */
    public double ptLineDistSq(Point2D pt) {
	return ptLineDistSq(getX1(), getY1(), getX2(), getY2(),
			    pt.getX(), pt.getY());
    }

    /**
     * Returns the distance from a point to this line.
     * The distance measured is the distance between the specified
     * point and the closest point on the infinitely-extended line
     * defined by this <code>Line2D</code>.  If the specified point 
     * intersects the line, this method returns 0.0.
     *
     * @param px the X coordinate of the specified point being
     *           measured against this line
     * @param py the Y coordinate of the specified point being
     *           measured against this line
     * @return a double value that is the distance from a specified point
     *			to the current line.
     * @see #ptSegDist(double, double)
     * @since 1.2
     */
    public double ptLineDist(double px, double py) {
	return ptLineDist(getX1(), getY1(), getX2(), getY2(), px, py);
    }

    /**
     * Returns the distance from a <code>Point2D</code> to this line.
     * The distance measured is the distance between the specified
     * point and the closest point on the infinitely-extended line
     * defined by this <code>Line2D</code>.  If the specified point 
     * intersects the line, this method returns 0.0.
     * @param pt the specified <code>Point2D</code> being measured
     * @return a double value that is the distance from a specified 
     *			<code>Point2D</code> to the current line.
     * @see #ptSegDist(Point2D)
     * @since 1.2
     */
    public double ptLineDist(Point2D pt) {
	return ptLineDist(getX1(), getY1(), getX2(), getY2(),
			 pt.getX(), pt.getY());
    }

    /**
     * Tests if a specified coordinate is inside the boundary of this
     * <code>Line2D</code>.  This method is required to implement the 
     * {@link Shape} interface, but in the case of <code>Line2D</code> 
     * objects it always returns <code>false</code> since a line contains
     * no area.
     * @param x the X coordinate of the specified point to be tested
     * @param y the Y coordinate of the specified point to be tested
     * @return <code>false</code> because a <code>Line2D</code> contains
     * no area.
     * @since 1.2
     */
    public boolean contains(double x, double y) {
	return false;
    }

    /**
     * Tests if a given <code>Point2D</code> is inside the boundary of
     * this <code>Line2D</code>.
     * This method is required to implement the {@link Shape} interface, 
     * but in the case of <code>Line2D</code> objects it always returns 
     * <code>false</code> since a line contains no area.
     * @param p the specified <code>Point2D</code> to be tested
     * @return <code>false</code> because a <code>Line2D</code> contains
     * no area.
     * @since 1.2
     */
    public boolean contains(Point2D p) {
	return false;
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean intersects(double x, double y, double w, double h) {
	return intersects(new Rectangle2D.Double(x, y, w, h));
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public boolean intersects(Rectangle2D r) {
	return r.intersectsLine(getX1(), getY1(), getX2(), getY2());
    }

    /**
     * Tests if the interior of this <code>Line2D</code> entirely contains
     * the specified set of rectangular coordinates.
     * This method is required to implement the <code>Shape</code> interface, 
     * but in the case of <code>Line2D</code> objects it always returns 
     * false since a line contains no area.
     * @param x the X coordinate of the upper-left corner of the
     *          specified rectangular area
     * @param y the Y coordinate of the upper-left corner of the
     *          specified rectangular area
     * @param w the width of the specified rectangular area
     * @param h the height of the specified rectangular area
     * @return <code>false</code> because a <code>Line2D</code> contains
     * no area.
     * @since 1.2
     */
    public boolean contains(double x, double y, double w, double h) {
	return false;
    }

    /**
     * Tests if the interior of this <code>Line2D</code> entirely contains
     * the specified <code>Rectangle2D</code>.
     * This method is required to implement the <code>Shape</code> interface, 
     * but in the case of <code>Line2D</code> objects it always returns 
     * <code>false</code> since a line contains no area.
     * @param r the specified <code>Rectangle2D</code> to be tested
     * @return <code>false</code> because a <code>Line2D</code> contains
     * no area.
     * @since 1.2
     */
    public boolean contains(Rectangle2D r) {
	return false;
    }

    /**
     * {@inheritDoc}
     * @since 1.2
     */
    public Rectangle getBounds() {
	return getBounds2D().getBounds();
    }

    /**
     * Returns an iteration object that defines the boundary of this
     * <code>Line2D</code>.
     * The iterator for this class is not multi-threaded safe, 
     * which means that this <code>Line2D</code> class does not 
     * guarantee that modifications to the geometry of this
     * <code>Line2D</code> object do not affect any iterations of that
     * geometry that are already in process.
     * @param at the specified {@link AffineTransform}
     * @return a {@link PathIterator} that defines the boundary of this
     *		<code>Line2D</code>.
     * @since 1.2
     */
    public PathIterator getPathIterator(AffineTransform at) {
	return new LineIterator(this, at);
    }

    /**
     * Returns an iteration object that defines the boundary of this
     * flattened <code>Line2D</code>.
     * The iterator for this class is not multi-threaded safe,
     * which means that this <code>Line2D</code> class does not
     * guarantee that modifications to the geometry of this
     * <code>Line2D</code> object do not affect any iterations of that
     * geometry that are already in process. 
     * @param at the specified <code>AffineTransform</code>
     * @param flatness the maximum amount that the control points for a 
     *		given curve can vary from colinear before a subdivided
     *		curve is replaced by a straight line connecting the
     *		end points.  Since a <code>Line2D</code> object is 
     *	        always flat, this parameter is ignored.
     * @return a <code>PathIterator</code> that defines the boundary of the
     *			flattened <code>Line2D</code>
     * @since 1.2
     */
    public PathIterator getPathIterator(AffineTransform at, double flatness) {
	return new LineIterator(this, at);
    }

    /**
     * Creates a new object of the same class as this object.
     *
     * @return     a clone of this instance.
     * @exception  OutOfMemoryError            if there is not enough memory.
     * @see        java.lang.Cloneable
     * @since      1.2
     */
    public Object clone() {
	try {
	    return super.clone();
	} catch (CloneNotSupportedException e) {
	    // this shouldn't happen, since we are Cloneable
	    throw new InternalError();
	}
    }
}