FileDocCategorySizeDatePackage
BitSet.javaAPI DocJava SE 5 API36179Fri Aug 26 14:57:22 BST 2005java.util

BitSet.java

/*
 * @(#)BitSet.java	1.60 04/02/19
 *
 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package java.util;

import java.io.*;

/**
 * This class implements a vector of bits that grows as needed. Each 
 * component of the bit set has a <code>boolean</code> value. The 
 * bits of a <code>BitSet</code> are indexed by nonnegative integers. 
 * Individual indexed bits can be examined, set, or cleared. One 
 * <code>BitSet</code> may be used to modify the contents of another 
 * <code>BitSet</code> through logical AND, logical inclusive OR, and 
 * logical exclusive OR operations.
 * <p>
 * By default, all bits in the set initially have the value 
 * <code>false</code>. 
 * <p>
 * Every bit set has a current size, which is the number of bits 
 * of space currently in use by the bit set. Note that the size is
 * related to the implementation of a bit set, so it may change with
 * implementation. The length of a bit set relates to logical length
 * of a bit set and is defined independently of implementation.
 * <p>
 * Unless otherwise noted, passing a null parameter to any of the
 * methods in a <code>BitSet</code> will result in a
 * <code>NullPointerException</code>.
 *
 * A <code>BitSet</code> is not safe for multithreaded use without
 * external synchronization.
 *
 * @author  Arthur van Hoff
 * @author  Michael McCloskey
 * @version 1.60, 02/19/04
 * @since   JDK1.0
 */
public class BitSet implements Cloneable, java.io.Serializable {
    /*
     * BitSets are packed into arrays of "units."  Currently a unit is a long,
     * which consists of 64 bits, requiring 6 address bits.  The choice of unit
     * is determined purely by performance concerns.
     */
    private final static int ADDRESS_BITS_PER_UNIT = 6;
    private final static int BITS_PER_UNIT = 1 << ADDRESS_BITS_PER_UNIT;
    private final static int BIT_INDEX_MASK = BITS_PER_UNIT - 1;

    /* Used to shift left or right for a partial word mask */
    private static final long WORD_MASK = 0xffffffffffffffffL;

    /**
     * The bits in this BitSet.  The ith bit is stored in bits[i/64] at
     * bit position i % 64 (where bit position 0 refers to the least
     * significant bit and 63 refers to the most significant bit).
     * INVARIANT: The words in bits[] above unitsInUse-1 are zero.
     *
     * @serial
     */
    private long bits[];  // this should be called unit[]

    /**
     * The number of units in the logical size of this BitSet.
     * INVARIANT: unitsInUse is nonnegative.
     * INVARIANT: bits[unitsInUse-1] is nonzero unless unitsInUse is zero.
     */
    private transient int unitsInUse = 0;

    /* use serialVersionUID from JDK 1.0.2 for interoperability */
    private static final long serialVersionUID = 7997698588986878753L;

    /**
     * Given a bit index return unit index containing it.
     */
    private static int unitIndex(int bitIndex) {
        return bitIndex >> ADDRESS_BITS_PER_UNIT;
    }

    /**
     * Given a bit index, return a unit that masks that bit in its unit.
     */
    private static long bit(int bitIndex) {
        return 1L << (bitIndex & BIT_INDEX_MASK);
    }

    /**
     * Set the field unitsInUse with the logical size in units of the bit
     * set.  WARNING:This function assumes that the number of units actually
     * in use is less than or equal to the current value of unitsInUse!
     */
    private void recalculateUnitsInUse() {
        // Traverse the bitset until a used unit is found
        int i;
        for (i = unitsInUse-1; i >= 0; i--)
	    if(bits[i] != 0)
		break;

        unitsInUse = i+1; // The new logical size
    }

    /**
     * Creates a new bit set. All bits are initially <code>false</code>.
     */
    public BitSet() {
	this(BITS_PER_UNIT);
    }

    /**
     * Creates a bit set whose initial size is large enough to explicitly
     * represent bits with indices in the range <code>0</code> through
     * <code>nbits-1</code>. All bits are initially <code>false</code>. 
     *
     * @param     nbits   the initial size of the bit set.
     * @exception NegativeArraySizeException if the specified initial size
     *               is negative.
     */
    public BitSet(int nbits) {
	// nbits can't be negative; size 0 is OK
	if (nbits < 0)
	    throw new NegativeArraySizeException("nbits < 0: " + nbits);

	bits = new long[(unitIndex(nbits-1) + 1)];
    }

    /**
     * Ensures that the BitSet can hold enough units.
     * @param	unitsRequired the minimum acceptable number of units.
     */
    private void ensureCapacity(int unitsRequired) {
	if (bits.length < unitsRequired) {
	    // Allocate larger of doubled size or required size
	    int request = Math.max(2 * bits.length, unitsRequired);
	    long newBits[] = new long[request];
	    System.arraycopy(bits, 0, newBits, 0, unitsInUse);
	    bits = newBits;
	}
    }

    /**
     * Sets the bit at the specified index to the complement of its
     * current value.
     * 
     * @param   bitIndex the index of the bit to flip.
     * @exception IndexOutOfBoundsException if the specified index is negative.
     * @since   1.4
     */
    public void flip(int bitIndex) {
	if (bitIndex < 0)
	    throw new IndexOutOfBoundsException("bitIndex < 0: " + bitIndex);
        
	int unitIndex = unitIndex(bitIndex);
        int unitsRequired = unitIndex+1;

        if (unitsInUse < unitsRequired) {
            ensureCapacity(unitsRequired);
            bits[unitIndex] ^= bit(bitIndex);
            unitsInUse = unitsRequired;
        } else {
            bits[unitIndex] ^= bit(bitIndex);
            if (bits[unitsInUse-1] == 0)
                recalculateUnitsInUse();
        }
    }

    /**
     * Sets each bit from the specified fromIndex(inclusive) to the
     * specified toIndex(exclusive) to the complement of its current
     * value.
     * 
     * @param     fromIndex   index of the first bit to flip.
     * @param     toIndex index after the last bit to flip.
     * @exception IndexOutOfBoundsException if <tt>fromIndex</tt> is negative,
     *            or <tt>toIndex</tt> is negative, or <tt>fromIndex</tt> is
     *            larger than <tt>toIndex</tt>.
     * @since   1.4
     */
    public void flip(int fromIndex, int toIndex) {
	if (fromIndex < 0)
	    throw new IndexOutOfBoundsException("fromIndex < 0: " + fromIndex);
        if (toIndex < 0)
	    throw new IndexOutOfBoundsException("toIndex < 0: " + toIndex);
        if (fromIndex > toIndex)
	    throw new IndexOutOfBoundsException("fromIndex: " + fromIndex +
                                                " > toIndex: " + toIndex);
        
        // Increase capacity if necessary
        int endUnitIndex = unitIndex(toIndex);
        int unitsRequired = endUnitIndex + 1;

        if (unitsInUse < unitsRequired) {
            ensureCapacity(unitsRequired);
            unitsInUse = unitsRequired;
        }

        int startUnitIndex = unitIndex(fromIndex);
        long bitMask = 0;
        if (startUnitIndex == endUnitIndex) {
            // Case 1: One word
            bitMask = (1L << (toIndex & BIT_INDEX_MASK)) -
                      (1L << (fromIndex & BIT_INDEX_MASK));
            bits[startUnitIndex] ^= bitMask;
            if (bits[unitsInUse-1] == 0)
                recalculateUnitsInUse();
            return;
        }
        
        // Case 2: Multiple words
        // Handle first word
        bitMask = bitsLeftOf(fromIndex & BIT_INDEX_MASK);
        bits[startUnitIndex] ^= bitMask;

        // Handle intermediate words, if any
        if (endUnitIndex - startUnitIndex > 1) {
            for(int i=startUnitIndex+1; i<endUnitIndex; i++)
                bits[i] ^= WORD_MASK;
        }

        // Handle last word
        bitMask = bitsRightOf(toIndex & BIT_INDEX_MASK);
        bits[endUnitIndex] ^= bitMask;

        // Check to see if we reduced size
        if (bits[unitsInUse-1] == 0)
            recalculateUnitsInUse();
    }

    /**
     * Returns a long that has all bits that are less significant
     * than the specified index set to 1. All other bits are 0.
     */
    private static long bitsRightOf(int x) {
        return (x==0 ? 0 : WORD_MASK >>> (64-x));
    }

    /**
     * Returns a long that has all the bits that are more significant
     * than or equal to the specified index set to 1. All other bits are 0.
     */
    private static long bitsLeftOf(int x) {
        return WORD_MASK << x;
    }

    /**
     * Sets the bit at the specified index to <code>true</code>.
     *
     * @param     bitIndex   a bit index.
     * @exception IndexOutOfBoundsException if the specified index is negative.
     * @since     JDK1.0
     */
    public void set(int bitIndex) {
	if (bitIndex < 0)
	    throw new IndexOutOfBoundsException("bitIndex < 0: " + bitIndex);

        int unitIndex = unitIndex(bitIndex);
        int unitsRequired = unitIndex + 1;

        if (unitsInUse < unitsRequired) {
            ensureCapacity(unitsRequired);
            bits[unitIndex] |= bit(bitIndex);
            unitsInUse = unitsRequired;
        } else {
            bits[unitIndex] |= bit(bitIndex);
        }            
    }

    /**
     * Sets the bit at the specified index to the specified value.
     *
     * @param     bitIndex   a bit index.
     * @param     value a boolean value to set.
     * @exception IndexOutOfBoundsException if the specified index is negative.
     * @since     1.4
     */
    public void set(int bitIndex, boolean value) {
        if (value)
            set(bitIndex);
        else
            clear(bitIndex);
    }

    /**
     * Sets the bits from the specified fromIndex(inclusive) to the
     * specified toIndex(exclusive) to <code>true</code>.
     *
     * @param     fromIndex   index of the first bit to be set.
     * @param     toIndex index after the last bit to be set.
     * @exception IndexOutOfBoundsException if <tt>fromIndex</tt> is negative,
     *            or <tt>toIndex</tt> is negative, or <tt>fromIndex</tt> is
     *            larger than <tt>toIndex</tt>.
     * @since     1.4
     */
    public void set(int fromIndex, int toIndex) {
	if (fromIndex < 0)
	    throw new IndexOutOfBoundsException("fromIndex < 0: " + fromIndex);
        if (toIndex < 0)
	    throw new IndexOutOfBoundsException("toIndex < 0: " + toIndex);
        if (fromIndex > toIndex)
	    throw new IndexOutOfBoundsException("fromIndex: " + fromIndex +
                                                " > toIndex: " + toIndex);

        // Increase capacity if necessary
        int endUnitIndex = unitIndex(toIndex);
        int unitsRequired = endUnitIndex + 1;

        if (unitsInUse < unitsRequired) {
            ensureCapacity(unitsRequired);
            unitsInUse = unitsRequired;
        }

        int startUnitIndex = unitIndex(fromIndex);
        long bitMask = 0;
        if (startUnitIndex == endUnitIndex) {
            // Case 1: One word
            bitMask = (1L << (toIndex & BIT_INDEX_MASK)) -
                      (1L << (fromIndex & BIT_INDEX_MASK));
            bits[startUnitIndex] |= bitMask;
            return;
        }
        
        // Case 2: Multiple words
        // Handle first word
        bitMask = bitsLeftOf(fromIndex & BIT_INDEX_MASK);
        bits[startUnitIndex] |= bitMask;

        // Handle intermediate words, if any
        if (endUnitIndex - startUnitIndex > 1) {
            for(int i=startUnitIndex+1; i<endUnitIndex; i++)
                bits[i] |= WORD_MASK;
        }

        // Handle last word
        bitMask = bitsRightOf(toIndex & BIT_INDEX_MASK);
        bits[endUnitIndex] |= bitMask;
    }

    /**
     * Sets the bits from the specified fromIndex(inclusive) to the
     * specified toIndex(exclusive) to the specified value.
     *
     * @param     fromIndex   index of the first bit to be set.
     * @param     toIndex index after the last bit to be set
     * @param     value value to set the selected bits to
     * @exception IndexOutOfBoundsException if <tt>fromIndex</tt> is negative,
     *            or <tt>toIndex</tt> is negative, or <tt>fromIndex</tt> is
     *            larger than <tt>toIndex</tt>.
     * @since     1.4
     */
    public void set(int fromIndex, int toIndex, boolean value) {
	if (value)
            set(fromIndex, toIndex);
        else
            clear(fromIndex, toIndex);
    }

    /**
     * Sets the bit specified by the index to <code>false</code>.
     *
     * @param     bitIndex   the index of the bit to be cleared.
     * @exception IndexOutOfBoundsException if the specified index is negative.
     * @since     JDK1.0
     */
    public void clear(int bitIndex) {
	if (bitIndex < 0)
	    throw new IndexOutOfBoundsException("bitIndex < 0: " + bitIndex);

	int unitIndex = unitIndex(bitIndex);
	if (unitIndex >= unitsInUse)
	    return;

	bits[unitIndex] &= ~bit(bitIndex);
        if (bits[unitsInUse-1] == 0)
            recalculateUnitsInUse();
    }

    /**
     * Sets the bits from the specified fromIndex(inclusive) to the
     * specified toIndex(exclusive) to <code>false</code>.
     *
     * @param     fromIndex   index of the first bit to be cleared.
     * @param     toIndex index after the last bit to be cleared. 
     * @exception IndexOutOfBoundsException if <tt>fromIndex</tt> is negative,
     *            or <tt>toIndex</tt> is negative, or <tt>fromIndex</tt> is
     *            larger than <tt>toIndex</tt>.
     * @since     1.4
     */
    public void clear(int fromIndex, int toIndex) {
	if (fromIndex < 0)
	    throw new IndexOutOfBoundsException("fromIndex < 0: " + fromIndex);
        if (toIndex < 0)
	    throw new IndexOutOfBoundsException("toIndex < 0: " + toIndex);
        if (fromIndex > toIndex)
	    throw new IndexOutOfBoundsException("fromIndex: " + fromIndex +
                                                " > toIndex: " + toIndex);

        int startUnitIndex = unitIndex(fromIndex);
	if (startUnitIndex >= unitsInUse)
	    return;
        int endUnitIndex = unitIndex(toIndex);

        long bitMask = 0;
        if (startUnitIndex == endUnitIndex) {
            // Case 1: One word
            bitMask = (1L << (toIndex & BIT_INDEX_MASK)) -
                      (1L << (fromIndex & BIT_INDEX_MASK));
            bits[startUnitIndex] &= ~bitMask;
            if (bits[unitsInUse-1] == 0)
                recalculateUnitsInUse();
            return;
        }

        // Case 2: Multiple words
        // Handle first word
        bitMask = bitsLeftOf(fromIndex & BIT_INDEX_MASK);
        bits[startUnitIndex] &= ~bitMask;

        // Handle intermediate words, if any
        if (endUnitIndex - startUnitIndex > 1) {
            for(int i=startUnitIndex+1; i<endUnitIndex; i++) {
                if (i < unitsInUse)
                    bits[i] = 0;
            }
        }

        // Handle last word
        if (endUnitIndex < unitsInUse) {
            bitMask = bitsRightOf(toIndex & BIT_INDEX_MASK);
            bits[endUnitIndex] &= ~bitMask;
        }

        if (bits[unitsInUse-1] == 0)
            recalculateUnitsInUse();
    }

    /**
     * Sets all of the bits in this BitSet to <code>false</code>.
     *
     * @since   1.4
     */
    public void clear() {
        while (unitsInUse > 0)
            bits[--unitsInUse] = 0;
    }

    /**
     * Returns the value of the bit with the specified index. The value 
     * is <code>true</code> if the bit with the index <code>bitIndex</code> 
     * is currently set in this <code>BitSet</code>; otherwise, the result 
     * is <code>false</code>.
     *
     * @param     bitIndex   the bit index.
     * @return    the value of the bit with the specified index.
     * @exception IndexOutOfBoundsException if the specified index is negative.
     */
    public boolean get(int bitIndex) {
	if (bitIndex < 0)
	    throw new IndexOutOfBoundsException("bitIndex < 0: " + bitIndex);

	boolean result = false;
	int unitIndex = unitIndex(bitIndex);
	if (unitIndex < unitsInUse)
	    result = ((bits[unitIndex] & bit(bitIndex)) != 0);

	return result;
    }

    /**
     * Returns a new <tt>BitSet</tt> composed of bits from this <tt>BitSet</tt>
     * from <tt>fromIndex</tt>(inclusive) to <tt>toIndex</tt>(exclusive).
     *
     * @param     fromIndex   index of the first bit to include.
     * @param     toIndex     index after the last bit to include.
     * @return    a new <tt>BitSet</tt> from a range of this <tt>BitSet</tt>.
     * @exception IndexOutOfBoundsException if <tt>fromIndex</tt> is negative,
     *            or <tt>toIndex</tt> is negative, or <tt>fromIndex</tt> is
     *            larger than <tt>toIndex</tt>.
     * @since   1.4
     */
    public BitSet get(int fromIndex, int toIndex) {
	if (fromIndex < 0)
	    throw new IndexOutOfBoundsException("fromIndex < 0: " + fromIndex);
        if (toIndex < 0)
	    throw new IndexOutOfBoundsException("toIndex < 0: " + toIndex);
        if (fromIndex > toIndex)
	    throw new IndexOutOfBoundsException("fromIndex: " + fromIndex +
                                                " > toIndex: " + toIndex);

        // If no set bits in range return empty bitset
        if (length() <= fromIndex || fromIndex == toIndex)
            return new BitSet(0);

        // An optimization
        if (length() < toIndex)
            toIndex = length();

        BitSet result = new BitSet(toIndex - fromIndex);
        int startBitIndex = fromIndex & BIT_INDEX_MASK;
        int endBitIndex = toIndex & BIT_INDEX_MASK;
        int targetWords = (toIndex - fromIndex + 63)/64;
        int sourceWords = unitIndex(toIndex) - unitIndex(fromIndex) + 1;
        int inverseIndex = 64 - startBitIndex;
        int targetIndex = 0;
        int sourceIndex = unitIndex(fromIndex);

        // Process all words but the last word
        while (targetIndex < targetWords - 1)
            result.bits[targetIndex++] =
               (bits[sourceIndex++] >>> startBitIndex) |
               ((inverseIndex==64) ? 0 : bits[sourceIndex] << inverseIndex);

        // Process the last word
        result.bits[targetIndex] = (sourceWords == targetWords ?
           (bits[sourceIndex] & bitsRightOf(endBitIndex)) >>> startBitIndex :
           (bits[sourceIndex++] >>> startBitIndex) | ((inverseIndex==64) ? 0 :
           (getBits(sourceIndex) & bitsRightOf(endBitIndex)) << inverseIndex));

        // Set unitsInUse correctly
        result.unitsInUse = targetWords;
        result.recalculateUnitsInUse();
	return result;
    }

    /**
     * Returns the unit of this bitset at index j as if this bitset had an
     * infinite amount of storage.
     */
    private long getBits(int j) {
        return (j < unitsInUse) ? bits[j] : 0;
    }

    /**
     * Returns the index of the first bit that is set to <code>true</code>
     * that occurs on or after the specified starting index. If no such
     * bit exists then -1 is returned.
     *
     * To iterate over the <code>true</code> bits in a <code>BitSet</code>,
     * use the following loop:
     *
     * for(int i=bs.nextSetBit(0); i>=0; i=bs.nextSetBit(i+1)) {
     *     // operate on index i here
     * }
     * 
     * @param   fromIndex the index to start checking from (inclusive).
     * @return  the index of the next set bit.
     * @throws  IndexOutOfBoundsException if the specified index is negative.
     * @since   1.4
     */
    public int nextSetBit(int fromIndex) {
	if (fromIndex < 0)
	    throw new IndexOutOfBoundsException("fromIndex < 0: " + fromIndex);
        int u = unitIndex(fromIndex);
        if (u >= unitsInUse)
            return -1;
        int testIndex = (fromIndex & BIT_INDEX_MASK);
        long unit = bits[u] >> testIndex;

        if (unit == 0)
            testIndex = 0;

        while((unit==0) && (u < unitsInUse-1))
            unit = bits[++u];

        if (unit == 0)
            return -1;

        testIndex  += trailingZeroCnt(unit);
        return ((u * BITS_PER_UNIT) + testIndex);
    }

    private static int trailingZeroCnt(long val) {
        // Loop unrolled for performance
        int byteVal = (int)val & 0xff;
        if (byteVal != 0)
            return trailingZeroTable[byteVal];

        byteVal = (int)(val >>> 8) & 0xff;
        if (byteVal != 0)
            return trailingZeroTable[byteVal] + 8;

        byteVal = (int)(val >>> 16) & 0xff;
        if (byteVal != 0)
            return trailingZeroTable[byteVal] + 16;

        byteVal = (int)(val >>> 24) & 0xff;
        if (byteVal != 0)
            return trailingZeroTable[byteVal] + 24;

        byteVal = (int)(val >>> 32) & 0xff;
        if (byteVal != 0)
            return trailingZeroTable[byteVal] + 32;

        byteVal = (int)(val >>> 40) & 0xff;
        if (byteVal != 0)
            return trailingZeroTable[byteVal] + 40;

        byteVal = (int)(val >>> 48) & 0xff;
        if (byteVal != 0)
            return trailingZeroTable[byteVal] + 48;

        byteVal = (int)(val >>> 56) & 0xff;
        return trailingZeroTable[byteVal] + 56;
    }

    /*
     * trailingZeroTable[i] is the number of trailing zero bits in the binary
     * representation of i.
     */
    private final static byte trailingZeroTable[] = {
      -25, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
	4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
	5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
	4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
	6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
	4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
	5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
	4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
	7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
	4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
	5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
	4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
	6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
	4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
	5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
	4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0};

    /**
     * Returns the index of the first bit that is set to <code>false</code>
     * that occurs on or after the specified starting index.
     * 
     * @param   fromIndex the index to start checking from (inclusive).
     * @return  the index of the next clear bit.
     * @throws  IndexOutOfBoundsException if the specified index is negative.
     * @since   1.4
     */
    public int nextClearBit(int fromIndex) {
	if (fromIndex < 0)
	    throw new IndexOutOfBoundsException("fromIndex < 0: " + fromIndex);

        int u = unitIndex(fromIndex);
        if (u >= unitsInUse)
            return fromIndex;
        int testIndex = (fromIndex & BIT_INDEX_MASK);
        long unit = bits[u] >> testIndex;

        if (unit == (WORD_MASK >> testIndex))
            testIndex = 0;

        while((unit==WORD_MASK) && (u < unitsInUse-1))
            unit = bits[++u];

        if (unit == WORD_MASK)
            return length();
        
        if (unit == 0)
            return u * BITS_PER_UNIT + testIndex;

        testIndex += trailingZeroCnt(~unit);
        return ((u * BITS_PER_UNIT) + testIndex);
    }

    /**
     * Returns the "logical size" of this <code>BitSet</code>: the index of
     * the highest set bit in the <code>BitSet</code> plus one. Returns zero
     * if the <code>BitSet</code> contains no set bits.
     *
     * @return  the logical size of this <code>BitSet</code>.
     * @since   1.2
     */
    public int length() {
        if (unitsInUse == 0)
            return 0;

	long highestUnit = bits[unitsInUse - 1];
	int highPart = (int)(highestUnit >>> 32);
        return 64 * (unitsInUse - 1) +
               (highPart == 0 ? bitLen((int)highestUnit)
                              : 32 + bitLen((int)highPart));
    }

    /**
     * bitLen(val) is the number of bits in val.
     */
    private static int bitLen(int w) {
        // Binary search - decision tree (5 tests, rarely 6)
        return
         (w < 1<<15 ?
          (w < 1<<7 ?
           (w < 1<<3 ?
            (w < 1<<1 ? (w < 1<<0 ? (w<0 ? 32 : 0) : 1) : (w < 1<<2 ? 2 : 3)) :
            (w < 1<<5 ? (w < 1<<4 ? 4 : 5) : (w < 1<<6 ? 6 : 7))) :
           (w < 1<<11 ?
            (w < 1<<9 ? (w < 1<<8 ? 8 : 9) : (w < 1<<10 ? 10 : 11)) :
            (w < 1<<13 ? (w < 1<<12 ? 12 : 13) : (w < 1<<14 ? 14 : 15)))) :
          (w < 1<<23 ?
           (w < 1<<19 ?
            (w < 1<<17 ? (w < 1<<16 ? 16 : 17) : (w < 1<<18 ? 18 : 19)) :
            (w < 1<<21 ? (w < 1<<20 ? 20 : 21) : (w < 1<<22 ? 22 : 23))) :
           (w < 1<<27 ?
            (w < 1<<25 ? (w < 1<<24 ? 24 : 25) : (w < 1<<26 ? 26 : 27)) :
            (w < 1<<29 ? (w < 1<<28 ? 28 : 29) : (w < 1<<30 ? 30 : 31)))));
    }

    /**
     * Returns true if this <code>BitSet</code> contains no bits that are set
     * to <code>true</code>.
     *
     * @return    boolean indicating whether this <code>BitSet</code> is empty.
     * @since     1.4
     */
    public boolean isEmpty() {
        return (unitsInUse == 0);
    }

    /**
     * Returns true if the specified <code>BitSet</code> has any bits set to
     * <code>true</code> that are also set to <code>true</code> in this
     * <code>BitSet</code>.
     *
     * @param	set <code>BitSet</code> to intersect with
     * @return  boolean indicating whether this <code>BitSet</code> intersects
     *          the specified <code>BitSet</code>.
     * @since   1.4
     */
    public boolean intersects(BitSet set) {
        for(int i = Math.min(unitsInUse, set.unitsInUse)-1; i>=0; i--)
            if ((bits[i] & set.bits[i]) != 0)
                return true;
        return false;
    }

    /**
     * Returns the number of bits set to <tt>true</tt> in this
     * <code>BitSet</code>.
     *
     * @return  the number of bits set to <tt>true</tt> in this
     *          <code>BitSet</code>.
     * @since   1.4
     */
    public int cardinality() {
        int sum = 0;
        for (int i=0; i<unitsInUse; i++)
            sum += bitCount(bits[i]);
        return sum;
    }

    /**
     * Returns the number of bits set in val.
     * For a derivation of this algorithm, see
     * "Algorithms and data structures with applications to 
     *  graphics and geometry", by Jurg Nievergelt and Klaus Hinrichs,
     *  Prentice Hall, 1993.
     */
    private static int bitCount(long val) {
        val -= (val & 0xaaaaaaaaaaaaaaaaL) >>> 1;
        val =  (val & 0x3333333333333333L) + ((val >>> 2) & 0x3333333333333333L);
        val =  (val + (val >>> 4)) & 0x0f0f0f0f0f0f0f0fL;
        val += val >>> 8;     
        val += val >>> 16;    
        return ((int)(val) + (int)(val >>> 32)) & 0xff;
    }

    /**
     * Performs a logical <b>AND</b> of this target bit set with the 
     * argument bit set. This bit set is modified so that each bit in it 
     * has the value <code>true</code> if and only if it both initially 
     * had the value <code>true</code> and the corresponding bit in the 
     * bit set argument also had the value <code>true</code>. 
     *
     * @param   set   a bit set. 
     */
    public void and(BitSet set) {
	if (this == set)
	    return;

	// Perform logical AND on bits in common
	int oldUnitsInUse = unitsInUse;
	unitsInUse = Math.min(unitsInUse, set.unitsInUse);
        int i;
	for(i=0; i<unitsInUse; i++)
	    bits[i] &= set.bits[i];

	// Clear out units no longer used
	for( ; i < oldUnitsInUse; i++)
	    bits[i] = 0;

        // Recalculate units in use if necessary
        if (unitsInUse > 0 && bits[unitsInUse - 1] == 0)
            recalculateUnitsInUse();
    }

    /**
     * Performs a logical <b>OR</b> of this bit set with the bit set 
     * argument. This bit set is modified so that a bit in it has the 
     * value <code>true</code> if and only if it either already had the 
     * value <code>true</code> or the corresponding bit in the bit set 
     * argument has the value <code>true</code>.
     *
     * @param   set   a bit set.
     */
    public void or(BitSet set) {
	if (this == set)
	    return;

	ensureCapacity(set.unitsInUse);

	// Perform logical OR on bits in common
	int unitsInCommon = Math.min(unitsInUse, set.unitsInUse);
        int i;
	for(i=0; i<unitsInCommon; i++)
	    bits[i] |= set.bits[i];

	// Copy any remaining bits
	for(; i<set.unitsInUse; i++)
	    bits[i] = set.bits[i];

        if (unitsInUse < set.unitsInUse)
            unitsInUse = set.unitsInUse;
    }

    /**
     * Performs a logical <b>XOR</b> of this bit set with the bit set 
     * argument. This bit set is modified so that a bit in it has the 
     * value <code>true</code> if and only if one of the following 
     * statements holds: 
     * <ul>
     * <li>The bit initially has the value <code>true</code>, and the 
     *     corresponding bit in the argument has the value <code>false</code>.
     * <li>The bit initially has the value <code>false</code>, and the 
     *     corresponding bit in the argument has the value <code>true</code>. 
     * </ul>
     *
     * @param   set   a bit set.
     */
    public void xor(BitSet set) {
        int unitsInCommon;

        if (unitsInUse >= set.unitsInUse) {
            unitsInCommon = set.unitsInUse;
        } else {
            unitsInCommon = unitsInUse;
            int newUnitsInUse = set.unitsInUse;
            ensureCapacity(newUnitsInUse);
            unitsInUse = newUnitsInUse;
        }

	// Perform logical XOR on bits in common
        int i;
        for (i=0; i<unitsInCommon; i++)
	    bits[i] ^= set.bits[i];

	// Copy any remaining bits
        for ( ; i<set.unitsInUse; i++)
            bits[i] = set.bits[i];

        recalculateUnitsInUse();
    }

    /**
     * Clears all of the bits in this <code>BitSet</code> whose corresponding
     * bit is set in the specified <code>BitSet</code>.
     *
     * @param     set the <code>BitSet</code> with which to mask this
     *            <code>BitSet</code>.
     * @since     JDK1.2
     */
    public void andNot(BitSet set) {
        int unitsInCommon = Math.min(unitsInUse, set.unitsInUse);

	// Perform logical (a & !b) on bits in common
        for (int i=0; i<unitsInCommon; i++) {
	    bits[i] &= ~set.bits[i];
        }

        recalculateUnitsInUse();
    }

    /**
     * Returns a hash code value for this bit set. The has code 
     * depends only on which bits have been set within this 
     * <code>BitSet</code>. The algorithm used to compute it may 
     * be described as follows.<p>
     * Suppose the bits in the <code>BitSet</code> were to be stored 
     * in an array of <code>long</code> integers called, say, 
     * <code>bits</code>, in such a manner that bit <code>k</code> is 
     * set in the <code>BitSet</code> (for nonnegative values of 
     * <code>k</code>) if and only if the expression 
     * <pre>((k>>6) < bits.length) && ((bits[k>>6] & (1L << (bit & 0x3F))) != 0)</pre>
     * is true. Then the following definition of the <code>hashCode</code> 
     * method would be a correct implementation of the actual algorithm:
     * <pre>
     * public int hashCode() {
     *      long h = 1234;
     *      for (int i = bits.length; --i >= 0; ) {
     *           h ^= bits[i] * (i + 1);
     *      }
     *      return (int)((h >> 32) ^ h);
     * }</pre>
     * Note that the hash code values change if the set of bits is altered.
     * <p>Overrides the <code>hashCode</code> method of <code>Object</code>.
     *
     * @return  a hash code value for this bit set.
     */
    public int hashCode() {
	long h = 1234;
	for (int i = bits.length; --i >= 0; )
            h ^= bits[i] * (i + 1);

	return (int)((h >> 32) ^ h);
    }
    
    /**
     * Returns the number of bits of space actually in use by this 
     * <code>BitSet</code> to represent bit values. 
     * The maximum element in the set is the size - 1st element.
     *
     * @return  the number of bits currently in this bit set.
     */
    public int size() {
	return bits.length << ADDRESS_BITS_PER_UNIT;
    }

    /**
     * Compares this object against the specified object.
     * The result is <code>true</code> if and only if the argument is 
     * not <code>null</code> and is a <code>Bitset</code> object that has 
     * exactly the same set of bits set to <code>true</code> as this bit 
     * set. That is, for every nonnegative <code>int</code> index <code>k</code>, 
     * <pre>((BitSet)obj).get(k) == this.get(k)</pre>
     * must be true. The current sizes of the two bit sets are not compared. 
     * <p>Overrides the <code>equals</code> method of <code>Object</code>.
     *
     * @param   obj   the object to compare with.
     * @return  <code>true</code> if the objects are the same;
     *          <code>false</code> otherwise.
     * @see     java.util.BitSet#size()
     */
    public boolean equals(Object obj) {
	if (!(obj instanceof BitSet))
	    return false;
	if (this == obj)
	    return true;

	BitSet set = (BitSet) obj;
	int minUnitsInUse = Math.min(unitsInUse, set.unitsInUse);

	// Check units in use by both BitSets
	for (int i = 0; i < minUnitsInUse; i++)
	    if (bits[i] != set.bits[i])
		return false;

	// Check any units in use by only one BitSet (must be 0 in other)
	if (unitsInUse > minUnitsInUse) {
	    for (int i = minUnitsInUse; i<unitsInUse; i++)
		if (bits[i] != 0)
		    return false;
	} else {
	    for (int i = minUnitsInUse; i<set.unitsInUse; i++)
		if (set.bits[i] != 0)
		    return false;
	}

	return true;
    }

    /**
     * Cloning this <code>BitSet</code> produces a new <code>BitSet</code> 
     * that is equal to it.
     * The clone of the bit set is another bit set that has exactly the 
     * same bits set to <code>true</code> as this bit set and the same 
     * current size. 
     * <p>Overrides the <code>clone</code> method of <code>Object</code>.
     *
     * @return  a clone of this bit set.
     * @see     java.util.BitSet#size()
     */
    public Object clone() {
	BitSet result = null;
	try {
	    result = (BitSet) super.clone();
	} catch (CloneNotSupportedException e) {
	    throw new InternalError();
	}
	result.bits = new long[bits.length];
	System.arraycopy(bits, 0, result.bits, 0, unitsInUse);
	return result;
    }

    /**
     * This override of readObject makes sure unitsInUse is set properly
     * when deserializing a bitset
     *
     */
    private void readObject(java.io.ObjectInputStream in)
        throws IOException, ClassNotFoundException {
        
        in.defaultReadObject();
        // Assume maximum length then find real length
        // because recalculateUnitsInUse assumes maintenance
        // or reduction in logical size
        unitsInUse = bits.length;
        recalculateUnitsInUse();
    }

    /**
     * Returns a string representation of this bit set. For every index 
     * for which this <code>BitSet</code> contains a bit in the set 
     * state, the decimal representation of that index is included in 
     * the result. Such indices are listed in order from lowest to 
     * highest, separated by ", " (a comma and a space) and 
     * surrounded by braces, resulting in the usual mathematical 
     * notation for a set of integers.<p>
     * Overrides the <code>toString</code> method of <code>Object</code>.
     * <p>Example:
     * <pre>
     * BitSet drPepper = new BitSet();</pre>
     * Now <code>drPepper.toString()</code> returns "<code>{}</code>".<p>
     * <pre>
     * drPepper.set(2);</pre>
     * Now <code>drPepper.toString()</code> returns "<code>{2}</code>".<p>
     * <pre>
     * drPepper.set(4);
     * drPepper.set(10);</pre>
     * Now <code>drPepper.toString()</code> returns "<code>{2, 4, 10}</code>".
     *
     * @return  a string representation of this bit set.
     */
    public String toString() {
	int numBits = unitsInUse << ADDRESS_BITS_PER_UNIT;
	StringBuffer buffer = new StringBuffer(8*numBits + 2);
	String separator = "";
	buffer.append('{');

	for (int i = 0 ; i < numBits; i++) {
	    if (get(i)) {
		buffer.append(separator);
		separator = ", ";
	        buffer.append(i);
	    }
        }

	buffer.append('}');
	return buffer.toString();
    }
}