FileDocCategorySizeDatePackage
MemoryIndex.javaAPI DocApache Lucene 2.0.036075Fri May 26 09:53:52 BST 2006org.apache.lucene.index.memory

MemoryIndex.java

package org.apache.lucene.index.memory;

/**
 * Copyright 2005 The Apache Software Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

import java.io.IOException;
import java.io.Serializable;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.Token;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.document.Document;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.TermDocs;
import org.apache.lucene.index.TermEnum;
import org.apache.lucene.index.TermFreqVector;
import org.apache.lucene.index.TermPositionVector;
import org.apache.lucene.index.TermPositions;
import org.apache.lucene.search.HitCollector;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.Searcher;
import org.apache.lucene.search.Similarity;

/**
 * High-performance single-document main memory Apache Lucene fulltext search index. 
 * 
 * <h4>Overview</h4>
 * 
 * This class is a replacement/substitute for a large subset of
 * {@link org.apache.lucene.store.RAMDirectory} functionality. It is designed to
 * enable maximum efficiency for on-the-fly matchmaking combining structured and 
 * fuzzy fulltext search in realtime streaming applications such as Nux XQuery based XML 
 * message queues, publish-subscribe systems for Blogs/newsfeeds, text chat, data acquisition and 
 * distribution systems, application level routers, firewalls, classifiers, etc. 
 * Rather than targetting fulltext search of infrequent queries over huge persistent 
 * data archives (historic search), this class targets fulltext search of huge 
 * numbers of queries over comparatively small transient realtime data (prospective 
 * search). 
 * For example as in <code>float score = search(String text, Query query)</code>.
 * <p>
 * Each instance can hold at most one Lucene "document", with a document containing
 * zero or more "fields", each field having a name and a fulltext value. The
 * fulltext value is tokenized (split and transformed) into zero or more index terms 
 * (aka words) on <code>addField()</code>, according to the policy implemented by an
 * Analyzer. For example, Lucene analyzers can split on whitespace, normalize to lower case
 * for case insensitivity, ignore common terms with little discriminatory value such as "he", "in", "and" (stop
 * words), reduce the terms to their natural linguistic root form such as "fishing"
 * being reduced to "fish" (stemming), resolve synonyms/inflexions/thesauri 
 * (upon indexing and/or querying), etc. For details, see
 * <a target="_blank" href="http://today.java.net/pub/a/today/2003/07/30/LuceneIntro.html">Lucene Analyzer Intro</a>.
 * <p>
 * Arbitrary Lucene queries can be run against this class - see <a target="_blank" 
 * href="http://lucene.apache.org/java/docs/queryparsersyntax.html">Lucene Query Syntax</a>
 * as well as <a target="_blank" 
 * href="http://today.java.net/pub/a/today/2003/11/07/QueryParserRules.html">Query Parser Rules</a>.
 * Note that a Lucene query selects on the field names and associated (indexed) 
 * tokenized terms, not on the original fulltext(s) - the latter are not stored 
 * but rather thrown away immediately after tokenization.
 * <p>
 * For some interesting background information on search technology, see Bob Wyman's
 * <a target="_blank" 
 * href="http://bobwyman.pubsub.com/main/2005/05/mary_hodder_poi.html">Prospective Search</a>, 
 * Jim Gray's
 * <a target="_blank" href="http://www.acmqueue.org/modules.php?name=Content&pa=showpage&pid=293&page=4">
 * A Call to Arms - Custom subscriptions</a>, and Tim Bray's
 * <a target="_blank" 
 * href="http://www.tbray.org/ongoing/When/200x/2003/07/30/OnSearchTOC">On Search, the Series</a>.
 * 
 * 
 * <h4>Example Usage</h4> 
 * 
 * <pre>
 * Analyzer analyzer = PatternAnalyzer.DEFAULT_ANALYZER;
 * //Analyzer analyzer = new SimpleAnalyzer();
 * MemoryIndex index = new MemoryIndex();
 * index.addField("content", "Readings about Salmons and other select Alaska fishing Manuals", analyzer);
 * index.addField("author", "Tales of James", analyzer);
 * float score = index.search(QueryParser.parse("+author:james +salmon~ +fish* manual~", "content", analyzer));
 * if (score > 0.0f) {
 *     System.out.println("it's a match");
 * } else {
 *     System.out.println("no match found");
 * }
 * System.out.println("indexData=" + index.toString());
 * </pre>
 * 
 * 
 * <h4>Example XQuery Usage</h4> 
 * 
 * <pre>
 * (: An XQuery that finds all books authored by James that have something to do with "salmon fishing manuals", sorted by relevance :)
 * declare namespace lucene = "java:nux.xom.pool.FullTextUtil";
 * declare variable $query := "+salmon~ +fish* manual~"; (: any arbitrary Lucene query can go here :)
 * 
 * for $book in /books/book[author="James" and lucene:match(abstract, $query) > 0.0]
 * let $score := lucene:match($book/abstract, $query)
 * order by $score descending
 * return $book
 * </pre>
 * 
 * 
 * <h4>No thread safety guarantees</h4>
 * 
 * An instance can be queried multiple times with the same or different queries,
 * but an instance is not thread-safe. If desired use idioms such as:
 * <pre>
 * MemoryIndex index = ...
 * synchronized (index) {
 *    // read and/or write index (i.e. add fields and/or query)
 * } 
 * </pre>
 * 
 * 
 * <h4>Performance Notes</h4>
 * 
 * Internally there's a new data structure geared towards efficient indexing 
 * and searching, plus the necessary support code to seamlessly plug into the Lucene 
 * framework.
 * <p>
 * This class performs very well for very small texts (e.g. 10 chars) 
 * as well as for large texts (e.g. 10 MB) and everything in between. 
 * Typically, it is about 10-100 times faster than <code>RAMDirectory</code>.
 * Note that <code>RAMDirectory</code> has particularly 
 * large efficiency overheads for small to medium sized texts, both in time and space.
 * Indexing a field with N tokens takes O(N) in the best case, and O(N logN) in the worst 
 * case. Memory consumption is probably larger than for <code>RAMDirectory</code>.
 * <p>
 * If you're curious about
 * the whereabouts of bottlenecks, run java 1.5 with the non-perturbing '-server
 * -agentlib:hprof=cpu=samples,depth=10' flags, then study the trace log and
 * correlate its hotspot trailer with its call stack headers (see <a
 * target="_blank"
 * href="http://java.sun.com/developer/technicalArticles/Programming/HPROF.html">
 * hprof tracing </a>).
 * 
 * @author whoschek.AT.lbl.DOT.gov
 */
public class MemoryIndex {

	/** info for each field: Map<String fieldName, Info field> */
	private final HashMap fields = new HashMap();
	
	/** fields sorted ascending by fieldName; lazily computed on demand */
	private transient Map.Entry[] sortedFields; 
	
	/** pos: positions[3*i], startOffset: positions[3*i +1], endOffset: positions[3*i +2] */
	private final int stride;
	
	private static final long serialVersionUID = 2782195016849084649L;

	private static final boolean DEBUG = false;
	
	/**
	 * Sorts term entries into ascending order; also works for
	 * Arrays.binarySearch() and Arrays.sort()
	 */
	private static final Comparator termComparator = new Comparator() {
		public int compare(Object o1, Object o2) {
			if (o1 instanceof Map.Entry) o1 = ((Map.Entry) o1).getKey();
			if (o2 instanceof Map.Entry) o2 = ((Map.Entry) o2).getKey();
			if (o1 == o2) return 0;
			return ((String) o1).compareTo((String) o2);
		}
	};

	/**
	 * Constructs an empty instance.
	 */
	public MemoryIndex() {
		this(false);
	}
	
	/**
	 * Constructs an empty instance that can optionally store the start and end
	 * character offset of each token term in the text. This can be useful for
	 * highlighting of hit locations with the Lucene highlighter package.
	 * Private until the highlighter package matures, so that this can actually
	 * be meaningfully integrated.
	 * 
	 * @param storeOffsets
	 *            whether or not to store the start and end character offset of
	 *            each token term in the text
	 */
	private MemoryIndex(boolean storeOffsets) {
		this.stride = storeOffsets ? 3 : 1;
	}
	
	/**
	 * Convenience method; Tokenizes the given field text and adds the resulting
	 * terms to the index; Equivalent to adding a tokenized, indexed,
	 * termVectorStored, unstored, non-keyword Lucene
	 * {@link org.apache.lucene.document.Field}.
	 * 
	 * @param fieldName
	 *            a name to be associated with the text
	 * @param text
	 *            the text to tokenize and index.
	 * @param analyzer
	 *            the analyzer to use for tokenization
	 */
	public void addField(String fieldName, String text, Analyzer analyzer) {
		if (fieldName == null)
			throw new IllegalArgumentException("fieldName must not be null");
		if (text == null)
			throw new IllegalArgumentException("text must not be null");
		if (analyzer == null)
			throw new IllegalArgumentException("analyzer must not be null");
		
		TokenStream stream;
		if (analyzer instanceof PatternAnalyzer) {
			stream = ((PatternAnalyzer) analyzer).tokenStream(fieldName, text);
		} else {
			stream = analyzer.tokenStream(fieldName, 
					new PatternAnalyzer.FastStringReader(text));
		}
		addField(fieldName, stream);
	}
	
	/**
	 * Convenience method; Creates and returns a token stream that generates a
	 * token for each keyword in the given collection, "as is", without any
	 * transforming text analysis. The resulting token stream can be fed into
	 * {@link #addField(String, TokenStream)}, perhaps wrapped into another
	 * {@link org.apache.lucene.analysis.TokenFilter}, as desired.
	 * 
	 * @param keywords
	 *            the keywords to generate tokens for
	 * @return the corresponding token stream
	 */
	public TokenStream keywordTokenStream(final Collection keywords) {
		// TODO: deprecate & move this method into AnalyzerUtil?
		if (keywords == null)
			throw new IllegalArgumentException("keywords must not be null");
		
		return new TokenStream() {
			private Iterator iter = keywords.iterator();
			private int start = 0;
			public Token next() {
				if (!iter.hasNext()) return null;
				
				Object obj = iter.next();
				if (obj == null) 
					throw new IllegalArgumentException("keyword must not be null");
				
				String term = obj.toString();
				Token token = new Token(term, start, start + term.length());
				start += term.length() + 1; // separate words by 1 (blank) character
				return token;
			}
		};
	}
	
	/**
	 * Iterates over the given token stream and adds the resulting terms to the index;
	 * Equivalent to adding a tokenized, indexed, termVectorStored, unstored,
	 * Lucene {@link org.apache.lucene.document.Field}.
	 * Finally closes the token stream. Note that untokenized keywords can be added with this method via 
	 * {@link #keywordTokenStream(Collection)}, the Lucene contrib <code>KeywordTokenizer</code> or similar utilities.
	 * 
	 * @param fieldName
	 *            a name to be associated with the text
	 * @param stream
	 *            the token stream to retrieve tokens from.
	 */
	public void addField(String fieldName, TokenStream stream) {
		/*
		 * Note that this method signature avoids having a user call new
		 * o.a.l.d.Field(...) which would be much too expensive due to the
		 * String.intern() usage of that class.
		 * 
		 * More often than not, String.intern() leads to serious performance
		 * degradations rather than improvements! If you're curious why, check
		 * out the JDK's native code, see how it oscillates multiple times back
		 * and forth between Java code and native code on each intern() call,
		 * only to end up using a plain vanilla java.util.HashMap on the Java
		 * heap for it's interned strings! String.equals() has a small cost
		 * compared to String.intern(), trust me. Application level interning
		 * (e.g. a HashMap per Directory/Index) typically leads to better
		 * solutions than frequent hidden low-level calls to String.intern().
		 * 
		 * Perhaps with some luck, Lucene's Field.java (and Term.java) and
		 * cousins could be fixed to not use String.intern(). Sigh :-(
		 */
		try {
			if (fieldName == null)
				throw new IllegalArgumentException("fieldName must not be null");
			if (stream == null)
				throw new IllegalArgumentException("token stream must not be null");
			if (fields.get(fieldName) != null)
				throw new IllegalArgumentException("field must not be added more than once");
			
			HashMap terms = new HashMap();
			int numTokens = 0;
			int pos = -1;
			Token token;
			
			while ((token = stream.next()) != null) {
				String term = token.termText();
				if (term.length() == 0) continue; // nothing to do
//				if (DEBUG) System.err.println("token='" + term + "'");
				numTokens++;
				pos += token.getPositionIncrement();
				
				ArrayIntList positions = (ArrayIntList) terms.get(term);
				if (positions == null) { // term not seen before
					positions = new ArrayIntList(stride);
					terms.put(term, positions);
				}
				if (stride == 1) {
					positions.add(pos);
				} else {
					positions.add(pos, token.startOffset(), token.endOffset());
				}
			}
			
			// ensure infos.numTokens > 0 invariant; needed for correct operation of terms()
			if (numTokens > 0) {
				fields.put(fieldName, new Info(terms, numTokens));
				sortedFields = null;    // invalidate sorted view, if any
			}
		} catch (IOException e) { // can never happen
			throw new RuntimeException(e);
		} finally {
			try {
				if (stream != null) stream.close();
			} catch (IOException e2) {
				throw new RuntimeException(e2);
			}
		}
	}
	
	/**
	 * Creates and returns a searcher that can be used to execute arbitrary
	 * Lucene queries and to collect the resulting query results as hits.
	 * 
	 * @return a searcher
	 */
	public IndexSearcher createSearcher() {
		MemoryIndexReader reader = new MemoryIndexReader();
		IndexSearcher searcher = new IndexSearcher(reader); // ensures no auto-close !!
		reader.setSearcher(searcher); // to later get hold of searcher.getSimilarity()
		return searcher;
	}
	
	/**
	 * Convenience method that efficiently returns the relevance score by
	 * matching this index against the given Lucene query expression.
	 * 
	 * @param query
	 *            an arbitrary Lucene query to run against this index
	 * @return the relevance score of the matchmaking; A number in the range
	 *         [0.0 .. 1.0], with 0.0 indicating no match. The higher the number
	 *         the better the match.
	 * @see org.apache.lucene.queryParser.QueryParser#parse(String)
	 */
	public float search(Query query) {
		if (query == null) 
			throw new IllegalArgumentException("query must not be null");
		
		Searcher searcher = createSearcher();
		try {
			final float[] scores = new float[1]; // inits to 0.0f (no match)
			searcher.search(query, new HitCollector() {
				public void collect(int doc, float score) {
					scores[0] = score;
				}
			});
			float score = scores[0];
			return score;
		} catch (IOException e) { // can never happen (RAMDirectory)
			throw new RuntimeException(e);
		} finally {
			// searcher.close();
			/*
			 * Note that it is harmless and important for good performance to
			 * NOT close the index reader!!! This avoids all sorts of
			 * unnecessary baggage and locking in the Lucene IndexReader
			 * superclass, all of which is completely unnecessary for this main
			 * memory index data structure without thread-safety claims.
			 * 
			 * Wishing IndexReader would be an interface...
			 * 
			 * Actually with the new tight createSearcher() API auto-closing is now
			 * made impossible, hence searcher.close() would be harmless...
			 */
		}		
	}
	
	/**
	 * Returns a reasonable approximation of the main memory [bytes] consumed by
	 * this instance. Useful for smart memory sensititve caches/pools. Assumes
	 * fieldNames are interned, whereas tokenized terms are memory-overlaid. For
	 * simplicity, assumes no VM word boundary alignment of instance vars.
	 * 
	 * @return the main memory consumption
	 */
	public int getMemorySize() {
		// for example usage in a smart cache see nux.xom.pool.Pool
		int HEADER = 12; // object header of any java object
		int PTR = 4; // pointer on 32 bit VMs
		int ARR = HEADER + 4;
		int STR = HEADER + 3*4 + PTR + ARR; // string
		int INTARRLIST = HEADER + 4 + PTR + ARR;
		int HASHMAP = HEADER + 4*PTR + 4*4 + ARR;
		
		int size = 0;
		size += HEADER + 2*PTR + 4; // memory index
		if (sortedFields != null) size += ARR + PTR * sortedFields.length;
		
		size += HASHMAP + fields.size() * (PTR + HEADER + 3*PTR + 4); // Map.entries
		Iterator iter = fields.entrySet().iterator();
		while (iter.hasNext()) { // for each Field Info
			Map.Entry entry = (Map.Entry) iter.next();			
			Info info = (Info) entry.getValue();
			size += HEADER + 4 + PTR + PTR + PTR; // Info instance vars
			if (info.sortedTerms != null) size += ARR + PTR * info.sortedTerms.length;
			
			int len = info.terms.size();
			size += HASHMAP + len * (PTR + HEADER + 3*PTR + 4); // Map.entries
			Iterator iter2 = info.terms.entrySet().iterator();
			while (--len >= 0) { // for each term
				Map.Entry e = (Map.Entry) iter2.next();
				size += STR - ARR; // assumes substring() memory overlay
//				size += STR + 2 * ((String) e.getKey()).length();
				ArrayIntList positions = (ArrayIntList) e.getValue();
				size += INTARRLIST + 4*positions.size();
			}
		}
		return size;
	}	

	private int numPositions(ArrayIntList positions) {
		return positions.size() / stride;
	}
	
	/** sorts into ascending order (on demand), reusing memory along the way */
	private void sortFields() {
		if (sortedFields == null) sortedFields = sort(fields);
	}
	
	/** returns a view of the given map's entries, sorted ascending by key */
	private static Map.Entry[] sort(HashMap map) {
		int size = map.size();
		Map.Entry[] entries = new Map.Entry[size];
		
		Iterator iter = map.entrySet().iterator();
		for (int i=0; i < size; i++) {
			entries[i] = (Map.Entry) iter.next();
		}
		
		if (size > 1) Arrays.sort(entries, termComparator);
		return entries;
	}
	
	/**
	 * Returns a String representation of the index data for debugging purposes.
	 * 
	 * @return the string representation
	 */
	public String toString() {
		StringBuffer result = new StringBuffer(256);		
		sortFields();		
		int sumChars = 0;
		int sumPositions = 0;
		int sumTerms = 0;
		
		for (int i=0; i < sortedFields.length; i++) {
			Map.Entry entry = sortedFields[i];
			String fieldName = (String) entry.getKey();
			Info info = (Info) entry.getValue();
			info.sortTerms();
			result.append(fieldName + ":\n");
			
			int numChars = 0;
			int numPositions = 0;
			for (int j=0; j < info.sortedTerms.length; j++) {
				Map.Entry e = info.sortedTerms[j];
				String term = (String) e.getKey();
				ArrayIntList positions = (ArrayIntList) e.getValue();
				result.append("\t'" + term + "':" + numPositions(positions) + ":");
				result.append(positions.toString(stride)); // ignore offsets
				result.append("\n");
				numPositions += numPositions(positions);
				numChars += term.length();
			}
			
			result.append("\tterms=" + info.sortedTerms.length);
			result.append(", positions=" + numPositions);
			result.append(", Kchars=" + (numChars/1000.0f));
			result.append("\n");
			sumPositions += numPositions;
			sumChars += numChars;
			sumTerms += info.sortedTerms.length;
		}
		
		result.append("\nfields=" + sortedFields.length);
		result.append(", terms=" + sumTerms);
		result.append(", positions=" + sumPositions);
		result.append(", Kchars=" + (sumChars/1000.0f));
		return result.toString();
	}
	
	
	///////////////////////////////////////////////////////////////////////////////
	// Nested classes:
	///////////////////////////////////////////////////////////////////////////////
	/**
	 * Index data structure for a field; Contains the tokenized term texts and
	 * their positions.
	 */
	private static final class Info implements Serializable {
		
		/**
		 * Term strings and their positions for this field: Map <String
		 * termText, ArrayIntList positions>
		 */
		private final HashMap terms; 
		
		/** Terms sorted ascending by term text; computed on demand */
		private transient Map.Entry[] sortedTerms;
		
		/** Number of added tokens for this field */
		private final int numTokens;
		
		/** Term for this field's fieldName, lazily computed on demand */
		public transient Term template;

		private static final long serialVersionUID = 2882195016849084649L;	

		public Info(HashMap terms, int numTokens) {
			this.terms = terms;
			this.numTokens = numTokens;
		}
		
		/**
		 * Sorts hashed terms into ascending order, reusing memory along the
		 * way. Note that sorting is lazily delayed until required (often it's
		 * not required at all). If a sorted view is required then hashing +
		 * sort + binary search is still faster and smaller than TreeMap usage
		 * (which would be an alternative and somewhat more elegant approach,
		 * apart from more sophisticated Tries / prefix trees).
		 */
		public void sortTerms() {
			if (sortedTerms == null) sortedTerms = sort(terms);
		}
				
		/** note that the frequency can be calculated as numPosition(getPositions(x)) */
		public ArrayIntList getPositions(String term) {
			return (ArrayIntList) terms.get(term);
		}

		/** note that the frequency can be calculated as numPosition(getPositions(x)) */
		public ArrayIntList getPositions(int pos) {
			return (ArrayIntList) sortedTerms[pos].getValue();
		}
		
	}
	
	
	///////////////////////////////////////////////////////////////////////////////
	// Nested classes:
	///////////////////////////////////////////////////////////////////////////////
	/**
	 * Efficient resizable auto-expanding list holding <code>int</code> elements;
	 * implemented with arrays.
	 */
	private static final class ArrayIntList implements Serializable {

		private int[] elements;
		private int size = 0;
		
		private static final long serialVersionUID = 2282195016849084649L;	
			
		public ArrayIntList() {
			this(10);
		}

		public ArrayIntList(int initialCapacity) {
			elements = new int[initialCapacity];
		}

		public void add(int elem) {
			if (size == elements.length) ensureCapacity(size + 1);
			elements[size++] = elem;
		}

		public void add(int pos, int start, int end) {
			if (size + 3 > elements.length) ensureCapacity(size + 3);
			elements[size] = pos;
			elements[size+1] = start;
			elements[size+2] = end;
			size += 3;
		}

		public int get(int index) {
			if (index >= size) throwIndex(index);
			return elements[index];
		}
		
		public int size() {
			return size;
		}
		
		public int[] toArray(int stride) {
			int[] arr = new int[size() / stride];
			if (stride == 1)
				System.arraycopy(elements, 0, arr, 0, size); // fast path
			else 
				for (int i=0, j=0; j < size; i++, j += stride) arr[i] = elements[j];
			return arr;
		}
		
		private void ensureCapacity(int minCapacity) {
			int newCapacity = Math.max(minCapacity, (elements.length * 3) / 2 + 1);
			int[] newElements = new int[newCapacity];
			System.arraycopy(elements, 0, newElements, 0, size);
			elements = newElements;
		}

		private void throwIndex(int index) {
			throw new IndexOutOfBoundsException("index: " + index
						+ ", size: " + size);
		}
		
		/** returns the first few positions (without offsets); debug only */
		public String toString(int stride) {
			int s = size() / stride;
			int len = Math.min(10, s); // avoid printing huge lists
			StringBuffer buf = new StringBuffer(4*len);
			buf.append("[");
			for (int i = 0; i < len; i++) {
				buf.append(get(i*stride));
				if (i < len-1) buf.append(", ");
			}
			if (len != s) buf.append(", ..."); // and some more...
			buf.append("]");
			return buf.toString();
		}		
	}
	
	
	///////////////////////////////////////////////////////////////////////////////
	// Nested classes:
	///////////////////////////////////////////////////////////////////////////////
	private static final Term MATCH_ALL_TERM = new Term("", "");
		
	/**
	 * Search support for Lucene framework integration; implements all methods
	 * required by the Lucene IndexReader contracts.
	 */
	private final class MemoryIndexReader extends IndexReader {
		
		private Searcher searcher; // needed to find searcher.getSimilarity() 
		
		private MemoryIndexReader() {
			super(null); // avoid as much superclass baggage as possible
		}
		
		// lucene >= 1.9 or lucene-1.4.3 with patch removing "final" in superclass
		protected void finalize() {}
		
		private Info getInfo(String fieldName) {
			return (Info) fields.get(fieldName);
		}
		
		private Info getInfo(int pos) {
			return (Info) sortedFields[pos].getValue();
		}
		
		public int docFreq(Term term) {
			Info info = getInfo(term.field());
			int freq = 0;
			if (info != null) freq = info.getPositions(term.text()) != null ? 1 : 0;
			if (DEBUG) System.err.println("MemoryIndexReader.docFreq: " + term + ", freq:" + freq);
			return freq;
		}
	
		public TermEnum terms() {
			if (DEBUG) System.err.println("MemoryIndexReader.terms()");
			return terms(MATCH_ALL_TERM);
		}
		
		public TermEnum terms(Term term) {
			if (DEBUG) System.err.println("MemoryIndexReader.terms: " + term);
	
			int i; // index into info.sortedTerms
			int j; // index into sortedFields
			
			sortFields();
			if (sortedFields.length == 1 && sortedFields[0].getKey() == term.field()) {
				j = 0; // fast path
			} else {
				j = Arrays.binarySearch(sortedFields, term.field(), termComparator);
			}
			
			if (j < 0) { // not found; choose successor
				j = -j -1; 
				i = 0;
				if (j < sortedFields.length) getInfo(j).sortTerms();
			}
			else { // found
				Info info = getInfo(j);
				info.sortTerms();
				i = Arrays.binarySearch(info.sortedTerms, term.text(), termComparator);
				if (i < 0) { // not found; choose successor
					i = -i -1;
					if (i >= info.sortedTerms.length) { // move to next successor
						j++;
						i = 0;
						if (j < sortedFields.length) getInfo(j).sortTerms();
					}
				}
			}
			final int ix = i;
			final int jx = j;
	
			return new TermEnum() {
	
				private int i = ix; // index into info.sortedTerms
				private int j = jx; // index into sortedFields
					
				public boolean next() {
					if (DEBUG) System.err.println("TermEnum.next");
					if (j >= sortedFields.length) return false;
					Info info = getInfo(j);
					if (++i < info.sortedTerms.length) return true;
	
					// move to successor
					j++;
					i = 0;
					if (j >= sortedFields.length) return false;
					getInfo(j).sortTerms();
					return true;
				}
	
				public Term term() {
					if (DEBUG) System.err.println("TermEnum.term: " + i);
					if (j >= sortedFields.length) return null;
					Info info = getInfo(j);
					if (i >= info.sortedTerms.length) return null;
//					if (DEBUG) System.err.println("TermEnum.term: " + i + ", " + info.sortedTerms[i].getKey());
					return createTerm(info, j, (String) info.sortedTerms[i].getKey());
				}
				
				public int docFreq() {
					if (DEBUG) System.err.println("TermEnum.docFreq");
					if (j >= sortedFields.length) return 0;
					Info info = getInfo(j);
					if (i >= info.sortedTerms.length) return 0;
					return numPositions(info.getPositions(i));
				}
	
				public void close() {
					if (DEBUG) System.err.println("TermEnum.close");
				}
				
				/** Returns a new Term object, minimizing String.intern() overheads. */
				private Term createTerm(Info info, int pos, String text) { 
					// Assertion: sortFields has already been called before
					Term template = info.template;
					if (template == null) { // not yet cached?
						String fieldName = (String) sortedFields[pos].getKey();
						template = new Term(fieldName, "");
						info.template = template;
					}
					
					return template.createTerm(text);
				}
				
			};
		}
	
		public TermPositions termPositions() {
			if (DEBUG) System.err.println("MemoryIndexReader.termPositions");
			
			return new TermPositions() {
	
				private boolean hasNext;
				private int cursor = 0;
				private ArrayIntList current;
				
				public void seek(Term term) {
					if (DEBUG) System.err.println(".seek: " + term);
					Info info = getInfo(term.field());
					current = info == null ? null : info.getPositions(term.text());
					hasNext = (current != null);
					cursor = 0;
				}
	
				public void seek(TermEnum termEnum) {
					if (DEBUG) System.err.println(".seekEnum");
					seek(termEnum.term());
				}
	
				public int doc() {
					if (DEBUG) System.err.println(".doc");
					return 0;
				}
	
				public int freq() {
					int freq = current != null ? numPositions(current) : 0;
					if (DEBUG) System.err.println(".freq: " + freq);
					return freq;
				}
	
				public boolean next() {
					if (DEBUG) System.err.println(".next: " + current + ", oldHasNext=" + hasNext);
					boolean next = hasNext;
					hasNext = false;
					return next;
				}
	
				public int read(int[] docs, int[] freqs) {
					if (DEBUG) System.err.println(".read: " + docs.length);
					if (!hasNext) return 0;
					hasNext = false;
					docs[0] = 0;
					freqs[0] = freq();
					return 1;
				}
	
				public boolean skipTo(int target) {
					if (DEBUG) System.err.println(".skipTo: " + target);
					return next();
				}
	
				public void close() {
					if (DEBUG) System.err.println(".close");
				}
				
				public int nextPosition() { // implements TermPositions
					int pos = current.get(cursor);
					cursor += stride;
					if (DEBUG) System.err.println(".nextPosition: " + pos);
					return pos;
				}
			};
		}
	
		public TermDocs termDocs() {
			if (DEBUG) System.err.println("MemoryIndexReader.termDocs");
			return termPositions();
		}
	
		public TermFreqVector[] getTermFreqVectors(int docNumber) {
			if (DEBUG) System.err.println("MemoryIndexReader.getTermFreqVectors");
			TermFreqVector[] vectors = new TermFreqVector[fields.size()];
//			if (vectors.length == 0) return null;
			Iterator iter = fields.keySet().iterator();
			for (int i=0; i < vectors.length; i++) {
				String fieldName = (String) iter.next();
				vectors[i] = getTermFreqVector(docNumber, fieldName);
			}
			return vectors;
		}
		
		public TermFreqVector getTermFreqVector(int docNumber, final String fieldName) {
			if (DEBUG) System.err.println("MemoryIndexReader.getTermFreqVector");
			final Info info = getInfo(fieldName);
			if (info == null) return null; // TODO: or return empty vector impl???
			info.sortTerms();
			
			return new TermPositionVector() { 
	
				private final Map.Entry[] sortedTerms = info.sortedTerms;
				
				public String getField() {
					return fieldName;
				}
	
				public int size() {
					return sortedTerms.length;
				}
	
				public String[] getTerms() {
					String[] terms = new String[sortedTerms.length];
					for (int i=sortedTerms.length; --i >= 0; ) {
						terms[i] = (String) sortedTerms[i].getKey();
					}
					return terms;
				}
	
				public int[] getTermFrequencies() {
					int[] freqs = new int[sortedTerms.length];
					for (int i=sortedTerms.length; --i >= 0; ) {
						freqs[i] = numPositions((ArrayIntList) sortedTerms[i].getValue());
					}
					return freqs;
				}
	
				public int indexOf(String term) {
					int i = Arrays.binarySearch(sortedTerms, term, termComparator);
					return i >= 0 ? i : -1;
				}
	
				public int[] indexesOf(String[] terms, int start, int len) {
					int[] indexes = new int[len];
					for (int i=0; i < len; i++) {
						indexes[i] = indexOf(terms[start++]);
					}
					return indexes;
				}
				
				// lucene >= 1.4.3
				public int[] getTermPositions(int index) {
					return ((ArrayIntList) sortedTerms[index].getValue()).toArray(stride);
				} 
				
				// lucene >= 1.9 (remove this method for lucene-1.4.3)
				public org.apache.lucene.index.TermVectorOffsetInfo[] getOffsets(int index) {
					if (stride == 1) return null; // no offsets stored
					
					ArrayIntList positions = (ArrayIntList) sortedTerms[index].getValue();
					int size = positions.size();
					org.apache.lucene.index.TermVectorOffsetInfo[] offsets = 
						new org.apache.lucene.index.TermVectorOffsetInfo[size / stride];
					
					for (int i=0, j=1; j < size; i++, j += stride) {
						int start = positions.get(j);
						int end = positions.get(j+1);
						offsets[i] = new org.apache.lucene.index.TermVectorOffsetInfo(start, end);
					}
					return offsets;
				}

			};
		}

		private Similarity getSimilarity() {
			if (searcher != null) return searcher.getSimilarity();
			return Similarity.getDefault();
		}
		
		private void setSearcher(Searcher searcher) {
			this.searcher = searcher;
		}
		
		/** performance hack: cache norms to avoid repeated expensive calculations */
		private byte[] cachedNorms;
		private String cachedFieldName;
		private Similarity cachedSimilarity;
		
		public byte[] norms(String fieldName) {
			byte[] norms = cachedNorms;
			Similarity sim = getSimilarity();
			if (fieldName != cachedFieldName || sim != cachedSimilarity) { // not cached?
				Info info = getInfo(fieldName);
				int numTokens = info != null ? info.numTokens : 0;
				float n = sim.lengthNorm(fieldName, numTokens);
				byte norm = Similarity.encodeNorm(n);
				norms = new byte[] {norm};
				
				cachedNorms = norms;
				cachedFieldName = fieldName;
				cachedSimilarity = sim;
				if (DEBUG) System.err.println("MemoryIndexReader.norms: " + fieldName + ":" + n + ":" + norm + ":" + numTokens);
			}
			return norms;
		}
	
		public void norms(String fieldName, byte[] bytes, int offset) {
			if (DEBUG) System.err.println("MemoryIndexReader.norms*: " + fieldName);
			byte[] norms = norms(fieldName);
			System.arraycopy(norms, 0, bytes, offset, norms.length);
		}
	
		protected void doSetNorm(int doc, String fieldName, byte value) {
			throw new UnsupportedOperationException();
		}
	
		public int numDocs() {
			if (DEBUG) System.err.println("MemoryIndexReader.numDocs");
			return fields.size() > 0 ? 1 : 0;
		}
	
		public int maxDoc() {
			if (DEBUG) System.err.println("MemoryIndexReader.maxDoc");
			return 1;
		}
	
		public Document document(int n) {
			if (DEBUG) System.err.println("MemoryIndexReader.document");
			return new Document(); // there are no stored fields
		}
	
		public boolean isDeleted(int n) {
			if (DEBUG) System.err.println("MemoryIndexReader.isDeleted");
			return false;
		}
	
		public boolean hasDeletions() {
			if (DEBUG) System.err.println("MemoryIndexReader.hasDeletions");
			return false;
		}
	
		protected void doDelete(int docNum) {
			throw new UnsupportedOperationException();
		}
	
		protected void doUndeleteAll() {
			throw new UnsupportedOperationException();
		}
	
		protected void doCommit() {
			if (DEBUG) System.err.println("MemoryIndexReader.doCommit");
		}
	
		protected void doClose() {
			if (DEBUG) System.err.println("MemoryIndexReader.doClose");
		}
		
		// lucene >= 1.9 (remove this method for lucene-1.4.3)
		public Collection getFieldNames(FieldOption fieldOption) {
			if (DEBUG) System.err.println("MemoryIndexReader.getFieldNamesOption");
			if (fieldOption == FieldOption.UNINDEXED) 
				return Collections.EMPTY_SET;
			if (fieldOption == FieldOption.INDEXED_NO_TERMVECTOR) 
				return Collections.EMPTY_SET;
			if (fieldOption == FieldOption.TERMVECTOR_WITH_OFFSET && stride == 1) 
				return Collections.EMPTY_SET;
			if (fieldOption == FieldOption.TERMVECTOR_WITH_POSITION_OFFSET && stride == 1) 
				return Collections.EMPTY_SET;
			
			return Collections.unmodifiableSet(fields.keySet());
		}
	}

}