FileDocCategorySizeDatePackage
Matrix.javaAPI DocAndroid 1.5 API21889Wed May 06 22:42:00 BST 2009android.opengl

Matrix.java

/*
 * Copyright (C) 2007 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package android.opengl;

/**
 * Matrix math utilities. These methods operate on OpenGL ES format
 * matrices and vectors stored in float arrays.
 *
 * Matrices are 4 x 4 column-vector matrices stored in column-major
 * order:
 * <pre>
 *  m[offset +  0] m[offset +  4] m[offset +  8] m[offset + 12]
 *  m[offset +  1] m[offset +  5] m[offset +  9] m[offset + 13]
 *  m[offset +  2] m[offset +  6] m[offset + 10] m[offset + 14]
 *  m[offset +  3] m[offset +  7] m[offset + 11] m[offset + 15]
 * </pre>
 *
 * Vectors are 4 row x 1 column column-vectors stored in order:
 * <pre>
 * v[offset + 0]
 * v[offset + 1]
 * v[offset + 2]
 * v[offset + 3]
 * </pre>
 *
 */
public class Matrix {
    /**
     * Multiply two 4x4 matrices together and store the result in a third 4x4
     * matrix. In matrix notation: result = lhs x rhs. Due to the way
     * matrix multiplication works, the result matrix will have the same
     * effect as first multiplying by the rhs matrix, then multiplying by
     * the lhs matrix. This is the opposite of what you might expect.
     *
     * The same float array may be passed for result, lhs, and/or rhs. However,
     * the result element values are undefined if the result elements overlap
     * either the lhs or rhs elements.
     *
     * @param result The float array that holds the result.
     * @param resultOffset The offset into the result array where the result is
     *        stored.
     * @param lhs The float array that holds the left-hand-side matrix.
     * @param lhsOffset The offset into the lhs array where the lhs is stored
     * @param rhs The float array that holds the right-hand-side matrix.
     * @param rhsOffset The offset into the rhs array where the rhs is stored.
     *
     * @throws IllegalArgumentException if result, lhs, or rhs are null, or if
     * resultOffset + 16 > result.length or lhsOffset + 16 > lhs.length or
     * rhsOffset + 16 > rhs.length.
     */
    public static native void multiplyMM(float[] result, int resultOffset,
            float[] lhs, int lhsOffset, float[] rhs, int rhsOffset);

    /**
     * Multiply a 4 element vector by a 4x4 matrix and store the result in a 4
     * element column vector. In matrix notation: result = lhs x rhs
     *
     * The same float array may be passed for resultVec, lhsMat, and/or rhsVec.
     * However, the resultVec element values are undefined if the resultVec
     * elements overlap either the lhsMat or rhsVec elements.
     *
     * @param resultVec The float array that holds the result vector.
     * @param resultVecOffset The offset into the result array where the result
     *        vector is stored.
     * @param lhsMat The float array that holds the left-hand-side matrix.
     * @param lhsMatOffset The offset into the lhs array where the lhs is stored
     * @param rhsVec The float array that holds the right-hand-side vector.
     * @param rhsVecOffset The offset into the rhs vector where the rhs vector
     *        is stored.
     *
     * @throws IllegalArgumentException if resultVec, lhsMat,
     * or rhsVec are null, or if resultVecOffset + 4 > resultVec.length
     * or lhsMatOffset + 16 > lhsMat.length or
     * rhsVecOffset + 4 > rhsVec.length.
     */
    public static native void multiplyMV(float[] resultVec,
            int resultVecOffset, float[] lhsMat, int lhsMatOffset,
            float[] rhsVec, int rhsVecOffset);

    /**
     * Transposes a 4 x 4 matrix.
     *
     * @param mTrans the array that holds the output inverted matrix
     * @param mTransOffset an offset into mInv where the inverted matrix is
     *        stored.
     * @param m the input array
     * @param mOffset an offset into m where the matrix is stored.
     */
    public static void transposeM(float[] mTrans, int mTransOffset, float[] m,
            int mOffset) {
        for (int i = 0; i < 4; i++) {
            int mBase = i * 4 + mOffset;
            mTrans[i + mTransOffset] = m[mBase];
            mTrans[i + 4 + mTransOffset] = m[mBase + 1];
            mTrans[i + 8 + mTransOffset] = m[mBase + 2];
            mTrans[i + 12 + mTransOffset] = m[mBase + 3];
        }
    }

    /**
     * Inverts a 4 x 4 matrix.
     *
     * @param mInv the array that holds the output inverted matrix
     * @param mInvOffset an offset into mInv where the inverted matrix is
     *        stored.
     * @param m the input array
     * @param mOffset an offset into m where the matrix is stored.
     * @return true if the matrix could be inverted, false if it could not.
     */
    public static boolean invertM(float[] mInv, int mInvOffset, float[] m,
            int mOffset) {
        // Invert a 4 x 4 matrix using Cramer's Rule

        // array of transpose source matrix
        float[] src = new float[16];

        // transpose matrix
        transposeM(src, 0, m, mOffset);

        // temp array for pairs
        float[] tmp = new float[12];

        // calculate pairs for first 8 elements (cofactors)
        tmp[0] = src[10] * src[15];
        tmp[1] = src[11] * src[14];
        tmp[2] = src[9] * src[15];
        tmp[3] = src[11] * src[13];
        tmp[4] = src[9] * src[14];
        tmp[5] = src[10] * src[13];
        tmp[6] = src[8] * src[15];
        tmp[7] = src[11] * src[12];
        tmp[8] = src[8] * src[14];
        tmp[9] = src[10] * src[12];
        tmp[10] = src[8] * src[13];
        tmp[11] = src[9] * src[12];

        // Holds the destination matrix while we're building it up.
        float[] dst = new float[16];

        // calculate first 8 elements (cofactors)
        dst[0] = tmp[0] * src[5] + tmp[3] * src[6] + tmp[4] * src[7];
        dst[0] -= tmp[1] * src[5] + tmp[2] * src[6] + tmp[5] * src[7];
        dst[1] = tmp[1] * src[4] + tmp[6] * src[6] + tmp[9] * src[7];
        dst[1] -= tmp[0] * src[4] + tmp[7] * src[6] + tmp[8] * src[7];
        dst[2] = tmp[2] * src[4] + tmp[7] * src[5] + tmp[10] * src[7];
        dst[2] -= tmp[3] * src[4] + tmp[6] * src[5] + tmp[11] * src[7];
        dst[3] = tmp[5] * src[4] + tmp[8] * src[5] + tmp[11] * src[6];
        dst[3] -= tmp[4] * src[4] + tmp[9] * src[5] + tmp[10] * src[6];
        dst[4] = tmp[1] * src[1] + tmp[2] * src[2] + tmp[5] * src[3];
        dst[4] -= tmp[0] * src[1] + tmp[3] * src[2] + tmp[4] * src[3];
        dst[5] = tmp[0] * src[0] + tmp[7] * src[2] + tmp[8] * src[3];
        dst[5] -= tmp[1] * src[0] + tmp[6] * src[2] + tmp[9] * src[3];
        dst[6] = tmp[3] * src[0] + tmp[6] * src[1] + tmp[11] * src[3];
        dst[6] -= tmp[2] * src[0] + tmp[7] * src[1] + tmp[10] * src[3];
        dst[7] = tmp[4] * src[0] + tmp[9] * src[1] + tmp[10] * src[2];
        dst[7] -= tmp[5] * src[0] + tmp[8] * src[1] + tmp[11] * src[2];

        // calculate pairs for second 8 elements (cofactors)
        tmp[0] = src[2] * src[7];
        tmp[1] = src[3] * src[6];
        tmp[2] = src[1] * src[7];
        tmp[3] = src[3] * src[5];
        tmp[4] = src[1] * src[6];
        tmp[5] = src[2] * src[5];
        tmp[6] = src[0] * src[7];
        tmp[7] = src[3] * src[4];
        tmp[8] = src[0] * src[6];
        tmp[9] = src[2] * src[4];
        tmp[10] = src[0] * src[5];
        tmp[11] = src[1] * src[4];

        // calculate second 8 elements (cofactors)
        dst[8] = tmp[0] * src[13] + tmp[3] * src[14] + tmp[4] * src[15];
        dst[8] -= tmp[1] * src[13] + tmp[2] * src[14] + tmp[5] * src[15];
        dst[9] = tmp[1] * src[12] + tmp[6] * src[14] + tmp[9] * src[15];
        dst[9] -= tmp[0] * src[12] + tmp[7] * src[14] + tmp[8] * src[15];
        dst[10] = tmp[2] * src[12] + tmp[7] * src[13] + tmp[10] * src[15];
        dst[10] -= tmp[3] * src[12] + tmp[6] * src[13] + tmp[11] * src[15];
        dst[11] = tmp[5] * src[12] + tmp[8] * src[13] + tmp[11] * src[14];
        dst[11] -= tmp[4] * src[12] + tmp[9] * src[13] + tmp[10] * src[14];
        dst[12] = tmp[2] * src[10] + tmp[5] * src[11] + tmp[1] * src[9];
        dst[12] -= tmp[4] * src[11] + tmp[0] * src[9] + tmp[3] * src[10];
        dst[13] = tmp[8] * src[11] + tmp[0] * src[8] + tmp[7] * src[10];
        dst[13] -= tmp[6] * src[10] + tmp[9] * src[11] + tmp[1] * src[8];
        dst[14] = tmp[6] * src[9] + tmp[11] * src[11] + tmp[3] * src[8];
        dst[14] -= tmp[10] * src[11] + tmp[2] * src[8] + tmp[7] * src[9];
        dst[15] = tmp[10] * src[10] + tmp[4] * src[8] + tmp[9] * src[9];
        dst[15] -= tmp[8] * src[9] + tmp[11] * src[10] + tmp[5] * src[8];

        // calculate determinant
        float det =
                src[0] * dst[0] + src[1] * dst[1] + src[2] * dst[2] + src[3]
                        * dst[3];

        if (det == 0.0f) {

        }

        // calculate matrix inverse
        det = 1 / det;
        for (int j = 0; j < 16; j++)
            mInv[j + mInvOffset] = dst[j] * det;

        return true;
    }

    /**
     * Computes an orthographic projection matrix.
     *
     * @param m returns the result
     * @param mOffset
     * @param left
     * @param right
     * @param bottom
     * @param top
     * @param near
     * @param far
     */
    public static void orthoM(float[] m, int mOffset,
        float left, float right, float bottom, float top,
        float near, float far) {
        if (left == right) {
            throw new IllegalArgumentException("left == right");
        }
        if (bottom == top) {
            throw new IllegalArgumentException("bottom == top");
        }
        if (near == far) {
            throw new IllegalArgumentException("near == far");
        }

        final float r_width  = 1.0f / (right - left);
        final float r_height = 1.0f / (top - bottom);
        final float r_depth  = 1.0f / (far - near);
        final float x =  2.0f * (r_width);
        final float y =  2.0f * (r_height);
        final float z = -2.0f * (r_depth);
        final float tx = -(right + left) * r_width;
        final float ty = -(top + bottom) * r_height;
        final float tz = -(far + near) * r_depth;
        m[mOffset + 0] = x;
        m[mOffset + 5] = y;
        m[mOffset +10] = z;
        m[mOffset +12] = tx;
        m[mOffset +13] = ty;
        m[mOffset +14] = tz;
        m[mOffset +15] = 1.0f;
        m[mOffset + 1] = 0.0f;
        m[mOffset + 2] = 0.0f;
        m[mOffset + 3] = 0.0f;
        m[mOffset + 4] = 0.0f;
        m[mOffset + 6] = 0.0f;
        m[mOffset + 7] = 0.0f;
        m[mOffset + 8] = 0.0f;
        m[mOffset + 9] = 0.0f;
        m[mOffset + 11] = 0.0f;
    }


    /**
     * Define a projection matrix in terms of six clip planes
     * @param m the float array that holds the perspective matrix
     * @param offset the offset into float array m where the perspective
     * matrix data is written
     * @param left
     * @param right
     * @param bottom
     * @param top
     * @param near
     * @param far
     */

    public static void frustumM(float[] m, int offset,
            float left, float right, float bottom, float top,
            float near, float far) {
        if (left == right) {
            throw new IllegalArgumentException("left == right");
        }
        if (top == bottom) {
            throw new IllegalArgumentException("top == bottom");
        }
        if (near == far) {
            throw new IllegalArgumentException("near == far");
        }
        if (near <= 0.0f) {
            throw new IllegalArgumentException("near <= 0.0f");
        }
        if (far <= 0.0f) {
            throw new IllegalArgumentException("far <= 0.0f");
        }
        final float r_width  = 1.0f / (right - left);
        final float r_height = 1.0f / (top - bottom);
        final float r_depth  = 1.0f / (near - far);
        final float x = 2.0f * (near * r_width);
        final float y = 2.0f * (near * r_height);
        final float A = 2.0f * ((right + left) * r_width);
        final float B = (top + bottom) * r_height;
        final float C = (far + near) * r_depth;
        final float D = 2.0f * (far * near * r_depth);
        m[offset + 0] = x;
        m[offset + 5] = y;
        m[offset + 8] = A;
        m[offset +  9] = B;
        m[offset + 10] = C;
        m[offset + 14] = D;
        m[offset + 11] = -1.0f;
        m[offset +  1] = 0.0f;
        m[offset +  2] = 0.0f;
        m[offset +  3] = 0.0f;
        m[offset +  4] = 0.0f;
        m[offset +  6] = 0.0f;
        m[offset +  7] = 0.0f;
        m[offset + 12] = 0.0f;
        m[offset + 13] = 0.0f;
        m[offset + 15] = 0.0f;
    }

    /**
     * Computes the length of a vector
     *
     * @param x x coordinate of a vector
     * @param y y coordinate of a vector
     * @param z z coordinate of a vector
     * @return the length of a vector
     */
    public static float length(float x, float y, float z) {
        return (float) Math.sqrt(x * x + y * y + z * z);
    }

    /**
     * Sets matrix m to the identity matrix.
     * @param sm returns the result
     * @param smOffset index into sm where the result matrix starts
     */
    public static void setIdentityM(float[] sm, int smOffset) {
        for (int i=0 ; i<16 ; i++) {
            sm[smOffset + i] = 0;
        }
        for(int i = 0; i < 16; i += 5) {
            sm[smOffset + i] = 1.0f;
        }
    }

    /**
     * Scales matrix  m by x, y, and z, putting the result in sm
     * @param sm returns the result
     * @param smOffset index into sm where the result matrix starts
     * @param m source matrix
     * @param mOffset index into m where the source matrix starts
     * @param x scale factor x
     * @param y scale factor y
     * @param z scale factor z
     */
    public static void scaleM(float[] sm, int smOffset,
            float[] m, int mOffset,
            float x, float y, float z) {
        for (int i=0 ; i<4 ; i++) {
            int smi = smOffset + i;
            int mi = mOffset + i;
            sm[     smi] = m[     mi] * x;
            sm[ 4 + smi] = m[ 4 + mi] * y;
            sm[ 8 + smi] = m[ 8 + mi] * z;
            sm[12 + smi] = m[12 + mi];
        }
    }

    /**
     * Scales matrix m in place by sx, sy, and sz
     * @param m matrix to scale
     * @param mOffset index into m where the matrix starts
     * @param x scale factor x
     * @param y scale factor y
     * @param z scale factor z
     */
    public static void scaleM(float[] m, int mOffset,
            float x, float y, float z) {
        for (int i=0 ; i<4 ; i++) {
            int mi = mOffset + i;
            m[     mi] *= x;
            m[ 4 + mi] *= y;
            m[ 8 + mi] *= z;
        }
    }

    /**
     * Translates matrix m by x, y, and z, putting the result in tm
     * @param tm returns the result
     * @param tmOffset index into sm where the result matrix starts
     * @param m source matrix
     * @param mOffset index into m where the source matrix starts
     * @param x translation factor x
     * @param y translation factor y
     * @param z translation factor z
     */
    public static void translateM(float[] tm, int tmOffset,
            float[] m, int mOffset,
            float x, float y, float z) {
        for (int i=0 ; i<12 ; i++) {
            tm[tmOffset + i] = m[mOffset + i];
        }
        for (int i=0 ; i<4 ; i++) {
            int tmi = tmOffset + i;
            int mi = mOffset + i;
            tm[12 + tmi] = m[mi] * x + m[4 + mi] * y + m[8 + mi] * z +
                m[12 + mi];
        }
    }

    /**
     * Translates matrix m by x, y, and z in place.
     * @param m matrix
     * @param mOffset index into m where the matrix starts
     * @param x translation factor x
     * @param y translation factor y
     * @param z translation factor z
     */
    public static void translateM(
            float[] m, int mOffset,
            float x, float y, float z) {
        for (int i=0 ; i<4 ; i++) {
            int mi = mOffset + i;
            m[12 + mi] += m[mi] * x + m[4 + mi] * y + m[8 + mi] * z;
        }
    }

    /**
     * Rotates matrix m by angle a (in degrees) around the axis (x, y, z)
     * @param rm returns the result
     * @param rmOffset index into rm where the result matrix starts
     * @param m source matrix
     * @param mOffset index into m where the source matrix starts
     * @param a angle to rotate in degrees
     * @param x scale factor x
     * @param y scale factor y
     * @param z scale factor z
     */
    public static void rotateM(float[] rm, int rmOffset,
            float[] m, int mOffset,
            float a, float x, float y, float z) {
        float[] r = new float[16];
        setRotateM(r, 0, a, x, y, z);
        multiplyMM(rm, rmOffset, m, mOffset, r, 0);
    }

    /**
     * Rotates matrix m in place by angle a (in degrees)
     * around the axis (x, y, z)
     * @param m source matrix
     * @param mOffset index into m where the matrix starts
     * @param a angle to rotate in degrees
     * @param x scale factor x
     * @param y scale factor y
     * @param z scale factor z
     */
    public static void rotateM(float[] m, int mOffset,
            float a, float x, float y, float z) {
        float[] temp = new float[32];
        setRotateM(temp, 0, a, x, y, z);
        multiplyMM(temp, 16, m, mOffset, temp, 0);
        System.arraycopy(temp, 16, m, mOffset, 16);
    }

    /**
     * Rotates matrix m by angle a (in degrees) around the axis (x, y, z)
     * @param rm returns the result
     * @param rmOffset index into rm where the result matrix starts
     * @param a angle to rotate in degrees
     * @param x scale factor x
     * @param y scale factor y
     * @param z scale factor z
     */
    public static void setRotateM(float[] rm, int rmOffset,
            float a, float x, float y, float z) {
        rm[rmOffset + 3] = 0;
        rm[rmOffset + 7] = 0;
        rm[rmOffset + 11]= 0;
        rm[rmOffset + 12]= 0;
        rm[rmOffset + 13]= 0;
        rm[rmOffset + 14]= 0;
        rm[rmOffset + 15]= 1;
        a *= (float) (Math.PI / 180.0f);
        float s = (float) Math.sin(a);
        float c = (float) Math.cos(a);
        if (1.0f == x && 0.0f == y && 0.0f == z) {
            rm[rmOffset + 5] = c;   rm[rmOffset + 10]= c;
            rm[rmOffset + 6] = s;   rm[rmOffset + 9] = -s;
            rm[rmOffset + 1] = 0;   rm[rmOffset + 2] = 0;
            rm[rmOffset + 4] = 0;   rm[rmOffset + 8] = 0;
            rm[rmOffset + 0] = 1;
        } else if (0.0f == x && 1.0f == y && 0.0f == z) {
            rm[rmOffset + 0] = c;   rm[rmOffset + 10]= c;
            rm[rmOffset + 8] = s;   rm[rmOffset + 2] = -s;
            rm[rmOffset + 1] = 0;   rm[rmOffset + 4] = 0;
            rm[rmOffset + 6] = 0;   rm[rmOffset + 9] = 0;
            rm[rmOffset + 5] = 1;
        } else if (0.0f == x && 0.0f == y && 1.0f == z) {
            rm[rmOffset + 0] = c;   rm[rmOffset + 5] = c;
            rm[rmOffset + 1] = s;   rm[rmOffset + 4] = -s;
            rm[rmOffset + 2] = 0;   rm[rmOffset + 6] = 0;
            rm[rmOffset + 8] = 0;   rm[rmOffset + 9] = 0;
            rm[rmOffset + 10]= 1;
        } else {
            float len = length(x, y, z);
            if (1.0f != len) {
                float recipLen = 1.0f / len;
                x *= recipLen;
                y *= recipLen;
                z *= recipLen;
            }
            float nc = 1.0f - c;
            float xy = x * y;
            float yz = y * z;
            float zx = z * x;
            float xs = x * s;
            float ys = y * s;
            float zs = z * s;
            rm[rmOffset +  0] = x*x*nc +  c;
            rm[rmOffset +  4] =  xy*nc - zs;
            rm[rmOffset +  8] =  zx*nc + ys;
            rm[rmOffset +  1] =  xy*nc + zs;
            rm[rmOffset +  5] = y*y*nc +  c;
            rm[rmOffset +  9] =  yz*nc - xs;
            rm[rmOffset +  2] =  zx*nc - ys;
            rm[rmOffset +  6] =  yz*nc + xs;
            rm[rmOffset + 10] = z*z*nc +  c;
        }
    }

    /**
     * Converts Euler angles to a rotation matrix
     * @param rm returns the result
     * @param rmOffset index into rm where the result matrix starts
     * @param x angle of rotation, in degrees
     * @param y angle of rotation, in degrees
     * @param z angle of rotation, in degrees
     */
    public static void setRotateEulerM(float[] rm, int rmOffset,
            float x, float y, float z) {
        x *= (float) (Math.PI / 180.0f);
        y *= (float) (Math.PI / 180.0f);
        z *= (float) (Math.PI / 180.0f);
        float cx = (float) Math.cos(x);
        float sx = (float) Math.sin(x);
        float cy = (float) Math.cos(y);
        float sy = (float) Math.sin(y);
        float cz = (float) Math.cos(z);
        float sz = (float) Math.sin(z);
        float cxsy = cx * sy;
        float sxsy = sx * sy;

        rm[rmOffset + 0]  =   cy * cz;
        rm[rmOffset + 1]  =  -cy * sz;
        rm[rmOffset + 2]  =   sy;
        rm[rmOffset + 3]  =  0.0f;

        rm[rmOffset + 4]  =  cxsy * cz + cx * sz;
        rm[rmOffset + 5]  = -cxsy * sz + cx * cz;
        rm[rmOffset + 6]  =  -sx * cy;
        rm[rmOffset + 7]  =  0.0f;

        rm[rmOffset + 8]  = -sxsy * cz + sx * sz;
        rm[rmOffset + 9]  =  sxsy * sz + sx * cz;
        rm[rmOffset + 10] =  cx * cy;
        rm[rmOffset + 11] =  0.0f;

        rm[rmOffset + 12] =  0.0f;
        rm[rmOffset + 13] =  0.0f;
        rm[rmOffset + 14] =  0.0f;
        rm[rmOffset + 15] =  1.0f;
    }
}