FileDocCategorySizeDatePackage
Buffer.javaAPI DocJava SE 5 API14084Fri Aug 26 14:57:08 BST 2005java.nio

Buffer.java

/*
 * @(#)Buffer.java	1.34 04/06/14
 *
 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package java.nio;


/**
 * A container for data of a specific primitive type.
 *
 * <p> A buffer is a linear, finite sequence of elements of a specific
 * primitive type.  Aside from its content, the essential properties of a
 * buffer are its capacity, limit, and position: </p>
 *
 * <blockquote>
 *
 *   <p> A buffer's <i>capacity</i> is the number of elements it contains.  The
 *   capacity of a buffer is never negative and never changes.  </p>
 *
 *   <p> A buffer's <i>limit</i> is the index of the first element that should
 *   not be read or written.  A buffer's limit is never negative and is never
 *   greater than its capacity.  </p>
 *
 *   <p> A buffer's <i>position</i> is the index of the next element to be
 *   read or written.  A buffer's position is never negative and is never
 *   greater than its limit.  </p>
 *
 * </blockquote>
 *
 * <p> There is one subclass of this class for each non-boolean primitive type.
 *
 * 
 * <h4> Transferring data </h4>
 *
 * <p> Each subclass of this class defines two categories of <i>get</i> and
 * <i>put</i> operations: </p>
 *
 * <blockquote>
 *
 *   <p> <i>Relative</i> operations read or write one or more elements starting
 *   at the current position and then increment the position by the number of
 *   elements transferred.  If the requested transfer exceeds the limit then a
 *   relative <i>get</i> operation throws a {@link BufferUnderflowException}
 *   and a relative <i>put</i> operation throws a {@link
 *   BufferOverflowException}; in either case, no data is transferred.  </p>
 *
 *   <p> <i>Absolute</i> operations take an explicit element index and do not
 *   affect the position.  Absolute <i>get</i> and <i>put</i> operations throw
 *   an {@link IndexOutOfBoundsException} if the index argument exceeds the
 *   limit.  </p>
 *
 * </blockquote>
 *
 * <p> Data may also, of course, be transferred in to or out of a buffer by the
 * I/O operations of an appropriate channel, which are always relative to the
 * current position.
 *
 *
 * <h4> Marking and resetting </h4>
 *
 * <p> A buffer's <i>mark</i> is the index to which its position will be reset
 * when the {@link #reset reset} method is invoked.  The mark is not always
 * defined, but when it is defined it is never negative and is never greater
 * than the position.  If the mark is defined then it is discarded when the
 * position or the limit is adjusted to a value smaller than the mark.  If the
 * mark is not defined then invoking the {@link #reset reset} method causes an
 * {@link InvalidMarkException} to be thrown.
 *
 *
 * <h4> Invariants </h4>
 *
 * <p> The following invariant holds for the mark, position, limit, and
 * capacity values:
 *
 * <blockquote>
 *     <tt>0</tt> <tt><=</tt>
 *     <i>mark</i> <tt><=</tt>
 *     <i>position</i> <tt><=</tt>
 *     <i>limit</i> <tt><=</tt>
 *     <i>capacity</i>
 * </blockquote>
 *
 * <p> A newly-created buffer always has a position of zero and a mark that is
 * undefined.  The initial limit may be zero, or it may be some other value
 * that depends upon the type of the buffer and the manner in which it is
 * constructed.  The initial content of a buffer is, in general,
 * undefined.
 *
 *
 * <h4> Clearing, flipping, and rewinding </h4>
 *
 * <p> In addition to methods for accessing the position, limit, and capacity
 * values and for marking and resetting, this class also defines the following
 * operations upon buffers:
 *
 * <ul>
 *
 *   <li><p> {@link #clear} makes a buffer ready for a new sequence of
 *   channel-read or relative <i>put</i> operations: It sets the limit to the
 *   capacity and the position to zero.  </p></li>
 *
 *   <li><p> {@link #flip} makes a buffer ready for a new sequence of
 *   channel-write or relative <i>get</i> operations: It sets the limit to the
 *   current position and then sets the position to zero.  </p></li>
 *
 *   <li><p> {@link #rewind} makes a buffer ready for re-reading the data that
 *   it already contains: It leaves the limit unchanged and sets the position
 *   to zero.  </p></li>
 *
 * </ul>
 *
 *
 * <h4> Read-only buffers </h4>
 *
 * <p> Every buffer is readable, but not every buffer is writable.  The
 * mutation methods of each buffer class are specified as <i>optional
 * operations</i> that will throw a {@link ReadOnlyBufferException} when
 * invoked upon a read-only buffer.  A read-only buffer does not allow its
 * content to be changed, but its mark, position, and limit values are mutable.
 * Whether or not a buffer is read-only may be determined by invoking its
 * {@link #isReadOnly isReadOnly} method.
 *
 *
 * <h4> Thread safety </h4>
 *
 * <p> Buffers are not safe for use by multiple concurrent threads.  If a
 * buffer is to be used by more than one thread then access to the buffer
 * should be controlled by appropriate synchronization.
 *
 *
 * <h4> Invocation chaining </h4>
 *
 * <p> Methods in this class that do not otherwise have a value to return are
 * specified to return the buffer upon which they are invoked.  This allows
 * method invocations to be chained; for example, the sequence of statements
 *
 * <blockquote><pre>
 * b.flip();
 * b.position(23);
 * b.limit(42);</pre></blockquote>
 *
 * can be replaced by the single, more compact statement
 *
 * <blockquote><pre>
 * b.flip().position(23).limit(42);</pre></blockquote>
 *
 *
 * @author Mark Reinhold
 * @author JSR-51 Expert Group
 * @version 1.34, 04/06/14
 * @since 1.4
 */

public abstract class Buffer {

    // Invariants: mark <= position <= limit <= capacity
    private int mark = -1;
    private int position = 0;
    private int limit;
    private int capacity;

    // Used only by direct buffers
    // NOTE: hoisted here for speed in JNI GetDirectBufferAddress
    long address;

    // Creates a new buffer with the given mark, position, limit, and capacity,
    // after checking invariants.
    //
    Buffer(int mark, int pos, int lim, int cap) {	// package-private
	if (cap < 0)
	    throw new IllegalArgumentException();
	this.capacity = cap;
	limit(lim);
	position(pos);
	if (mark > 0) {
	    if (mark > pos)
		throw new IllegalArgumentException();
	    this.mark = mark;
	}
    }

    /**
     * Returns this buffer's capacity. </p>
     *
     * @return  The capacity of this buffer
     */
    public final int capacity() {
	return capacity;
    }

    /**
     * Returns this buffer's position. </p>
     *
     * @return  The position of this buffer
     */
    public final int position() {
	return position;
    }

    /**
     * Sets this buffer's position.  If the mark is defined and larger than the
     * new position then it is discarded. </p>
     *
     * @param  newPosition
     *         The new position value; must be non-negative
     *         and no larger than the current limit
     *
     * @return  This buffer
     *
     * @throws  IllegalArgumentException
     *          If the preconditions on <tt>newPosition</tt> do not hold
     */
    public final Buffer position(int newPosition) {
	if ((newPosition > limit) || (newPosition < 0))
	    throw new IllegalArgumentException();
	position = newPosition;
	if (mark > position) mark = -1;
	return this;
    }

    /**
     * Returns this buffer's limit. </p>
     *
     * @return  The limit of this buffer
     */
    public final int limit() {
	return limit;
    }

    /**
     * Sets this buffer's limit.  If the position is larger than the new limit
     * then it is set to the new limit.  If the mark is defined and larger than
     * the new limit then it is discarded. </p>
     *
     * @param  newLimit
     *         The new limit value; must be non-negative
     *         and no larger than this buffer's capacity
     *
     * @return  This buffer
     *
     * @throws  IllegalArgumentException
     *          If the preconditions on <tt>newLimit</tt> do not hold
     */
    public final Buffer limit(int newLimit) {
	if ((newLimit > capacity) || (newLimit < 0))
	    throw new IllegalArgumentException();
	limit = newLimit;
	if (position > limit) position = limit;
	if (mark > limit) mark = -1;
	return this;
    }

    /**
     * Sets this buffer's mark at its position. </p>
     *
     * @return  This buffer
     */
    public final Buffer mark() {
	mark = position;
	return this;
    }

    /**
     * Resets this buffer's position to the previously-marked position.
     *
     * <p> Invoking this method neither changes nor discards the mark's
     * value. </p>
     *
     * @return  This buffer
     *
     * @throws  InvalidMarkException
     *          If the mark has not been set
     */
    public final Buffer reset() {
        int m = mark;
	if (m < 0)
	    throw new InvalidMarkException();
	position = m;
	return this;
    }

    /**
     * Clears this buffer.  The position is set to zero, the limit is set to
     * the capacity, and the mark is discarded.
     *
     * <p> Invoke this method before using a sequence of channel-read or
     * <i>put</i> operations to fill this buffer.  For example:
     *
     * <blockquote><pre>
     * buf.clear();     // Prepare buffer for reading
     * in.read(buf);    // Read data</pre></blockquote>
     *
     * <p> This method does not actually erase the data in the buffer, but it
     * is named as if it did because it will most often be used in situations
     * in which that might as well be the case. </p>
     *
     * @return  This buffer
     */
    public final Buffer clear() {
	position = 0;
	limit = capacity;
	mark = -1;
	return this;
    }

    /**
     * Flips this buffer.  The limit is set to the current position and then
     * the position is set to zero.  If the mark is defined then it is
     * discarded.
     *
     * <p> After a sequence of channel-read or <i>put</i> operations, invoke
     * this method to prepare for a sequence of channel-write or relative
     * <i>get</i> operations.  For example:
     *
     * <blockquote><pre>
     * buf.put(magic);    // Prepend header
     * in.read(buf);      // Read data into rest of buffer
     * buf.flip();        // Flip buffer
     * out.write(buf);    // Write header + data to channel</pre></blockquote>
     *
     * <p> This method is often used in conjunction with the {@link
     * java.nio.ByteBuffer#compact compact} method when transferring data from
     * one place to another.  </p>
     *
     * @return  This buffer
     */
    public final Buffer flip() {
	limit = position;
	position = 0;
	mark = -1;
	return this;
    }

    /**
     * Rewinds this buffer.  The position is set to zero and the mark is
     * discarded.
     *
     * <p> Invoke this method before a sequence of channel-write or <i>get</i>
     * operations, assuming that the limit has already been set
     * appropriately.  For example:
     *
     * <blockquote><pre>
     * out.write(buf);    // Write remaining data
     * buf.rewind();      // Rewind buffer
     * buf.get(array);    // Copy data into array</pre></blockquote>
     *
     * @return  This buffer
     */
    public final Buffer rewind() {
	position = 0;
	mark = -1;
	return this;
    }

    /**
     * Returns the number of elements between the current position and the
     * limit. </p>
     *
     * @return  The number of elements remaining in this buffer
     */
    public final int remaining() {
	return limit - position;
    }

    /**
     * Tells whether there are any elements between the current position and
     * the limit. </p>
     *
     * @return  <tt>true</tt> if, and only if, there is at least one element
     *          remaining in this buffer
     */
    public final boolean hasRemaining() {
	return position < limit;
    }

    /**
     * Tells whether or not this buffer is read-only. </p>
     *
     * @return  <tt>true</tt> if, and only if, this buffer is read-only
     */
    public abstract boolean isReadOnly();


    // -- Package-private methods for bounds checking, etc. --

    /**
     * Checks the current position against the limit, throwing a {@link
     * BufferUnderflowException} if it is not smaller than the limit, and then
     * increments the position. </p>
     *
     * @return  The current position value, before it is incremented
     */
    final int nextGetIndex() {				// package-private
	if (position >= limit)
	    throw new BufferUnderflowException();
	return position++;
    }

    final int nextGetIndex(int nb) {			// package-private
        if (limit - position < nb)
	    throw new BufferUnderflowException();
	int p = position;
	position += nb;
	return p;
    }

    /**
     * Checks the current position against the limit, throwing a {@link
     * BufferOverflowException} if it is not smaller than the limit, and then
     * increments the position. </p>
     *
     * @return  The current position value, before it is incremented
     */
    final int nextPutIndex() {				// package-private
	if (position >= limit)
	    throw new BufferOverflowException();
	return position++;
    }

    final int nextPutIndex(int nb) {			// package-private
        if (limit - position < nb)
	    throw new BufferOverflowException();
	int p = position;
	position += nb;
	return p;
    }

    /**
     * Checks the given index against the limit, throwing an {@link
     * IndexOutOfBoundsException} if it is not smaller than the limit
     * or is smaller than zero.
     */
    final int checkIndex(int i) {			// package-private
	if ((i < 0) || (i >= limit))
	    throw new IndexOutOfBoundsException();
	return i;
    }

    final int checkIndex(int i, int nb) {		// package-private
	if ((i < 0) || (nb > limit - i))
	    throw new IndexOutOfBoundsException();
	return i;
    }

    final int markValue() {				// package-private
	return mark;
    }

    static void checkBounds(int off, int len, int size) { // package-private
        if ((off | len | (off + len) | (size - (off + len))) < 0)
	    throw new IndexOutOfBoundsException();
    }

}