FileDocCategorySizeDatePackage
SsaConverter.javaAPI DocAndroid 1.5 API12426Wed May 06 22:41:02 BST 2009com.android.dx.ssa

SsaConverter.java

/*
 * Copyright (C) 2007 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.android.dx.ssa;

import com.android.dx.rop.code.RegisterSpec;
import com.android.dx.rop.code.RopMethod;
import com.android.dx.util.IntIterator;

import java.util.ArrayList;
import java.util.BitSet;

/**
 * Converts ROP methods to SSA Methods
 */
public class SsaConverter {
    public static boolean DEBUG = false;

    /**
     * returns an SSA representation, edge-split and with phi functions placed
     * @param rmeth input
     * @param paramWidth the total width, in register-units, of the method's
     * parameters
     * @param isStatic true if this method has no 'this'
     * pointer argument
     * @return output in SSA form
     */
    public static SsaMethod convertToSsaMethod(RopMethod rmeth, 
            int paramWidth, boolean isStatic) {
        SsaMethod result;

        result = SsaMethod.newFromRopMethod(rmeth, paramWidth, isStatic);

        edgeSplit(result);

        LocalVariableInfo localInfo = LocalVariableExtractor.extract(result);

        placePhiFunctions(result, localInfo);
        new SsaRenamer(result).run();

        /*
         * Exit block, added here,  is not considered for edge splitting
         * or phi placement since no actual control flows to it.
         */
        result.makeExitBlock();

        return result;
    }

    /**
     * Returns an SSA represention with only the edge-splitter run.
     * @param rmeth method to process
     * @param paramWidth width of all arguments in the method
     * @param isStatic true if this method has no 'this' pointer argument
     * @return an SSA represention with only the edge-splitter run.
     */
    public static SsaMethod testEdgeSplit (RopMethod rmeth, int paramWidth,
            boolean isStatic) {
        SsaMethod result;

        result = SsaMethod.newFromRopMethod(rmeth, paramWidth, isStatic);

        edgeSplit(result);
        return result;
    }

    /**
     * Returns an SSA represention with only the steps through the
     * phi placement run.
     * @param rmeth method to process
     * @param paramWidth width of all arguments in the method
     * @param isStatic true if this method has no 'this' pointer argument
     * @return an SSA represention with only the edge-splitter run.
     */
    public static SsaMethod testPhiPlacement (RopMethod rmeth, int paramWidth,
            boolean isStatic) {
        SsaMethod result;

        result = SsaMethod.newFromRopMethod(rmeth, paramWidth, isStatic);

        edgeSplit(result);

        LocalVariableInfo localInfo = LocalVariableExtractor.extract(result);

        placePhiFunctions(result, localInfo);
        return result;
    }

    /**
     * See Appel section 19.1
     * Converts CFG into "edge-split" form, such that each node either a
     * unique successor or unique predecessor.<p>
     *
     * In addition, the SSA form we use enforces a further constraint,
     * requiring each block with a final instruction that returns a
     * value to have a primary successor that has no other
     * predecessor. This ensures move statements can always be
     * inserted correctly when phi statements are removed.
     * 
     * @param result method to process
     */
    private static void edgeSplit(SsaMethod result) {

        edgeSplitPredecessors(result);
        edgeSplitMoveExceptionsAndResults(result);
        edgeSplitSuccessors(result);
    }

    /**
     * Inserts Z nodes as new predecessors for every node that has multiple
     * successors and multiple predecessors.
     * @param result non-null; method to process
     */
    private static void edgeSplitPredecessors(SsaMethod result) {
        ArrayList<SsaBasicBlock> blocks = result.getBlocks();
        
        // New blocks are added to the end of the block list during
        // this iteration
        for (int i = blocks.size() - 1; i >= 0; i-- ) {
            SsaBasicBlock block = blocks.get(i);
            if (nodeNeedsUniquePredecessor(block)) {
                block.insertNewPredecessor();
            }
        }
    }

    /**
     * @param block non-null; block in question
     * @return true if this node needs to have a unique predecessor created for
     * it.
     */
    private static boolean nodeNeedsUniquePredecessor(SsaBasicBlock block) {

        /*
         * Any block with that has both multiple successors and multiple
         * predecessors needs a new predecessor node.
         */

        int countPredecessors = block.getPredecessors().cardinality();
        int countSuccessors = block.getSuccessors().cardinality();

        return  (countPredecessors > 1 && countSuccessors > 1);
    }

    /**
     * In ROP form, move-exception must occur as the first insn in a block
     * immediately succeeding the insn that could thrown an exception.
     * We may need room to insert move insns later, so make sure to split
     * any block that starts with a move-exception such that there is a
     * unique move-exception block for each predecessor.
     * @param ssaMeth method to process
     */
    private static void edgeSplitMoveExceptionsAndResults(SsaMethod ssaMeth) {
        ArrayList<SsaBasicBlock> blocks = ssaMeth.getBlocks();

        // New blocks are added to the end of the block list during
        // this iteration
        for (int i = blocks.size() - 1; i >= 0; i-- ) {
            SsaBasicBlock block = blocks.get(i);
        
            // Any block that starts with a move-exception and has more than
            // one predecessor...
            if (!block.isExitBlock()
                    && block.getPredecessors().cardinality() > 1 
                    && block.getInsns().get(0).isMoveException()) {

                // block.getPredecessors() is changed in the loop below
                BitSet preds = (BitSet)block.getPredecessors().clone();
                for (int j = preds.nextSetBit(0); j >= 0;
                        j = preds.nextSetBit(j + 1)) {

                    SsaBasicBlock predecessor = blocks.get(j);

                    SsaBasicBlock zNode = predecessor.insertNewSuccessor(block);

                    // Make sure to place the move-exception as the
                    // first insn...
                    zNode.getInsns().add(0, block.getInsns().get(0).clone());
                }

                // remove the move-exception from the original block...
                block.getInsns().remove(0);
            }
        }
    }

    /**
     * Inserts Z nodes for every node that needs a new 
     * successor.
     * @param result non-null; method to process
     */
    private static void edgeSplitSuccessors(SsaMethod result) {
        ArrayList<SsaBasicBlock> blocks = result.getBlocks();

        // New blocks are added to the end of the block list during
        // this iteration
        for (int i = blocks.size() - 1; i >= 0; i-- ) {
            SsaBasicBlock block = blocks.get(i);

            // successors list is modified in loop below
            BitSet successors = (BitSet)block.getSuccessors().clone();
            for(int j = successors.nextSetBit(0);
                    j >= 0; j = successors.nextSetBit(j+1)) {

                SsaBasicBlock succ = blocks.get(j);

                if (needsNewSuccessor(block, succ)) {
                    block.insertNewSuccessor(succ);
                }
            }
        }
    }

    /**
     * Returns true if block and successor need a Z-node between them.
     * Presently, this is true if the final instruction has any sources
     * or results and the current successor block has more than one
     * predecessor.
     * @param block predecessor node
     * @param succ successor node
     * @return true if a Z node is needed
     */
    private static boolean needsNewSuccessor(SsaBasicBlock block,
            SsaBasicBlock succ) {

        ArrayList<SsaInsn> insns = block.getInsns();
        SsaInsn lastInsn = insns.get(insns.size() - 1);

        return ((lastInsn.getResult() != null)
                    || (lastInsn.getSources().size() > 0))
                && succ.getPredecessors().cardinality() > 1;
    }

    /**
     * See Appel algorithm 19.6
     * Place Phi functions in appropriate locations.
     *
     * @param ssaMeth non-null; method to process. Modifications made in-place
     * @param localInfo non-null; Local variable info, used when placing phis
     */
    private static void placePhiFunctions (SsaMethod ssaMeth,
            LocalVariableInfo localInfo) {
        ArrayList<SsaBasicBlock> ssaBlocks;
        int regCount;
        int blockCount;

        ssaBlocks = ssaMeth.getBlocks();
        blockCount = ssaBlocks.size();
        regCount = ssaMeth.getRegCount();

        DomFront df = new DomFront(ssaMeth);
        DomFront.DomInfo[] domInfos = df.run();

        // Bit set of registers vs block index "definition sites"
        BitSet[] defsites = new BitSet[regCount];

        // Bit set of registers vs block index "phi placement sites"
        BitSet[] phisites = new BitSet[regCount];

        for (int i = 0; i < regCount; i++) {
            defsites[i] = new BitSet(blockCount);
            phisites[i] = new BitSet(blockCount);
        }

        /*
         * For each register, build a set of all basic blocks where
         * containing an assignment to that register.
         */
        for (int bi = 0, s = ssaBlocks.size(); bi < s; bi++) {
            SsaBasicBlock b = ssaBlocks.get(bi);

            for (SsaInsn insn: b.getInsns()) {

                RegisterSpec rs = insn.getResult();

                if (rs != null) {
                    defsites[rs.getReg()].set(bi);
                }
            }
        }

        if (DEBUG) {
            System.out.println("defsites");

            for (int i = 0; i < regCount; i++) {
                StringBuilder sb = new StringBuilder();

                sb.append('v').append(i).append(": ");

                sb.append(defsites[i].toString());

                System.out.println(sb);
            }
        }

        BitSet worklist;

        /*
         * For each register, compute all locations for phi placement
         * based on dominance-frontier algorithm.
         */
        for (int reg = 0, s = ssaMeth.getRegCount() ; reg < s ; reg++ ) {
            int workBlockIndex;

            /* Worklist set starts out with each node where reg is assigned */

            worklist = (BitSet)(defsites[reg].clone());

            while (0 <= (workBlockIndex = worklist.nextSetBit(0))) {
                worklist.clear(workBlockIndex);
                IntIterator dfIterator
                        = domInfos[workBlockIndex]
                        .dominanceFrontiers.iterator();

                while (dfIterator.hasNext()) {
                    int dfBlockIndex = dfIterator.next();

                    if (!phisites[reg].get(dfBlockIndex)) {
                        phisites[reg].set(dfBlockIndex);

                        RegisterSpec rs
                                = localInfo.getStarts(dfBlockIndex).get(reg);

                        if (rs == null) {
                            ssaBlocks.get(dfBlockIndex).addPhiInsnForReg(reg);
                        } else {
                            ssaBlocks.get(dfBlockIndex).addPhiInsnForReg(rs);
                        }

                        if (!defsites[reg].get(dfBlockIndex)) {
                            worklist.set(dfBlockIndex);
                        }
                    }
                }
            }
        }

        if (DEBUG) {
            System.out.println("phisites");

            for (int i = 0; i < regCount; i++) {
                StringBuilder sb = new StringBuilder();

                sb.append('v').append(i).append(": ");

                sb.append(phisites[i].toString());

                System.out.println(sb);
            }
        }
    }
}