FileDocCategorySizeDatePackage
AllOps.javaAPI DocExample10226Mon Apr 06 18:10:26 BST 1998None

AllOps.java

//: AllOps.java
//////////////////////////////////////////////////
// Copyright (c) Bruce Eckel, 1998
// Source code file from the book "Thinking in Java"
// All rights reserved EXCEPT as allowed by the
// following statements: You can freely use this file
// for your own work (personal or commercial),
// including modifications and distribution in
// executable form only. Permission is granted to use
// this file in classroom situations, including its
// use in presentation materials, as long as the book
// "Thinking in Java" is cited as the source. 
// Except in classroom situations, you cannot copy
// and distribute this code; instead, the sole
// distribution point is http://www.BruceEckel.com 
// (and official mirror sites) where it is
// freely available. You cannot remove this
// copyright and notice. You cannot distribute
// modified versions of the source code in this
// package. You cannot use this file in printed
// media without the express permission of the
// author. Bruce Eckel makes no representation about
// the suitability of this software for any purpose.
// It is provided "as is" without express or implied
// warranty of any kind, including any implied
// warranty of merchantability, fitness for a
// particular purpose or non-infringement. The entire
// risk as to the quality and performance of the
// software is with you. Bruce Eckel and the
// publisher shall not be liable for any damages
// suffered by you or any third party as a result of
// using or distributing software. In no event will
// Bruce Eckel or the publisher be liable for any
// lost revenue, profit, or data, or for direct,
// indirect, special, consequential, incidental, or
// punitive damages, however caused and regardless of
// the theory of liability, arising out of the use of
// or inability to use software, even if Bruce Eckel
// and the publisher have been advised of the
// possibility of such damages. Should the software
// prove defective, you assume the cost of all
// necessary servicing, repair, or correction. If you
// think you've found an error, please email all
// modified files with clearly commented changes to:
// Bruce@EckelObjects.com. (Please use the same
// address for non-code errors found in the book.)
/////////////////////////////////////////////////

// Tests all the operators on all the
// primitive data types to show which
// ones are accepted by the Java compiler.

class AllOps {
  // To accept the results of a boolean test:
  void f(boolean b) {}
  void boolTest(boolean x, boolean y) {
    // Arithmetic operators:
    //! x = x * y;
    //! x = x / y;
    //! x = x % y;
    //! x = x + y;
    //! x = x - y;
    //! x++;
    //! x--;
    //! x = +y;
    //! x = -y;
    // Relational and logical:
    //! f(x > y);
    //! f(x >= y);
    //! f(x < y);
    //! f(x <= y);
    f(x == y);
    f(x != y);
    f(!y);
    x = x && y;
    x = x || y;
    // Bitwise operators:
    //! x = ~y;
    x = x & y;
    x = x | y;
    x = x ^ y;
    //! x = x << 1;
    //! x = x >> 1;
    //! x = x >>> 1;
    // Compound assignment:
    //! x += y;
    //! x -= y;
    //! x *= y;
    //! x /= y;
    //! x %= y;
    //! x <<= 1;
    //! x >>= 1;
    //! x >>>= 1;
    x &= y;
    x ^= y;
    x |= y;
    // Casting:
    //! char c = (char)x;
    //! byte B = (byte)x;
    //! short s = (short)x;
    //! int i = (int)x;
    //! long l = (long)x;
    //! float f = (float)x;
    //! double d = (double)x;
  }
  void charTest(char x, char y) {
    // Arithmetic operators:
    x = (char)(x * y);
    x = (char)(x / y);
    x = (char)(x % y);
    x = (char)(x + y);
    x = (char)(x - y);
    x++;
    x--;
    x = (char)+y;
    x = (char)-y;
    // Relational and logical:
    f(x > y);
    f(x >= y);
    f(x < y);
    f(x <= y);
    f(x == y);
    f(x != y);
    //! f(!x);
    //! f(x && y);
    //! f(x || y);
    // Bitwise operators:
    x= (char)~y;
    x = (char)(x & y);
    x  = (char)(x | y);
    x = (char)(x ^ y);
    x = (char)(x << 1);
    x = (char)(x >> 1);
    x = (char)(x >>> 1);
    // Compound assignment:
    x += y;
    x -= y;
    x *= y;
    x /= y;
    x %= y;
    x <<= 1;
    x >>= 1;
    x >>>= 1;
    x &= y;
    x ^= y;
    x |= y;
    // Casting:
    //! boolean b = (boolean)x;
    byte B = (byte)x;
    short s = (short)x;
    int i = (int)x;
    long l = (long)x;
    float f = (float)x;
    double d = (double)x;
  }
  void byteTest(byte x, byte y) {
    // Arithmetic operators:
    x = (byte)(x* y);
    x = (byte)(x / y);
    x = (byte)(x % y);
    x = (byte)(x + y);
    x = (byte)(x - y);
    x++;
    x--;
    x = (byte)+ y;
    x = (byte)- y;
    // Relational and logical:
    f(x > y);
    f(x >= y);
    f(x < y);
    f(x <= y);
    f(x == y);
    f(x != y);
    //! f(!x);
    //! f(x && y);
    //! f(x || y);
    // Bitwise operators:
    x = (byte)~y;
    x = (byte)(x & y);
    x = (byte)(x | y);
    x = (byte)(x ^ y);
    x = (byte)(x << 1);
    x = (byte)(x >> 1);
    x = (byte)(x >>> 1);
    // Compound assignment:
    x += y;
    x -= y;
    x *= y;
    x /= y;
    x %= y;
    x <<= 1;
    x >>= 1;
    x >>>= 1;
    x &= y;
    x ^= y;
    x |= y;
    // Casting:
    //! boolean b = (boolean)x;
    char c = (char)x;
    short s = (short)x;
    int i = (int)x;
    long l = (long)x;
    float f = (float)x;
    double d = (double)x;
  }
  void shortTest(short x, short y) {
    // Arithmetic operators:
    x = (short)(x * y);
    x = (short)(x / y);
    x = (short)(x % y);
    x = (short)(x + y);
    x = (short)(x - y);
    x++;
    x--;
    x = (short)+y;
    x = (short)-y;
    // Relational and logical:
    f(x > y);
    f(x >= y);
    f(x < y);
    f(x <= y);
    f(x == y);
    f(x != y);
    //! f(!x);
    //! f(x && y);
    //! f(x || y);
    // Bitwise operators:
    x = (short)~y;
    x = (short)(x & y);
    x = (short)(x | y);
    x = (short)(x ^ y);
    x = (short)(x << 1);
    x = (short)(x >> 1);
    x = (short)(x >>> 1);
    // Compound assignment:
    x += y;
    x -= y;
    x *= y;
    x /= y;
    x %= y;
    x <<= 1;
    x >>= 1;
    x >>>= 1;
    x &= y;
    x ^= y;
    x |= y;
    // Casting:
    //! boolean b = (boolean)x;
    char c = (char)x;
    byte B = (byte)x;
    int i = (int)x;
    long l = (long)x;
    float f = (float)x;
    double d = (double)x;
  }
  void intTest(int x, int y) {
    // Arithmetic operators:
    x = x * y;
    x = x / y;
    x = x % y;
    x = x + y;
    x = x - y;
    x++;
    x--;
    x = +y;
    x = -y;
    // Relational and logical:
    f(x > y);
    f(x >= y);
    f(x < y);
    f(x <= y);
    f(x == y);
    f(x != y);
    //! f(!x);
    //! f(x && y);
    //! f(x || y);
    // Bitwise operators:
    x = ~y;
    x = x & y;
    x = x | y;
    x = x ^ y;
    x = x << 1;
    x = x >> 1;
    x = x >>> 1;
    // Compound assignment:
    x += y;
    x -= y;
    x *= y;
    x /= y;
    x %= y;
    x <<= 1;
    x >>= 1;
    x >>>= 1;
    x &= y;
    x ^= y;
    x |= y;
    // Casting:
    //! boolean b = (boolean)x;
    char c = (char)x;
    byte B = (byte)x;
    short s = (short)x;
    long l = (long)x;
    float f = (float)x;
    double d = (double)x;
  }
  void longTest(long x, long y) {
    // Arithmetic operators:
    x = x * y;
    x = x / y;
    x = x % y;
    x = x + y;
    x = x - y;
    x++;
    x--;
    x = +y;
    x = -y;
    // Relational and logical:
    f(x > y);
    f(x >= y);
    f(x < y);
    f(x <= y);
    f(x == y);
    f(x != y);
    //! f(!x);
    //! f(x && y);
    //! f(x || y);
    // Bitwise operators:
    x = ~y;
    x = x & y;
    x = x | y;
    x = x ^ y;
    x = x << 1;
    x = x >> 1;
    x = x >>> 1;
    // Compound assignment:
    x += y;
    x -= y;
    x *= y;
    x /= y;
    x %= y;
    x <<= 1;
    x >>= 1;
    x >>>= 1;
    x &= y;
    x ^= y;
    x |= y;
    // Casting:
    //! boolean b = (boolean)x;
    char c = (char)x;
    byte B = (byte)x;
    short s = (short)x;
    int i = (int)x;
    float f = (float)x;
    double d = (double)x;
  }
  void floatTest(float x, float y) {
    // Arithmetic operators:
    x = x * y;
    x = x / y;
    x = x % y;
    x = x + y;
    x = x - y;
    x++;
    x--;
    x = +y;
    x = -y;
    // Relational and logical:
    f(x > y);
    f(x >= y);
    f(x < y);
    f(x <= y);
    f(x == y);
    f(x != y);
    //! f(!x);
    //! f(x && y);
    //! f(x || y);
    // Bitwise operators:
    //! x = ~y;
    //! x = x & y;
    //! x = x | y;
    //! x = x ^ y;
    //! x = x << 1;
    //! x = x >> 1;
    //! x = x >>> 1;
    // Compound assignment:
    x += y;
    x -= y;
    x *= y;
    x /= y;
    x %= y;
    //! x <<= 1;
    //! x >>= 1;
    //! x >>>= 1;
    //! x &= y;
    //! x ^= y;
    //! x |= y;
    // Casting:
    //! boolean b = (boolean)x;
    char c = (char)x;
    byte B = (byte)x;
    short s = (short)x;
    int i = (int)x;
    long l = (long)x;
    double d = (double)x;
  }
  void doubleTest(double x, double y) {
    // Arithmetic operators:
    x = x * y;
    x = x / y;
    x = x % y;
    x = x + y;
    x = x - y;
    x++;
    x--;
    x = +y;
    x = -y;
    // Relational and logical:
    f(x > y);
    f(x >= y);
    f(x < y);
    f(x <= y);
    f(x == y);
    f(x != y);
    //! f(!x);
    //! f(x && y);
    //! f(x || y);
    // Bitwise operators:
    //! x = ~y;
    //! x = x & y;
    //! x = x | y;
    //! x = x ^ y;
    //! x = x << 1;
    //! x = x >> 1;
    //! x = x >>> 1;
    // Compound assignment:
    x += y;
    x -= y;
    x *= y;
    x /= y;
    x %= y;
    //! x <<= 1;
    //! x >>= 1;
    //! x >>>= 1;
    //! x &= y;
    //! x ^= y;
    //! x |= y;
    // Casting:
    //! boolean b = (boolean)x;
    char c = (char)x;
    byte B = (byte)x;
    short s = (short)x;
    int i = (int)x;
    long l = (long)x;
    float f = (float)x;
  }
} ///:~